Skip to main content
Log in

IGF-I stimulates proliferation of spontaneously immortalized human keratinocytes (HACAT) by autocrine/paracrine mechanisms

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

HaCaT keratinocytes are derived from adult human skin and although spontaneously immortalized, remain highly related to their normal counterparts. We observed that HaCaT cells can proliferate in serum-free medium (SFM), in contrast to normal human keratinocytes whose growth in vitro requires a feeder layer and/or the supplementation with hormones and growth factors. Since autocrine production of growth factors has been proposed as the pathway that cells may exploit to escape growth regulation, we have investigated whether this is occurring in HaCaT cultured in SFM. Either epidermal growth factor (EGF) or insulin-like growth factor-1 (IGF-I) was effective and dose-dependently stimulated HaCaT replication. The ability of these keratinocytes to express EGF and IGF-I and their receptors was investigated by northern blot and reverse transcriptase-polymerase chain reaction (RT-PCR). We report that HaCaT cells synthesize mRNAs for IGF-I, IGF-II, IGF-IR and EGFR but not EGF mRNA. Immunoneutralization of IGF-I with specific monoclonal antibodies blocked spontaneous HaCaT proliferation in SFM, as did incubation with antibodies against IGF-IR. These data demonstrate that an autocrine/paracrine loop based on IGF-I may allow HaCaT keratinocytes to proliferate autonomously in culture in contrast to keratinocytes in primary culture. A similar mechanism may be involved in the development of hyperproliferative diseases of human skin and its functional disruption may represent the target for therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sporn MB, Roberts AB. Autocrine growth factors and cancer. Nature 1985, 313: 745–7.

    Article  PubMed  CAS  Google Scholar 

  2. Pollak MN, Schally AV. Mechanisms of antineoplastic action of somatostatin analogs. Proc Soc Exp Biol Med 1998, 217: 143–52.

    Article  PubMed  CAS  Google Scholar 

  3. Di Giovanni J, Bol DK, Wilker E, et al. Constitutive expression of insulin-like growth factor-1 in epidermal basal cells of transgenic mice leads to spontaneous tumor promotion. Cancer Res 2000, 15: 1561–70.

    Google Scholar 

  4. Wang XJ, Greenhalgh DA, Roop DR. Transgenic coexpression of v-Ha-ras and transforming growth factor alpha increases epidermal hyperproliferation and tumorigenesis and predisposes to malignant conversion via endogenous c-Ha-ras activation. Mol Carcinog 2000, 27: 200–9.

    Article  PubMed  CAS  Google Scholar 

  5. Gold LI, Jussila T, Fusenig NE, Stenback F. TGF-β isoforms are differentially expressed in increasing malignant grades of HaCaT keratinocytes, suggesting separate roles in skin carcinogenesis. J Pathol 2000, 190: 579–88.

    Article  PubMed  CAS  Google Scholar 

  6. Giles CG, Marks R, Foley P. The incidence of non-melanocytic skin cancer in Australia. Br Med J 1988, 296: 13–7.

    Article  CAS  Google Scholar 

  7. Maciag T, Nemore RE, Weistain R, Glochrest BA. An endocrine approach to the control of epidermal growth: serum free cultivation of human keratinocytes. Science 1981, 211: 1452–4.

    Article  PubMed  CAS  Google Scholar 

  8. Tsao MC, Walthall BJ, Ham RG. Clonal growth of normal human keratinocytes in a defined medium. J Cell Physiol 1982, 110: 219–29.

    Article  PubMed  CAS  Google Scholar 

  9. Boyce ST, Ham RG. Calcium-regulated differentation of normal human epidermal keratinocytes in chemically defined clonal culture and serum free-culture. J Invest Dermatol 1983, 81: 33S–40S.

    Article  PubMed  CAS  Google Scholar 

  10. Wille JJ, Pittelkow MR, Shipley GD, Scott RE. Integrated control of growth and differentation of normal human prokeratinocytes cultured in serum-free medium: clonal analyses, growth kinetics and cell cycle studies. Cell Physiol 1984, 121: 31–44.

