Skip to main content

Metabolic Fluxes in Cancer Metabolism

  • Chapter
Tumor Cell Metabolism

Abstract

Since Otto Warburg’s work almost a century ago, we have known that cancer cells undergo a metabolic transformation that makes them convert the majority of their glucose carbon into lactate. In the past decade it has become clear that this metabolic signature of cancer cells is controlled by the activation of oncogenes and the loss of tumor suppressors, linking cancer metabolism to well-known signaling pathways. Although most of the research on metabolism in cancer cells has been focused on the regulation of metabolic enzymes, there is a growing body of work studying altered metabolic fluxes in malignant cells providing accurate information on biochemical pathways. From these discoveries arise new opportunities for drug discovery and for disease diagnostics in the context of patient stratification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this review the expression metabolic flux analysis (MFA) is consistently used for metabolic analyses using isotopically labeled metabolites as tracers, equivalent to stable isotope resolved metabolomics (SIRM). MFA in this context does not refer to computational algorithms commonly used to decipher metabolic fluxes and does not imply that flux time-dependent data is employed.

  2. 2.

    Anaplerotic, from Greek ἀνά, “up,” and πληρόω, “to fill,” i.e., for the TCA cycle a mechanism that fills the cycle with nutrients.

  3. 3.

    It should be noted that PDK1 is unfortunately also used as an abbreviation for phosphoinositide-dependent kinase-1.

References

  • Abbassi-Ghadi N, Kumar S, Huang J, Goldin R, Takats Z, Hanna GB (2013) Metabolomic profiling of oesophago-gastric cancer: A systematic review. Eur J Cancer 49:3625–3637. doi:10.1016/j.ejca.2013.07.004

    CAS  PubMed  Google Scholar 

  • Andronesi OC, Kim GS, Gerstner E, Batchelor T, Tzika AA, Fantin VR, Vander Heiden MG, Sorensen AG (2012) Detection of 2-Hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci Transl Med 4:116ra4. doi:10.1126/scitranslmed.3002693

    PubMed Central  PubMed  Google Scholar 

  • Antoniewicz MR (2013) Tandem mass spectrometry for measuring stable-isotope labeling. Curr Opin Biotechnol 24:48–53. doi:10.1016/j.copbio.2012.10.011

    CAS  PubMed  Google Scholar 

  • Armitage EG, Barbas C (2014) Metabolomics in cancer biomarker discovery: current trends and future perspectives. J Pharm Biomed Anal 87:1–11. doi:10.1016/j.jpba.2013.08.041

    CAS  PubMed  Google Scholar 

  • Ashrafian H, Czibik G, Bellahcene M, Aksentijević D, Smith AC, Mitchell SJ, Dodd MS, Kirwan J, Byrne JJ, Ludwig C, Isackson H, Yavari A, Støttrup NB, Contractor H, Cahill TJ, Sahgal N, Ball DR, Birkler RID, Hargreaves I, Tennant DA, Land J, Lygate CA, Johannsen M, Kharbanda RK, Neubauer S, Redwood C, de Cabo R, Ahmet I, Talan M, Günther UL, Robinson AJ, Viant MR, Pollard PJ, Tyler DJ, Watkins H (2012) Fumarate is cardioprotective via activation of the Nrf2 antioxidant pathway. Cell Metab 15:361–371. doi:10.1016/j.cmet.2012.01.017

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bando H (2005) Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer. Clin Cancer Res 11:5784–5792. doi:10.1158/1078-0432.CCR-05-0149

    CAS  PubMed  Google Scholar 

  • Bandsma RHJ, Grefhorst A, Dijk TH, Sluijs FH, Hammer A, Reijngoud D-J, Kuipers F (2004) Enhanced glucose cycling and suppressed de novo synthesis of glucose-6-phosphate result in a net unchanged hepatic glucose output in ob/ob mice. Diabetologia 47:2022–2031. doi:10.1007/s00125-004-1571-8

    CAS  PubMed  Google Scholar 

  • Benjamin DI, Cravatt BF, Nomura DK (2012) Global profiling strategies for mapping dysregulated metabolic pathways in cancer. Cell Metab 16:565–577. doi:10.1016/j.cmet.2012.09.013

    PubMed Central  CAS  PubMed  Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L, Clarke ND (2002) Biochemistry. http://www.amazon.co.uk/Biochemistry-Lubert-Stryer/dp/0716746840

  • Blashenkov NM, Sheshenya ES, Solov’ev SM, Sachenko VD, Gall LN, Zarutskii IV, Gall NR (2013) A specialized isotope mass spectrometer for noninvasive diagnostics of Helicobacter pylori infection in human beings. Tech Phys Lett 39:431–434. doi:10.1134/S1063785013050040

