Skip to main content
Log in

Low-temperature synthesis and processing of electronic materials in the BaO-TiO2 system

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The BaO-TiO2 system contains several technologically important electronic materials. BaTiO3, a ceramic with high dielectric constant, is useful for the manufacture of multilayer ceramic capacitors, thermistors and electro-optic components. Titania rich compounds in this system (such as BaTi4O9 and Ba2Ti9O20) are suitable for the manufacture of miniaturized microwave resonators. Conventional processing of these ceramics relies on the solid-state reactions between readily available raw materials (typically TiO2 and BaCO3) and tends to produce coarse, impure, inhomogeneous and multiphase powders. Low temperature, wet chemical routes offer an exciting possibility for the synthesis of high purity, homogeneous, ultrafine and multicomponent powders from which electronic components with tailored and predictable properties could be prepared. A review of new and emerging techniques for the low temperature, wet chemical synthesis of barium titanates is presented. Salient features of several of these processes based on the use of alkoxides, acetates, citrates, chlorides, hydroxides and oxalates of barium and titanium, and combinations thereof, are described. The reaction pathways for the formation of barium titanates are discussed. A comparative summary of the powder characteristics and electrical properties of the barium titanates obtained by different techniques is presented along with a brief discussion of the economic viability of these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. “Advanced Ceramic Materials: Technological and Economic Assessment” (Noyes, Park Ridge, New Jersey, 1985).

  2. K. Kirby, personal communication.

  3. J. J. Ritter, R. S. Roth andJ. E. Blendell,J. Amer. Ceram. Soc. 69 (1986) 155.

    Article  Google Scholar 

  4. J. M. Millet, R. S. Roth andH. S. Parker,ibid. 69 (1986) 811.

    Article  Google Scholar 

  5. A. Beauger, J. C. Mutin andJ. C. Niepce,J. Mater. Sci. 18 (1983) 304.

    Article  Google Scholar 

  6. B. Jaffe, W. R. Cook andH. Jaffe, “Piezoelectric Ceramics” (Academic Press, New York, 1971).

    Google Scholar 

  7. L. K. Templeton andJ. A. Pask,J. Amer. Ceram. Soc. 42 (1959) 212.

    Article  Google Scholar 

  8. H. Tagwa andJ. Ohashi,Denki Kagaku Ky Okai, Showa 52 (8) (1984) 485.

    Google Scholar 

  9. J. C. Mutin andJ. C. Niepce,J. Mater. Sci. Lett. 2 (1984) 1591.

    Google Scholar 

  10. S. G. Mhaisalkar, M. Sc. thesis, Ohio State University, Ohio, 1987.

    Google Scholar 

  11. S. Nishigaki et al. J. Amer. Ceram. Soc. 71 (1988) C-11.

    Article  Google Scholar 

  12. S. Nomura, K. Tomaya andK. Kaneta,Jpn J. Appl. Phys. 22 (1983) 1125.

    Article  Google Scholar 

  13. T. R. N. Kutty andP. Murugaraj,J. Mater. Sci. Lett. 7 (1988) 601.

    Article  Google Scholar 

  14. P. P. Phule andS. H. Risbud,Adv. Ceram. Mater. 3 (1988) 183.

    Article  Google Scholar 

  15. P. P. Phule, S. Raghavan andS. H. Risbud,J. Amer. Ceram. Soc. 70 (1987) C-108.

    Article  Google Scholar 

  16. P. P. Phule andS. H. Risbud,Mater. Sci. Engg. B3 (1989) 241.

    Article  Google Scholar 

  17. P. P. Phule andS. H. Risbud in “Better Ceramics Through Chemistry” Vol. 3, edited by C. J. Brinker, D. R. Clark and D. R. Ulrich (Materials Research Society, Pittsburgh, 1988) p. 275.