    Article  CAS  Google Scholar 

  11. Girolomoni G, Phillips JT, Bergstresser PR. Prolactin stimulates proliferation of cultured human keratinocytes. J Invest Dermatol 1993, 101: 275–9.

    Article  PubMed  CAS  Google Scholar 

  12. Shipley GD, Keeble WW, Hendrickson JE, Coffey RJ, Pittelkow MRJ. Growth of normal human keratinocytes and fibroblasts in serum-free medium is stimulated by acidic and basic fibroblast growth factor. J Cell Physiol 1989, 138: 511–8.

    Article  PubMed  CAS  Google Scholar 

  13. Aaronsons SA, Rubin JS, Finch PW, et al. Growth factorregulated pathways in epithelial cell proliferation. Am Rev Respir Dis 1990, 142(Suppl): S7–S10.

    Article  Google Scholar 

  14. Ferrara N, Schweigerer L, Neufeld G, Mitchell R, Gospodarowicz D. Pituitary follicular cells produce basic fibroblast growth factor. Proc Natl Acad Sci USA 1987, 84: 5773–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Haselbacher G, Schwab MB, Pasi A, Humbel E. Insulin-like growth factor II (IGF II) in human brain: regional distribution of IGF II and higher molecular mass forms. Proc Natl Acad Sci USA 1985, 82: 2153–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Van Wik JJ. Biological actions and physiological control mechanisms. In: Li CH ed. Hormonal Proteins and Peptides. Vol XXII. New York: Academic Press. 1985, 82–125.

    Google Scholar 

  17. Daughaday WH, Rotwein P. Insulin-like growth factors I and II. Peptide, messenger ribonucleic aid and gene structures, serum and tissue concentrations. Endocrine Rev 1989, 10: 68–91.

    Article  CAS  Google Scholar 

  18. Barreca A, De Luca M, Del Monte P, et al. In vitro paracrine regulation of human keratinocyte growth by fibroblast derived insulin-like growth factors. J Cell Physiol 1992, 151: 262–8.

    Article  PubMed  CAS  Google Scholar 

  19. Tavakkol A, Elder JT, Griffiths CEM, et al. Expression of growth hormone receptor, insulin-like growth factor I (IGFI) and IGF-I receptor mRNA and proteins in human skin. J Invest Dermatol 1992: 99: 343–9.

    Article  PubMed  CAS  Google Scholar 

  20. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 1988, 106: 761–71.

    Article  PubMed  CAS  Google Scholar 

  21. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Met 1983, 65: 55–63.

    Article  CAS  Google Scholar 

  22. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987, 162: 156–9.

    Article  PubMed  CAS  Google Scholar 

  23. Torsello A, Vrontakis ME, Schroedter IC, Vuille JC, Ikejiani C, Friesen, HG. Steroid and tissue specific modulation of galanin gene expression in the male rat reproductive system. Endocrinology 1992, 130: 3301–6.

    PubMed  CAS  Google Scholar 

  24. Gilchrest BA, Karassik RL, Wilkins LM, Vrabel MA, Macaig T. Autocrine and paracrine stimulation of cells derived from human skin. J Cell Physiol 1983, 117: 235–40.

    Article  PubMed  CAS  Google Scholar 

  25. Shipley GD, Pittelkow MR. Control of growth and differentiation in vitro of human keratinocytes cultured in serumfree medium. Arch Dermatol 1987, 123: 1541a–4a.

    Article  PubMed  CAS  Google Scholar 

  26. Minuto F, Barreca A, Del Monte P, Giordano G. Paracrine actions of IGF binding proteins. Acta Endocrinol (Copenh) 1991, 124: 63–9.

    CAS  Google Scholar 

  27. Eming SA, Snow RG, Yarmush ML, Morgan JR. Targeted expression of insulin-like growth factor to human keratinocytes: modification of the autocrine control of keratinocyte proliferation. J Invest Dermatol 1996, 107: 113–20.