    CAS  Google Scholar 

  • Boren J, Cascante M, Marin S, Comin-Anduix B, Centelles JJ, Lim S, Bassilian S, Ahmed S, Lee WNP, Boros LG (2001) Gleevec (ST1571) influences metabolic enzyme activities and glucose carbon flow toward nucleic acid and fatty acid synthesis in myeloid tumor cells. J Biol Chem 276:37747–37753

    CAS  PubMed  Google Scholar 

  • Boros LG, Lee PWN, Brandes JL, Cascante M, Muscarella P, Schirmer WJ, Melvin WS, Ellison EC (1998) Nonoxidative pentose phosphate pathways and their direct role in ribose synthesis in tumors: is cancer a disease of cellular glucose metabolism? Med Hypotheses 50:55–59

    CAS  PubMed  Google Scholar 

  • Boros L, Cascante M, Paul Lee W (2002) Metabolic profiling of cell growth and death in cancer: applications in drug discovery. Drug Discov Today 7:364–372

    CAS  PubMed  Google Scholar 

  • Boros L, Serkova N, Cascante M, Lee W (2004) Use of metabolic pathway flux information in targeted cancer drug design. Drug Discov Today Ther Strat 1:435–443

    CAS  Google Scholar 

  • Cantor JR, Sabatini DM (2012) Cancer cell metabolism: one hallmark, many faces. Cancer Discov 2:881–898. doi:10.1158/2159-8290.CD-12-0345

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES, Mates JM, DeBerardinis RJ (2011) Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci 108:8674–8679. doi:10.1073/pnas.1016627108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chey WD, Wong BCY, Practice Parameters Committee of the American College of Gastroenterology (2007) American college of gastroenterology guideline on the management of helicobacter pylori infection. Am J Gastroenterol 102:1808–1825. doi:10.1111/j.1572-0241.2007.01393.x

    CAS  PubMed  Google Scholar 

  • Chong G, Cunningham D (2005) Gastrointestinal cancer: recent developments in medical oncology. Eur J Surg Oncol 31:453–460. doi:10.1016/j.ejso.2005.02.026

    CAS  PubMed  Google Scholar 

  • Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC (2008a) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452:230–233. doi:10.1038/nature06734

    CAS  PubMed  Google Scholar 

  • Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC (2008b) Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452:181–186. doi:10.1038/nature06667

    CAS  PubMed  Google Scholar 

  • Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, Marks KM, Prins RM, Ward PS, Yen KE, Liau LM, Rabinowitz JD, Cantley LC, Thompson CB, Vander Heiden MG, Su SM (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–744. doi:10.1038/nature08617

    PubMed Central  CAS  PubMed  Google Scholar 

  • Day SE, Kettunen MI, Gallagher FA, Hu D-E, Lerche M, Wolber J, Golman K, Ardenkjaer-Larsen JH, Brindle KM (2007) Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat Med 13:1382–1387. doi:10.1038/nm1650

    CAS  PubMed  Google Scholar 

  • DeBerardinis RJ, Cheng T (2010) Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29:313–324

    PubMed Central  CAS  PubMed  Google Scholar 

  • DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci 104:19345–19350

    PubMed Central  CAS  PubMed  Google Scholar 

  • Deprez J, Vertommen D, Alessi DR, Hue L, Rider MH (1997) Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J Biol Chem 272:17269–17275

    CAS  PubMed  Google Scholar 

  • Duckwall CS, Taylor AM, Young JD (2013) Mapping cancer cell metabolism with 13C flux analysis: Recent progress and future challenges. J Carcinog 12:1–7

    Google Scholar 

  • Eagle H (1955) Nutrition needs of mammalian cells in tissue culture. Science 122:501–504

    CAS  PubMed  Google Scholar 

  • Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, Zhuang H, Cinalli RM, Alavi A, Rudin CM (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64:3892–3899

    CAS  PubMed  Google Scholar 

  • Fan T, Lane A (2008) Structure-based profiling of metabolites and isotopomers by NMR. Prog Nucl Magn Reson Spectrosc 52:69–117

    CAS  Google Scholar 

  • Fan TW-M, Lane AN, Higashi RM, Yan J (2010) Stable isotope resolved metabolomics of lung cancer in a SCID mouse model. Metabolomics 7:257–269. doi:10.1007/s11306-010-0249-0

    Google Scholar 

  • Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, Shlomi T (2011) Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol. doi:10.1038/msb.2011.35

    PubMed  Google Scholar 

  • Folmes CDL, Dzeja PP, Nelson TJ, Terzic A (2012) Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 11:596–606. doi:10.1016/j.stem.2012.10.002

    PubMed Central  CAS  PubMed  Google Scholar 

  • Frezza C, Zheng L, Folger O, Rajagopalan KN, MacKenzie ED, Jerby L, Micaroni M, Chaneton B, Adam J, Hedley A, Kalna G, Tomlinson IPM, Pollard PJ, Watson DG, Deberardinis RJ, Shlomi T, Ruppin E, Gottlieb E (2011) Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature 477:225–228. doi:10.1038/nature10363