    Google Scholar 

  18. G. Tomandl, H. Rosch andA. Steigelschmitt,ibidin “, p. 281.

    Google Scholar 

  19. N. D. S. Mohallem andM. A. Aegerter,ibidin “, p. 515.

    Google Scholar 

  20. K. W. Kirby,Mater. Res. Bull. 23 (1988) 881.

    Article  Google Scholar 

  21. J. M. Wilson, D. L. Coller andS. Venkataramani, US patent 4670243, June (1987).

  22. K. S. Mazdiyasni andL. M. Brown,J. Amer. Ceram. Soc. 55 (1972) 633.

    Article  Google Scholar 

  23. K. S. Mazdiyasni, R. T. Dolloff andJ. S. Smith II,ibid. 52 (1969) 523.

    Article  Google Scholar 

  24. K. S. Mazdiyasni,Amer. Ceram. Soc. Bull. 63 (1984) 591.

    Google Scholar 

  25. K. S. Mazdiyasni et al., US patent 3647364, March (1972).

  26. J. C. Bernier,Powder Metall. Int. 18 (1986) 164.

    Google Scholar 

  27. J. C. Bernier el al. “High Tech Ceramics, Part B”, Materials Science Monograph 38B, edited by P. Vincenzini (Elsevier, Amsterdam, 1987) p. 1443.

    Google Scholar 

  28. J. L. Rehspringer, P. Poix andJ. C. Bernier,J. Non. Cry st. Solids 82 (1986) 286.

    Article  Google Scholar 

  29. J. L. Rehspringer andJ. C. Bernier,Mater. Res. Soc. Symp. 72 (1986) 67.

    Article  Google Scholar 

  30. J. L. Rehspringer et al., J. Phys. Colloq. C1 (1986) 243.

    Google Scholar 

  31. F. Chaput andJ. P. Boilot, “High Tech Ceramics, Part B”, Materials Science Monograph 38B, edited by P. Vincenzini (Elsevier, Amsterdam, 1987) p. 1459.

    Google Scholar 

  32. T. Kasai, Y. Ozaki andS. Yamamoto,Yogyo Kyokaishi 95 (1987) 1000.

    Article  Google Scholar 

  33. T. Kasai andY. Ozaki,ibid. 95 (1987) 912.

    Article  Google Scholar 

  34. Y. Ozaki,Ferroelectrics 49 (1983) 285.

    Article  Google Scholar 

  35. Y. Ozaki andY. Shinohara, Japanese patent JP 62265118A2 [87/265118] November (1987).

  36. Y. Ozaki, Japanese patent JP 5782119A2 [82/82119] May (1982).

  37. T. Kikuchi andT. Saito, Japanese patent JP 61 21916 A2 [86/21916] January (1986).

  38. G. Datta, H. S. Maiti andA. Paul in “High Tech Ceramics Part B”, Materials Science Monograph 38B, edited by P. Vincenzini (Elsevier, Amsterdam, 1987) p. 1469.

    Google Scholar 

  39. Idem, J. Mater. Sci. Lett. 6 (1987) 787.

    Article  Google Scholar 

  40. S. Doeuff et al. J. Non. Cryst. Solids 89 (1987) 206.

    Article  Google Scholar 

  41. A. Mosset, I. G. Luneau andJ. Galy,ibid. 100 (1988) 339.

    Article  Google Scholar 

  42. M. Prassas,et al. in “Ultrastructure Processing of Advanced Structural and Electronic Materials”, edited by L. L. Hench (Noyes Publications, New Jersey, 1984) p. 85.

    Google Scholar 

  43. D. R. Ulrich, PhD thesis cited in “Inorganic Glass-Forming Systems” edited by H. Rawson (Academic Press, New York, 1967) p. 202.

    Google Scholar 

  44. J. D. MacKenzie in “Ultrastructure Processing of Advanced Ceramic Materials” edited by J. D. MacKenzie and D. R. Ulrich (Wiley, New York 1988) p. 589.