    Article  PubMed  CAS  Google Scholar 

  28. Marinaro JA, Hendrich EC, Leeding KS, Bach LA. HaCaT human keratinocytes express IGF-II, IGFBP-6, and an acidactivated protease with activity against IGFBP-6. Am J Physiol 1999, 276: E536–42.

    PubMed  CAS  Google Scholar 

  29. Neely EK, Morhenn VB, Hintz RL, Wilson DM, Rosenfeld RG. Insulin-like growth factors are mitogenic for human keratinocytes and a squamous cell carcinoma. J Invest Dermatol 1991, 96: 104–10.

    Article  PubMed  CAS  Google Scholar 

  30. El-Badry OM, Romanus JA, Helman LJ, Cooper MJ, Rechler MM, Israel MA. Autonomous growth of a human neuroblastoma cell line is mediated by insulin-like growth factor II. J Clin Invest 1989, 84: 829–39.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Steller MA, Delgado CH, Bartels CJ, Woodworth CD, Zou Z. Overexpression of the insulin-like growth factor-1 receptor and autocrine stimulation in human cervical cancer cells. Cancer Res 1996, 56: 1761–5.

    PubMed  CAS  Google Scholar 

  32. Macauly VM. Insulin-like growth factor and cancer. Brit J Cancer 1992, 65: 311–20.

    Article  Google Scholar 

  33. Kornfeld S. Structure and function of mannose 6-phosphate/ insulin-like growth factor II receptors. Ann Rev Biochem 1992, 61: 307–30.

    Article  PubMed  CAS  Google Scholar 

  34. Baserga R, Porcu P, Rubini M, Sell C. Cell cycle control by the IGF-I receptor and its ligands. Adv Exp Med Biol 1993, 343: 105–12.

    Article  PubMed  CAS  Google Scholar 

  35. McCubrey JA, Steelman LS, Mayo MW, Algate PA, Dellow RA, Kaleko M. Growth-promoting effects of insulin-like growth factor-1 (IGF-I) on hematopoietic cells: overexpression of introduced IGF-I receptor abrogates interleukin- 3 dependency of murine factor-dependent cells by a ligand-dependent mechanism. Blood 1991, 78: 921–9.

    PubMed  CAS  Google Scholar 

  36. Frasca F, Pandini G, Scalia P, et al. Insulin receptor isoform A, a newly recognized high affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol 1999, 19: 3278–88.

    PubMed Central  PubMed  CAS  Google Scholar 

  37. Vella V, Pandini G, Sciacca L, et al. A Novel autocrine loop involving IGF-II and the insulin receptor isoform-A stimulates growth of thyroid cancer. J Clin Endocrinol Met 2002, 87: 245–54.

    Article  CAS  Google Scholar 

  38. Sciacca L, Mineo R, Pandini G, Murabito A, Vigneri R, Belfiore A. In IGF-I receptor-deficient leiomyosarcoma cells autocrine IGF-II induces cell invasion and protection from apoptosis via the insulin receptor isoform A. Oncogene 2002, 21: 8240–50.

    Article  PubMed  CAS  Google Scholar 

  39. Zendegui JG, Inman WH, Carpenter G. Modulation of the mitogenic response of an epidermal growth factor-dependent keratinocyte line by dexamethasone, insulin, and transforming growth factor-beta. J Cell Physiol 1988, 136: 257–65.

    Article  PubMed  CAS  Google Scholar 

  40. Daub H, Wallasch C, Lankenau A., Herrlich A, Ullrich A. Signal characteristics of G protein-transactivated EGF receptor. EMBO Journal 1997, 16: 7032–44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Stoll SW, Benedict M, Mitra R, Hiniker A, Elder JT, Nunez G. EGF receptor signaling inhibits keratinocyte apoptosis: evidence for mediation by Bcl-XL. Oncogene 1998, 16: 1493–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Torsello Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pozzi, G., Guidi, M., Laudicina, F. et al. IGF-I stimulates proliferation of spontaneously immortalized human keratinocytes (HACAT) by autocrine/paracrine mechanisms. J Endocrinol Invest 27, 142–149 (2004). https://doi.org/10.1007/BF03346259

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346259

Key-words

Navigation