    CAS  PubMed  Google Scholar 

  • Gaglio D, Metallo CM, Gameiro PA, Hiller K, Danna LS, Balestrieri C, Alberghina L, Stephanopoulos G, Chiaradonna F (2011) Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol. doi:10.1038/msb.2011.56

    PubMed Central  PubMed  Google Scholar 

  • Gao P, Tchernyshyov I, Chang T-C, Lee Y-S, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT, Dang CV (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458:762–765. doi:10.1038/nature07823

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gao K, Jiang Z, Lin Y, Zheng C, Zhou G, Chen F, Yang L, Wu G (2011) Dietary L-arginine supplementation enhances placental growth and reproductive performance in sows. Amino Acids. doi: 10.1007/s00726-011-0960-9

  • Goldstein I, Yizhak K, Madar S, Goldfinger N, Ruppin E, Rotter V (2013) p53 promotes the expression of gluconeogenesis-related genes and enhances hepatic glucose production. Cancer Metab 1:9. doi:10.1186/2049-3002-1-9

    PubMed Central  PubMed  Google Scholar 

  • Golman K, Zandt R’t, Lerche M, Pehrson R, Ardenkjaer-Larsen JH (2006) Metabolic imaging by hyperpolarized 13C magnetic resonance imaging for in vivo tumor diagnosis. Cancer Res 66(22):10855–10860, http://cancerres.aacrjournals.org/content/66/22/10855.full?sid=71d53aa7-dc47-4c4a-ab8f-7d19a77fc4b5

    CAS  PubMed  Google Scholar 

  • Gottlieb E, Tomlinson IPM (2005) Mitochondrial tumour suppressors: a genetic and biochemical update. Nat Rev Cancer 5:857–866. doi:10.1038/nrc1737

    CAS  PubMed  Google Scholar 

  • Gottlob K (2001) Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 15:1406–1418. doi:10.1101/gad.889901

    PubMed Central  CAS  PubMed  Google Scholar 

  • Green DR, Chipuk JE (2006) p53 and metabolism: inside the TIGAR. Cell 126:30–32. doi:10.1016/j.cell.2006.06.032

    CAS  PubMed  Google Scholar 

  • Günther UL, Ludwig C (2011) MetaboLab – advanced NMR data processing and analysis for metabolomics. BMC Bioinformatics 12:366

    PubMed Central  PubMed  Google Scholar 

  • Hiller K, Metallo CM, Kelleher JK, Stephanopoulos G (2010) Nontargeted elucidation of metabolic pathways using stable-isotope tracers and mass spectrometry. Anal Chem 82:6621–6628. doi:10.1021/ac1011574

    CAS  PubMed  Google Scholar 

  • Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z (2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci 107:7455–7460. doi:10.1073/pnas.1001006107

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hu S, Balakrishnan A, Bok RA, Anderton B, Larson PEZ, Nelson SJ, Kurhanewicz J, Vigneron DB, Goga A (2011) 13C-pyruvate imaging reveals alterations in glycolysis that Precede c-Myc-Induced tumor formation and regression. Cell Metab 14:131–142. doi:10.1016/j.cmet.2011.04.012

    CAS  PubMed  Google Scholar 

  • Isaacs JS, Jung YJ, Mole DR, Lee S, Torres-Cabala C, Chung Y-L, Merino M, Trepel J, Zbar B, Toro J, Ratcliffe PJ, Linehan WM, Neckers L (2005) HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: Novel role of fumarate in regulation of HIF stability. Cancer Cell 8:143–153. doi:10.1016/j.ccr.2005.06.017

    CAS  PubMed  Google Scholar 

  • Jones NP, Schulze A (2012) Targeting cancer metabolism – aiming at a tumour’s sweet-spot. Drug Discov Today 17:232–241. doi:10.1016/j.drudis.2011.12.017

    CAS  PubMed  Google Scholar 

  • Kaelin WG, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF Hydroxylase pathway. Mol Cell 30:393–402. doi:10.1016/j.molcel.2008.04.009

    CAS  PubMed  Google Scholar 

  • Katz J, Lee WN, Wals PA, Bergner EA (1989) Studies of glycogen synthesis and the Krebs cycle by mass isotopomer analysis with [U-13C] glucose in rats. J Biol Chem 264:12994–13004

    CAS  PubMed  Google Scholar 

  • Khairallah M (2003) Profiling substrate fluxes in the isolated working mouse heart using 13C-labeled substrates: focusing on the origin and fate of pyruvate and citrate carbons. Am J Physiol Heart Circ Physiol 286:H1461–H1470. doi:10.1152/ajpheart.00942.2003