    Google Scholar 

  45. P. P. Phule, P. A. Deymier andS. H. Risbud, to be published.

  46. Y. Enomoto andA. Yamaji,Amer. Ceram. Soc. Bull. 60 (1981) 566.

    Google Scholar 

  47. S. S. Flaschen,J. Amer. Chem. Soc. 77 (1955) 6194.

    Article  Google Scholar 

  48. K. Kiss et al., J. Amer. Ceram. Soc. 49 (1966) 291.

    Article  Google Scholar 

  49. F. Chaput andJ. F. Boilot,J. Mater. Sci. Lett. 6 (1987) 1110.

    Article  Google Scholar 

  50. H. Yamamura el al., Nippon Kagaku Kaishi. 7 (1974) 1155.

    Article  Google Scholar 

  51. S. Uedaira,et al., European patent application EP 104002 Al, March (1984).

  52. Japanese patent JP 59 39726 A2 [84/39726] March (1984).

  53. K. H. Lee, B. H. Lee andH. S. Lee,Yoop Hakhoechi 21 (1984) 323.

    Google Scholar 

  54. K. Akira et al. Japanese patent JP 6191016A2 [86/91016] May (1986).

  55. M. Pechini, US patent 3330697, July (1967).

  56. H. Yamamura et al., Ceram. Int. 11 (1985) 17.

    Article  Google Scholar 

  57. J. M. Bind et al., J. Metals. 39 (1987) 60.

    Google Scholar 

  58. P. K. Gallagher andF. Schrey,J. Amer. Ceram. Soc. 46 (1963) 567.

    Article  Google Scholar 

  59. V. Balek andE. Kaiserberger,Thermochim. Acta. 85 (1985) 207.

    Article  Google Scholar 

  60. W. S. Claubaugh, E. M. Swiggard andR. Gilchrist,J. Res. Nat. Bur. Std. 56 (1956) 289.

    Article  Google Scholar 

  61. Y. H. Kim, J. Lee andH. I. Han,Yoop Hakhoechi 23 (1986) 11.

    Google Scholar 

  62. N. G. Eror andH. U. Anderson in “Better Ceramics Through Chemistry” Vol 2 (Materials Research Society, Pittsburgh, 1986) p. 571.

    Google Scholar 

  63. A. N. Virkar, K. Bandyopadhyay andA. Paul,Trans. Ind. Ceram. Soc. 44 (1985) 78.

    Article  Google Scholar 

  64. M. N. Swilam andA. M. Gadalla,Trans. J. Brit. Ceram. Soc. 74 (1975) 159.

    Google Scholar 

  65. B. J. Mulder,Ceram. Bull. 49 (1970) 990.

    Google Scholar 

  66. H. Salez, P. Odier andB. Cales,J. Non. Cryst. Solids 82 (1986) 314.

    Article  Google Scholar 

  67. H. Salez, B. Cales andP. Odier,Mater. Sci. Monogr. (High Tech. Ceram.) 38A (1987) 491.

    Google Scholar 

  68. D. Hennings andW. Mayr,J. Solid State Chem. 26 (1978) 329.

    Article  Google Scholar 

  69. A. N. Christensen,Acta Chem. Scand. 24 (1970) 2447.

    Article  Google Scholar 

  70. S. Kaneko andF. Imoto,Nippon Kagaku Kaishi 6 (1975) 985.

    Article  Google Scholar 

  71. T. R. N. Kutty andR. Balachandran,Mater. Res. Bull. 19 (1984) 1479.

    Article  Google Scholar 

  72. P. Murugaraj andT. R. N. Kutty,ibid. 20 (1985) 1473.

    Google Scholar 

  73. R. Vivekanadan, S. Philip andT. R. N. Kutty,ibid. 22 (1986) 99.

    Google Scholar 

  74. H. Okada, H. Matsubayashi andF. Goto, Japanese patent JP 62 72525 A2 [87/72425] March (1987).

  75. K. Matsuoka, S. Sakuragi andJ. Yamazaki,Rep. Res. Lab. Hydrotherm. Chem. (Kochi, Jpn) 2 (1978) 45.

    Google Scholar 

  76. L. I. Shvets, N. A. Ovramenko andF. D. Ovcharenko,Dokl. Akad. Nauk SSSR (Chem.),248 (1979) 889.

    Google Scholar 

  77. A. K. Maurice andR. C. Buchanan,Ferroelectrics 74 (1987) 61.

    Article  Google Scholar 

  78. N. J. Ali andS. J. Mline,Trans. J. Brit. Ceram. Soc. 86 (1987) 113.

    Google Scholar 

  79. N. J. Ali et al., in “Better Ceramics Through Chemistry” Vol. 3 (Materials Research Society, Pittsburgh, 1988) p. 269.

