Skip to main content

Water Deficiency (Drought)

  • Chapter
  • First Online:
Plant Ecology

Abstract

This chapter first explains why plants have a greater demand for water than animals. Following a look at the physico-chemical properties of water, the water potential concept is introduced, which is used to analyse the movement of water into and through plants. Most plant species have to maintain a hydrated state; that is, they are homoiohydric. After temperature, precipitation is the most dominant environmental factor determining the distribution of vegetation at the global scale. Plants respond to fluctuations in water supply with a range of mechanisms, which are discussed at the molecular level in this chapter. These include adjustment of osmotic potentials, regulation of the stomatal aperture, and modulation of resistance to water flow by aquaporins—water channels residing in cellular membranes. Also, a plant actively modulates its growth, depending on water availability. The water status is sensed by a plant in an unknown fashion and is translated into adequate responses. These are predominantly mediated by the phytohormone abscisic acid. The corresponding signal transduction events are explained in this chapter. The final section discusses two photosynthesis variants that are characterized by higher water use efficiency and therefore represent adaptations to water scarcity. Both C4 photosynthesis and crassulacean acid metabolism photosynthesis have evolved independently many times and are of major ecological importance. Evolutionary trajectories can be postulated that illustrate how complex traits can arise in distinct steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agre P (2004) Aquaporin water channels (Nobel lecture). Angew Chem Int Ed Engl 43:4278–4290

    Article  CAS  PubMed  Google Scholar 

  • Bartels D, Alexander R, Schneider K et al (1993) Desiccation-related gene products analyzed in a resurrection plant and in barley embryos. In: Close TJ, Bray EA (eds) Plant responses to cellular dehydration during environmental stress, Current topics in plant physiology, vol 10, pp 119–127. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Borland AM, Hartwell J, Weston DJ et al (2014) Engineering crassulacean acid metabolism to improve water-use efficiency. Trends Plant Sci 19:327–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chater CCC, Oliver J, Casson S, Gray JE (2014) Putting the brakes on: abscisic acid as a central environmental regulator of stomatal development. New Phytol 202:376–391

    Article  CAS  PubMed  Google Scholar 

  • Chaumont F, Tyerman SD (2014) Aquaporins: highly regulated channels controlling plant water relations. Plant Physiol 164:1600–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christin P-A, Osborne CP (2014) The evolutionary ecology of C4 plants. New Phytol 204:765–781

    Article  CAS  PubMed  Google Scholar 

  • Christmann A, Grill E, Huang J (2013) Hydraulic signals in long-distance signaling. Curr Opin Plant Biol 16:293–300

    Article  CAS  PubMed  Google Scholar 

  • Christmann A, Weiler EW, Steudle E, Grill E (2007) A hydraulic signal in root-to-shoot signalling of water shortage. Plant J 52:167–174

    Article  CAS  PubMed  Google Scholar 

  • Claeys H, Inzé D (2013) The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant Physiol 162:1768–1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cushman JC (2001) Crassulacean acid metabolism. A plastic photosynthetic adaptation to arid environments. Plant Physiol 127:1439–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cushman JC, Bohnert HJ (1999) Crassulacean acid metabolism: molecular genetics. Annu Rev Plant Physiol Plant Mol Biol 50:305–332

    Article  CAS  PubMed  Google Scholar 

  • Cushman JC, Tillett RL, Wood JA et al (2008) Large-scale mRNA expression profiling in the common ice plant, Mesembryanthemum crystallinum, performing C3 photosynthesis and crassulacean acid metabolism (CAM). J Exp Bot 59:1875–1894

    Article  CAS  PubMed  Google Scholar 

  • Farrant JM, Moore JP (2011) Programming desiccation-tolerance: from plants to seeds to resurrection plants. Curr Opin Plant Biol 14:340–345

    Article  CAS  PubMed  Google Scholar 

  • Gowik U, Westhoff P (2011) The path from C-3 to C-4 photosynthesis. Plant Physiol 155:56–63

    Article  CAS  PubMed  Google Scholar 

  • Harb A, Krishnan A, Ambavaram MMR, Pereira A (2010) Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol 154:1254–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauser F, Waadt R, Schroeder JI (2011) Evolution of abscisic acid synthesis and signaling mechanisms. Curr Biol 21:R346–R355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heckmann D, Schulze S, Denton A et al (2013) Predicting C4 photosynthesis evolution: modular, individually adaptive steps on a Mount Fuji fitness landscape. Cell 153:1579–1588

    Article  CAS  PubMed  Google Scholar 

  • Henzler T, Waterhouse RN, Smyth AJ et al (1999) Diurnal variations in hydraulic conductivity and root pressure can be correlated with the expression of putative aquaporins in the roots of Lotus japonicus. Planta 210:50–60