    PubMed  Google Scholar 

  • Khanim FL, Hayden RE, Birtwistle J, Lodi A, Tiziani S, Davies NJ, Ride JP, Viant MR, Gunther UL, Mountford JC, Schrewe H, Green RM, Murray JA, Drayson MT, Bunce CM (2009) Combined Bezafibrate and Medroxyprogesterone acetate: potential novel therapy for acute myeloid leukaemia. PLoS One 4:e8147. doi:10.1371/journal.pone.0008147

    PubMed Central  PubMed  Google Scholar 

  • Kim J, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185. doi:10.1016/j.cmet.2006.02.002

    PubMed  Google Scholar 

  • Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11:325–337. doi:10.1038/nrc3038

    CAS  PubMed  Google Scholar 

  • Kurhanewicz J, Vigneron DB, Brindle K, Chekmenev EY, Comment A, Cunningham CH, DeBerardinis RJ, Green GG, Leach MO, Rajan SS, Rizi RR, Ross BD, Warren WS, Malloy CR (2011) Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia 13:81

    PubMed Central  PubMed  Google Scholar 

  • Lane AN, Fan TW-M, Higashi RM (2008) Stable isotope-assisted metabolomics in cancer research. IUBMB Life 60:124–129. doi:10.1002/iub.17

    CAS  PubMed  Google Scholar 

  • Lane AN, Fan TW-M, Higashi RM, Tan J, Bousamra M, Miller DM (2009) Prospects for clinical cancer metabolomics using stable isotope tracers. Exp Mol Pathol 86:165–173. doi:10.1016/j.yexmp.2009.01.005

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lane AN, Fan TW-M, Bousamra M, Higashi RM, Yan J, Miller DM (2011) Stable isotope-resolved metabolomics (SIRM) in cancer research with clinical application to nonsmall cell lung cancer. OMICS J Integr Biol 15:173–182. doi:10.1089/omi.2010.0088

    CAS  Google Scholar 

  • Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293. doi:10.1016/j.cell.2012.03.017

    PubMed Central  CAS  PubMed  Google Scholar 

  • Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, Tsukamoto T, Rojas CJ, Slusher BS, Zhang H, Zimmerman LJ, Liebler DC, Slebos RJC, Lorkiewicz PK, Higashi RM, Fan TWM, Dang CV (2012) Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 15:110–121. doi:10.1016/j.cmet.2011.12.009

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee WNP, Byerley LO, Bassilian S, Ajie HO, Clark I (1996) Isotopomer study of lipogenesis in human hepatoma cells in culture: contribution of carbon and hydrogen atoms from glucose. Anal Biochem 226:100–112

    Google Scholar 

  • Lee WNP, Boros LG, Puigjaner J, Bassilian S, Lim S, Cascante M (1998) Mass isotopomer study of the nonoxidative pathways of the pentose cycle with [1,2-C-13(2)]glucose. Am J Physiol Endocrinol Metab 274:E843–E851

    CAS  Google Scholar 

  • Lee WNP, Guo P, Lim S, Bassilian S, Lee ST, Boren J, Cascante M, Go VLW, Boros LG (2004) Metabolic sensitivity of pancreatic tumour cell apoptosis to glycogen phosphorylase inhibitor treatment. Br J Cancer 91:2094–2100. doi:10.1038/sj.bjc.6602243

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee S, Nakamura E, Yang H, Wei W, Linggi MS, Sajan MP, Farese RV, Freeman RS, Carter BD, Kaelin WG, Schlisio S (2005) Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. Cancer Cell 8:155–167. doi:10.1016/j.ccr.2005.06.015

    PubMed  Google Scholar 

  • Lee P, Vousden KH, Cheung EC (2014) TIGAR, TIGAR, burning bright. Cancer Metab 2:1

    PubMed Central  PubMed  Google Scholar 

  • Liu W, Le A, Hancock C, Lane AN, Dang CV, Fan TW-M, Phang JM (2012) Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci 109:8983–8988. doi:10.1073/pnas.1203244109

    PubMed Central  CAS  PubMed  Google Scholar 

  • Locasale JW (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 13:572–583. doi:10.1038/nrc3557

    PubMed Central  CAS  PubMed  Google Scholar 

  • Locasale JW, Cantley LC (2011) Metabolic flux and the regulation of mammalian cell growth. Cell Metab 14:443–451. doi:10.1016/j.cmet.2011.07.014

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lodi A, Tiziani S, Khanim FL, Drayson MT, Günther UL, Bunce CM, Viant MR (2011) Hypoxia triggers major metabolic changes in AML cells without altering indomethacin-induced TCA cycle deregulation. ACS Chem Biol 6:169–175. doi:10.1021/cb900300j

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lu C, Thompson CB (2012) Metabolic regulation of epigenetics. Cell Metab 16:9–17. doi:10.1016/j.cmet.2012.06.001