    Google Scholar 

  80. L. A. Xue, F. L. Riley andR. J. Brook,Trans. J. Brit. Ceram. Soc. 85 (1986) 47.

    Google Scholar 

  81. V. Dharmadhikari andW. Granneman,J. Appl. Phys. 53 (1982) 8988.

    Article  Google Scholar 

  82. C. Feldman,ibid. 27 (1956) 870.

    Article  Google Scholar 

  83. J. Panitz andC. Hu,Ferroelectrics 27 (1980) 161.

    Article  Google Scholar 

  84. J. Fukushima, K. Kodaira andT. Matsushita,Amer. Ceram. Soc. Bull. 55 (1976) 1064.

    Google Scholar 

  85. M. I. Yanovskaya et al., Izv. Akad. Nauk. SSSR (Neorg. Mater.) 17 (1981) 307.

    Google Scholar 

  86. R. G. Dosch, in “Better Ceramics Through Chemistry”, Vol. 1, (Materials Research Society, Pittsburgh, 1984) p. 157.

    Google Scholar 

  87. G. M. Vest andS. Singaram, “Materials Research Society Symposium Proceedings (Defect Prop. Process. High Technology Nonmetallic Materials”) Vol. 60 (Materials Research Society, Pittsburgh, 1986) p. 35.

    Google Scholar 

  88. A. S. Shaikh andG. M. Vest,J. Amer. Ceram. Soc. 69 (1986) 682.

    Article  Google Scholar 

  89. A. S. Shaikh andR. W. Vest,ibid. 69 (1986) 689.

    Article  Google Scholar 

  90. K. H. Yeon andH. C. Hong,Chongi Hakhoe Nonmunchi 35 (1986) 323.

    Google Scholar 

  91. A. Mansingh andC. V. R. Vasanta Kumar,J. Mater. Sci. Lett. 7 (1988) 1104.

    Article  Google Scholar 

  92. Y. Suwa, Y. Sugimoto andS. Naka,Funtai Oyobi Funmalsuyakin 25 (1978) 164.

    Google Scholar 

  93. S. Hirano andS. Naka, Japanese patent JP 6221758A2 [87/217158] January (1987);S. Hirano et al. in “Advances in Ceramics”, Vol. 19 edited by J. B. Blum and W. R. Cannon. (American Ceramics Society, Westerville, Ohio, 1986) p. 139.

  94. H. M. O'Bryan andJ. Thomson Jr.,J. Amer. Ceram. Soc. 57 (1974) 522.

    Article  Google Scholar 

  95. Idem, ibid. 58 (1975) 454.

    Article  Google Scholar 

  96. J. K. Ploudre et al., ibid. 58 (1975) 418.

    Article  Google Scholar 

  97. W. W. Rhodes andJ. Thomson Jr.,Amer. Ceram. Soc. Bull. 55 (1976) 308.

    Google Scholar 

  98. D. Hennings andP. Schnabel,Philips J. Res. 38 (1983) 295.

    Google Scholar 

  99. T. Jakola, A. Uusimaki andS. Leppavuori,Int. J. High Tech. Ceram. 2 (1986) 195.

    Article  Google Scholar 

  100. T. F. Limar, A. I. Savos'kina andN. G. Kisel,Izv. Akad. Nauk. SSSR (Neorg. Mater.) 12 (1976) 1134.

    Google Scholar 

  101. Z. Y. Makarova et al., Ukr. Khim. Zh. (in Russian)51 (1985) 454.

    Google Scholar 

  102. Information brochure, “The Capacitor” (AV Ceramics, Myrtle Beach, South Carolina, USA).

  103. P. C. Osbond, R. W. Whatmore andF. W. Ainger, Proceedings of British Ceramic Society36 (1985) 167.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phule, P.P., Risbud, S.H. Low-temperature synthesis and processing of electronic materials in the BaO-TiO2 system. J Mater Sci 25, 1169–1183 (1990). https://doi.org/10.1007/BF00585422

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00585422

Keywords

Navigation