    Article  CAS  PubMed  Google Scholar 

  • Hubbard KE, Nishimura N, Hitomi K et al (2010) Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev 24:1695–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javot H, Maurel C (2002) The role of aquaporins in root water uptake. Ann Bot 90:301–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang J, Hwang J-U, Lee M et al (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci U S A 107:2355–2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katul GG, Oren R, Manzoni S et al (2012) Evapotranspiration: a process driving mass transport and energy exchange in the soil–plant–atmosphere–climate system. Rev Geophys 50:RG3002

    Article  Google Scholar 

  • Keeley JE (1998) CAM photosynthesis in submerged aquatic plants. Bot Rev 64:121–175

    Article  Google Scholar 

  • Kim T-H, Böhmer M, Hu H et al (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kollist H, Nuhkat M, Roelfsema MRG (2014) Closing gaps: linking elements that control stomatal movement. New Phytol 203:44–62

    Article  CAS  PubMed  Google Scholar 

  • Langdale JA (2011) C4 cycles: past, present, and future research on C4 photosynthesis. Plant Cell 23:3879–3892

    Google Scholar 

  • Larcher W (2003) Physiological plant ecology, 4th edn. Springer, Berlin

    Book  Google Scholar 

  • Lawlor DW (2013) Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. J Exp Bot 64:83–108

    Article  CAS  PubMed  Google Scholar 

  • Lüttge U (1987) Carbon dioxide and water demand: crassulacean acid metabolism (CAM), a versatile ecological adaptation exemplifying the need for integration in ecophysiological work. New Phytol 106:593–629

    Article  PubMed  Google Scholar 

  • Lüttge U, Kluge M, Bauer G (1994) Botanik. Weinheim, VCH

    Google Scholar 

  • Maggio A, Joly RJ (1995) Effects of mercuric chloride on the hydraulic conductivity of tomato root systems (evidence for a channel-mediated water pathway). Plant Physiol 109:331–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maggio A, Zhu J-K, Hasegawa PM, Bressan RA (2006) Osmogenetics: Aristotle to Arabidopsis. Plant Cell 18:1542–1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurel C, Boursiac Y, Luu D-T et al (2015) Aquaporins in plants. Physiol Rev 95:1321–1358

    Article  CAS  PubMed  Google Scholar 

  • Maurel C, Verdoucq L, Luu D-T, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624

    Article  CAS  PubMed  Google Scholar 

  • McDowell N, Pockman WT, Allen CD et al (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739

    Article  PubMed  Google Scholar 

  • Murata K, Mitsuoka K, Hirai T et al (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605

    Article  CAS  PubMed  Google Scholar 

  • Qin X, Zeevaart JA (1999) The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc Natl Acad Sci U S A 96:15354–15361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sage RF, Sage TL, Kocacinar F (2012) Photorespiration and the evolution of C4 photosynthesis. Annu Rev Plant Biol 63:19–47

    Article  CAS  PubMed  Google Scholar 

  • Silvera K, Neubig KM, Whitten WM et al (2010) Evolution along the crassulacean acid metabolism continuum. Funct Plant Biol 37:995–1010

    Article  CAS  Google Scholar 

  • Skirycz A, Inzé D (2010) More from less: plant growth under limited water. Curr Opin Biotechnol 21:197–203

    Article  CAS  PubMed  Google Scholar 

  • Steudle E (2001) The cohesion–tension mechanism and the acquisition of water by plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:847–875

    Article  CAS  PubMed  Google Scholar 

  • Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49:775–788

    CAS  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  PubMed  Google Scholar 

  • Tenhaken R (2015) Cell wall remodeling under abiotic stress. Front Plant Sci 5:771

    Article  PubMed  PubMed Central  Google Scholar 

  • Verslues PE, Juenger TE (2011) Drought, metabolites, and Arabidopsis natural variation: a promising combination for understanding adaptation to water-limited environments. Curr Opin Plant Biol 14(3):240–245

    Article  CAS  PubMed  Google Scholar 

  • Wise MJ, Tunnacliffe A (2004) POPP the question: what do LEA proteins do? Trends Plant Sci 9:13–17

    Article  CAS  PubMed  Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    Article  CAS  PubMed  Google Scholar 

  • Yoshiba Y, Kiyosue T, Nakashima K et al (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38:1095–1102

    Article  CAS  PubMed  Google Scholar 

  • Yuan F, Yang H, Xue Y et al (2014) OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514:367–371

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schulze, ED., Beck, E., Buchmann, N., Clemens, S., Müller-Hohenstein, K., Scherer-Lorenzen, M. (2019). Water Deficiency (Drought). In: Plant Ecology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56233-8_6

Download citation

Publish with us

Policies and ethics