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27:441–464. doi:10.1146/annurev-cellbio-092910-154237

    CAS  PubMed  Google Scholar 

  • Maher EA, Marin-Valencia I, Bachoo RM, Mashimo T, Raisanen J, Hatanpaa KJ, Jindal A, Jeffrey FM, Choi C, Madden C, Mathews D, Pascual JM, Mickey BE, Malloy CR, DeBerardinis RJ (2012) Metabolism of [U- 13C]glucose in human brain tumors in vivo: glucose oxidation in human brain tumors detected by 13C NMR. NMR Biomed 25:1234–1244. doi:10.1002/nbm.2794

    PubMed Central  CAS  PubMed  Google Scholar 

  • Malloy CR, Sherry AD, Jeffrey FMH (1988) Evaluation of carbon flux and substrates election through alternate pathways involving the citric acid cycle of the heart by 13C NMR spectroscopy. J Biol Chem 263:6964–6971

    CAS  PubMed  Google Scholar 

  • Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, Koboldt DC, Fulton RS, Delehaunty KD, McGrath SD (2009) Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 361:1058–1066

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marin-Valencia I, Yang C, Mashimo T, Cho S, Baek H, Yang X-L, Rajagopalan KN, Maddie M, Vemireddy V, Zhao Z, Cai L, Good L, Tu BP, Hatanpaa KJ, Mickey BE, Matés JM, Pascual JM, Maher EA, Malloy CR, DeBerardinis RJ, Bachoo RM (2012) Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab 15:827–837. doi:10.1016/j.cmet.2012.05.001

    PubMed Central  CAS  PubMed  Google Scholar 

  • Matoba S (2006) p53 regulates mitochondrial respiration. Science 312:1650–1653. doi:10.1126/science.1126863

    CAS  PubMed  Google Scholar 

  • Mazurek S (2011) Pyruvate kinase type M2: A key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol 43:969–980. doi:10.1016/j.biocel.2010.02.005

    CAS  PubMed  Google Scholar 

  • Mazurek S, Boschek CB, Hugo F, Eigenbrodt E (2005) Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol 15:300–308. doi:10.1016/j.semcancer.2005.04.009

    CAS  PubMed  Google Scholar 

  • McKenney AS, Levine RL (2013) Isocitrate dehydrogenase mutations in leukemia. J Clin Invest 123:3672–3677. doi:10.1172/JCI67266

    PubMed Central  CAS  PubMed  Google Scholar 

  • Meek DW (2009) Tumour suppression by p53: a role for the DNA damage response? Nat Rev Cancer. doi: 10.1038/nrc2716

  • Meissner M, Herrema H, van Dijk TH, Gerding A, Havinga R, Boer T, Müller M, Reijngoud D-J, Groen AK, Kuipers F (2011) Bile acid sequestration reduces plasma glucose levels in db/db mice by increasing its metabolic clearance rate. PLoS One 6:e24564. doi:10.1371/journal.pone.0024564

    PubMed Central  CAS  PubMed  Google Scholar 

  • Metallo CM, Walther JL, Stephanopoulos G (2009) Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells. J Biotechnol 144:167–174. doi:10.1016/j.jbiotec.2009.07.010

    PubMed Central  CAS  PubMed  Google Scholar 

  • Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, Guarente L, Kelleher JK, Vander Heiden MG, Iliopoulos O, Stephanopoulos G (2012) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481:380–384. doi:10.1038/nature10602

    CAS  Google Scholar 

  • Mullen AR, Wheaton WW, Jin ES, Chen P-H, Sullivan LB, Cheng T, Yang Y, Linehan WM, Chandel NS, DeBerardinis RJ (2011) Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature. doi:10.1038/nature10642

    PubMed Central  PubMed  Google Scholar 

  • O’Connell BC (2003) A large scale genetic analysis of c-Myc-regulated gene expression patterns. J Biol Chem 278:12563–12573. doi:10.1074/jbc.M210462200

    PubMed  Google Scholar 

  • Oberhardt MA, Yizhak K, Ruppin E (2013) Metabolically re-modeling the drug pipeline. Curr Opin Pharmacol 13(5):778–785. doi:10.1016/j.coph.2013.05.006

    CAS  PubMed  Google Scholar 

  • Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16:373–378

    CAS  PubMed  Google Scholar 

  • Orth JD, Thiele I, Palsson BØ (2010a) What is flux balance analysis? Nat Publ Group 28:245–248

    CAS  Google Scholar 

  • Orth JD, Thiele I, Palsson BØ (2010b) What is flux balance analysis? Nat Publ Group 28:245–248. doi:10.1038/nbt.1614

    CAS  Google Scholar 

  • Osthus RC (2000) Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 275:21797–21800. doi:10.1074/jbc.C000023200

    CAS  PubMed  Google Scholar 

  • Parsons DW, Jones S, Zhang X, Lin JC-H, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu I-M, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA, Hartigan J, Smith DR, Strausberg RL, Marie SKN, Shinjo SMO, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812. doi:10.1126/science.1164382

    PubMed Central  CAS  PubMed  Google Scholar 

  • Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, Balderas E, Guertin DA, Madden KL, Carpenter AE, Finck BN, Sabatini DM (2011) mTOR complex 1 regulates Lipin 1 localization to control the SREBP pathway. Cell 146:408–420. doi:10.1016/j.cell.2011.06.034

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pope WB, Prins RM, Albert Thomas M, Nagarajan R, Yen KE, Bittinger MA, Salamon N, Chou AP, Yong WH, Soto H, Wilson N, Driggers E, Jang HG, Su SM, Schenkein DP, Lai A, Cloughesy TF, Kornblum HI, Wu H, Fantin VR, Liau LM (2011) Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy. J Neurooncol 107:197–205. doi:10.1007/s11060-011-0737-8

    PubMed Central  PubMed  Google Scholar 

  • Portais J-C, Schuster R, Merle M, Canioni P (1993) Metabolic flux determination in C6 glioma cells using carbon-13 distribution upon [1-13C] glucose incubation. Eur J Biochem 217:457–468

    CAS  PubMed  Google Scholar 

  • Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, Sethumadhavan S, Woo H-K, Jang HG, Jha AK, Chen WW, Barrett FG, Stransky N, Tsun Z-Y, Cowley GS, Barretina J, Kalaany NY, Hsu PP, Ottina K, Chan AM, Yuan B, Garraway LA, Root DE, Mino-Kenudson M, Brachtel EF, Driggers EM, Sabatini DM (2011) Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476:346–350. doi:10.1038/nature10350

    PubMed Central  CAS  PubMed  Google Scholar 

  • Prigione A, Rohwer N, Hoffmann S, Mlody B, Drews K, Bukowiecki R, Blümlein K, Wanker EE, Ralser M, Cramer T, Adjaye J (2014) HIF1α modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2: HIF1α associated metabolic switch in iPSCs. Stem Cells 32:364–376. doi:10.1002/stem.1552

    CAS  PubMed  Google Scholar 

  • Ralser M, Wamelink MM, Kowald A, Gerisch B, Heeren G, Struys EA, Klipp E, Jakobs C, Breitenbach M, Lehrach H (2007) Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol 6:301–312

    Google Scholar 

  • Rathmell JC, Fox CJ, Plas DR, Hammerman PS, Cinalli RM, Thompson CB (2003) Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol Cell Biol 23:7315–7328. doi:10.1128/MCB.23.20.7315-7328.2003

    PubMed Central  CAS  PubMed  Google Scholar 

  • Richardson AD, Yang C, Osterman A, Smith JW (2008) Central carbon metabolism in the progression of mammary carcinoma. Breast Cancer Res Treat 110:297–307. doi:10.1007/s10549-007-9732-3

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rodrigues TB, Serrao EM, Kennedy BWC, Hu D-E, Kettunen MI, Brindle KM (2013) Magnetic resonance imaging of tumor glycolysis using hyperpolarized 13C-labeled glucose. Nat Med 20:93–97. doi:10.1038/nm.3416

    PubMed  Google Scholar 

  • Sauer U (2004) High-throughput phenomics: experimental methods for mapping fluxomes. Curr Opin Biotechnol 15:58–63. doi:10.1016/j.copbio.2003.11.001

    CAS  PubMed  Google Scholar 

  • Sauer U (2006) Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol. doi: 10.1038/msb4100109

  • Scott DA, Richardson AD, Filipp FV, Knutzen CA, Chiang GG, Ronai ZA, Osterman AL, Smith JW (2011) Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect. J Biol Chem 286:42626–42634. doi:10.1074/jbc.M111.282046

    PubMed Central  CAS  PubMed  Google Scholar 

  • Semenza GL (2004) Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology 19:176–182. doi:10.1152/physiol.00001.2004

    CAS  PubMed  Google Scholar 

  • Semenza GL (2010) HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20:51–56. doi:10.1016/j.gde.2009.10.009

    PubMed Central  CAS  PubMed  Google Scholar 

  • Semenza GL (2013) HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest 123:3664–3671. doi:10.1172/JCI67230

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shlomi T, Herrgard M, Portnoy V, Naim E, Palsson BO, Sharan R, Ruppin E (2007) Systematic condition-dependent annotation of metabolic genes. Genome Res 17:1626–1633

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shulman RG, Brown TR, Ugurbil K, Ogawa T, Cohen SM, Den Hollander JA (1979) Cellular applications of 31P and 13C nuclear magnetic resonance. Science 205:160–166

    CAS  PubMed  Google Scholar 

  • Shyh-Chang N, Daley GQ, Cantley LC (2013) Stem cell metabolism in tissue development and aging. Development 140:2535–2547. doi:10.1242/dev.091777

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sonveaux P, Végran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF, Kelley MJ, Gallez B, Wahl ML, Feron O, Dewhirst MW (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest. doi:10.1172/JCI36843

    PubMed Central  PubMed  Google Scholar 

  • Spratlin JL, Serkova NJ, Eckhardt SG (2009) Clinical applications of metabolomics in oncology: a review. Clin Cancer Res 15:431–440. doi:10.1158/1078-0432.CCR-08-1059

    PubMed Central  CAS  PubMed  Google Scholar 

  • Suzuki S, Tanaka T, Poyurovsky MV, Nagano H, Mayama T, Ohkubo S, Lokshin M, Hosokawa H, Nakayama T, Suzuki Y, Sugano S, Sato E, Nagao T, Yokote K, Tatsuno I, Prives C (2010) Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci 107:7461–7466. doi:10.1073/pnas.1002459107

    PubMed Central  CAS  PubMed  Google Scholar 

  • Szyperski T (1995) Biosynthetically directed fractional 13C-labeling of proteinogenic Amino acids. Eur J Biochem 232:433–448

    CAS  PubMed  Google Scholar 

  • Szyperski T, Bailey JE, Wüthrich K (1996) Detecting and dissecting metabolic fluxes using biosynthetic fractional 13C labeling and two-dimensional NMR spectroscopy. Trends Biotechnol 14(12):453–459. doi:10.1016/S0167-7799(96)10056-1

    Google Scholar 

  • Tennant DA, Frezza C, MacKenzie ED, Nguyen QD, Zheng L, Selak MA, Roberts DL, Dive C, Watson DG, Aboagye EO (2009) Reactivating HIF prolyl hydroxylases under hypoxia results in metabolic catastrophe and cell death. Oncogene 28:4009–4021

    CAS  PubMed  Google Scholar 

  • Thiele I, Swainston N, Fleming RMT, Hoppe A, Sahoo S, Aurich MK, Haraldsdottir H, Mo ML, Rolfsson O, Stobbe MD, Thorleifsson SG, Agren R, Bölling C, Bordel S, Chavali AK, Dobson P, Dunn WB, Endler L, Hala D, Hucka M, Hull D, Jameson D, Jamshidi N, Jonsson JJ, Juty N, Keating S, Nookaew I, Le Novère N, Malys N, Mazein A, Papin JA, Price ND, Selkov E, Sigurdsson MI, Simeonidis E, Sonnenschein N, Smallbone K, Sorokin A, van Beek JHGM, Weichart D, Goryanin I, Nielsen J, Westerhoff HV, Kell DB, Mendes P, Palsson BØ (2013) A community-driven global reconstruction of human metabolism. Nat Biotechnol. doi: 10.1038/nbt.2488

  • Tiziani S, Lopes V, Günther UL (2009a) Early stage diagnosis of oral cancer using 1H NMR-based metabolomics. Neoplasia 11:269

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tiziani S, Lodi A, Khanim FL, Viant MR, Bunce CM, Günther UL (2009b) Metabolomic profiling of drug responses in acute myeloid leukaemia cell lines. PLoS One 4:e4251. doi:10.1371/journal.pone.0004251

    PubMed Central  PubMed  Google Scholar 

  • Ugurbil K, Brown TR, Den Hollander JA, Glynn P, Shulman RG (1978) High-resolution 13C nuclear magnetic resonance studies of glucose metabolism in Escherichia coli. Proc Natl Acad Sci 75:3742–3746

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vander Heiden MG, Locasale JW, Swanson KD, Sharfi H, Heffron GJ, Amador-Noguez D, Christofk HR, Wagner G, Rabinowitz JD, Asara JM, Cantley LC (2010) Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329:1492–1499. doi:10.1126/science.1188015

    CAS  PubMed  Google Scholar 

  • Vazquez A, Liu J, Zhou Y, Zoltán NO (2010) Catabolic efficiency of aerobic glycolysis: The Warburg effect revisited. BMC Syst Biol 4:1–9

    Google Scholar 

  • Vincent G, Khairallah M, Bouchard C, Des Rosiers C (2003a) Metabolic phenotyping of the diseased rat heart using 13C-substrates and ex vivo perfusion in the working mode. Mol Cell Biochem 242:89–99. doi:10.1023/A:1021189728877

    CAS  PubMed  Google Scholar 

  • Vincent G, Khairallah M, Bouchard B, Des Rosiers C (2003b) Metabolic phenotyping of the diseased rat heart using 13C-substrates and ex vivo perfusion in the working mode. Mol Cell Biochem 242:89–99

    CAS  PubMed  Google Scholar 

  • Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase–AKT pathway in human cancer. Nat Rev Cancer 2:489–501. doi:10.1038/nrc839

    CAS  PubMed  Google Scholar 

  • Wang GL, Semenza GL (1995) Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270:1230–1237

    CAS  PubMed  Google Scholar 

  • Wang GL, Jiang B-H, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci 92:5510–5514

    PubMed Central  CAS  PubMed  Google Scholar 

  • Warburg O (1956a) On the origin of cancer cells. Science 123:309–314

    CAS  PubMed  Google Scholar 

  • Warburg O (1956b) On the origin of cancer cells. Science 123:309–314

    CAS  PubMed  Google Scholar 

  • Warburg O, Wind F, Negelein E (1926a) Uber den Stoffwechsel von Tumouren im Körper. Klin Woch 5:829–832

    CAS  Google Scholar 

  • Warburg O, Wind F, Negelein E (1926b) Uber den Stoffwechsel von Tumouren im Körper. Klin Woch 5:829–832

    CAS  Google Scholar 

  • Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21:297–308. doi:10.1016/j.ccr.2012.02.014

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, Cross JR, Fantin VR, Hedvat CV, Perl AE, Rabinowitz JD, Carroll M, Su SM, Sharp KA, Levine RL, Thompson CB (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17:225–234. doi:10.1016/j.ccr.2010.01.020

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weinberg R (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    PubMed  Google Scholar 

  • Weinhouse S (1956) On respiratory impairment in cancer cells. Science 124:267–269

    CAS  PubMed  Google Scholar 

  • Wiechert W (2001) Metab Eng 3:195–206. 1-s2.0-S1096717601901879-main.pdf

    Google Scholar 

  • Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35:427–433. doi:10.1016/j.tibs.2010.05.003

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang X-Y, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon SB (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci 105:18782–18787

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wise DR, Ward PS, Shay JES, Cross JR, Gruber JJ, Sachdeva UM, Platt JM, DeMatteo RG, Simon MC, Thompson CB (2011) Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci 108:19611–19616. doi:10.1073/pnas.1117773108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu RH, Pelicano H, Zhang H, Giles FJ, Keating MJ, Huang P (2005) Synergistic effect of targeting mTOR by rapamycin and depleting ATP by inhibition of glycolysis in lymphoma and leukemia cells. Leukemia 19:2153–2158

    CAS  PubMed  Google Scholar 

  • Yanes O, Clark J, Wong DM, Patti GJ, Sánchez-Ruiz A, Benton HP, Trauger SA, Desponts C, Ding S, Siuzdak G (2010) Metabolic oxidation regulates embryonic stem cell differentiation. Nat Chem Biol 6:411–417. doi:10.1038/nchembio.364

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ye J, Mancuso A, Tong X, Ward PS, Fan J, Rabinowitz JD, Thompson CB (2012) Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation. Proc Natl Acad Sci 109:6904–6909. doi:10.1073/pnas.1204176109

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yizhak K, Gabay O, Cohen H, Ruppin E (2013) Model-based identification of drug targets that revert disrupted metabolism and its application to ageing. Nat Commun 4:2632. doi:10.1038/ncomms3632

    PubMed  Google Scholar 

  • Yun J, Johnson JL, Hanigan CL, Locasale JW (2012) Interactions between epigenetics and metabolism in cancers. Front Oncol. doi:10.3389/fonc.2012.00163

    PubMed Central  PubMed  Google Scholar 

  • Yuneva MO, Fan TWM, Allen TD, Higashi RM, Ferraris DV, Tsukamoto T, Matés JM, Alonso FJ, Wang C, Seo Y, Chen X, Bishop JM (2012) The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab 15:157–170. doi:10.1016/j.cmet.2011.12.015

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zamboni N (2011) 13C metabolic flux analysis in complex systems. Curr Opin Biotechnol 22:103–108. doi:10.1016/j.copbio.2010.08.009

    CAS  PubMed  Google Scholar 

  • Zoncu R, Efeyan A, Sabatini DM (2010) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35. doi:10.1038/nrm3025

    PubMed Central  PubMed  Google Scholar 

  • Zundel W, Schindler C, Haas-Kogan D, Koong A, Kaper F, Chen E, Gottschalk AR, Ryan HE, Johnson RS, Jefferson AB, Stokoe D, Giacca AJ (2000) Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev 14:391–396

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the EU for supporting GC, TV, and KK as students in a Marie Curie ITN (METAFLUX, FP7-PEOPLE-2010-ITN-264780). We also thank Brian Schaffhausen for critical proof reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich L. Günther .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Günther, U.L. et al. (2015). Metabolic Fluxes in Cancer Metabolism. In: Mazurek, S., Shoshan, M. (eds) Tumor Cell Metabolism. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1824-5_14

Download citation

Publish with us

Policies and ethics