Skip to main content

Nonlinear and Cooperative Dynamics in the Human Brain: Evidence from Multimodal Neuroimaging

  • Chapter
Coordination: Neural, Behavioral and Social Dynamics

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Even a cursory review makes it clear that the operation of the brain critically depends on a complex interaction of spatially segregated neural systems. An adequate description of these interactions and an understanding of their nature are therefore an important challenge for neuroscience. While this applies to normal and abnormal brain functions, a study of the nature of corticocortical interactions will be needed most of all in the study of diseases and conditions in which an alteration of connectivity is assumed to play a prominent role. A case in point is schizophrenia, in which convergent evidence from neuroanatomical, neurophysiological, pharmacological and theoretical studies suggests that a disturbance of cortical connections may play an important role in producing a functionally devastating and characteristic syndrome based on a pathology that is (comparatively) subtle and possibly diffuse [17, 22, 43, 70].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26:63–72

    Article  Google Scholar 

  2. Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–98

    Article  Google Scholar 

  3. Babloyantz A, Salazar JM, Nicolis C (1985) Evidence of chaotic dynamics of brain activity during the sleep cycle. Phys Lett A 111:152–156

    Article  Google Scholar 

  4. Barahona M, Pecora LM (2002) Synchronization in small-world systems. Phys Rev Lett 89:054101

    Article  Google Scholar 

  5. Bassett DS, Bullmore ET (2006) Small-world brain networks. Neuroscientist 12:512–523

    Article  Google Scholar 

  6. Bassett DS, Meyer-Lindenberg A, Achard S, Duke T, Bullmore ET (2006) Adaptive reconfiguration of fractal small-world human brain functional networks. Proc Natl Acad Sci USA 103:19518–19523

    Article  Google Scholar 

  7. Bollobás B (2001) Random graphs. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  8. Breakspear M (2006) The nonlinear theory of schizophrenia. Aust NZ J Psychiat 40:20–35

    Article  Google Scholar 

  9. Brinkman C (1981) Lesions in supplementary motor area interfere with a monkey’s performance of a bimanual coordination task. Neurosci Lett 27:267–270

    Article  Google Scholar 

  10. Bullmore ET, Fadili J, Maxim V, Sendur L, Whitcher B, Suckling J, Brammer MJ, Breakspear M (2004) Wavelets and functional magnetic resonance imaging of the human brain. Neuroimage 23:S234–S249

    Article  Google Scholar 

  11. Buzug T, Pawelzik K, von Stamm J, Pfister G (1994) Mutual information and global strange attractors in Taylor-Couette flow. Physica D 72:343–350

    Article  MATH  MathSciNet  Google Scholar 

  12. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271

    Article  MATH  MathSciNet  Google Scholar 

  13. Dunki RM, Ambuhl B (1996) Scaling properties in temporal patterns of schizophrenia. Physica A 230:544–553

    Article  Google Scholar 

  14. Edelman GM (1992) Bright air, brilliant fire: on the matter of the mind. Basic Books, New York

    Google Scholar 

  15. Elbert T, Ray WJ, Kowalik ZJ, Skinner JE, Graf KE, Birbaumer N (1994) Chaos and physiology: deterministic chaos in excitable cell assemblies. Physiol Rev 74:1–47

    Google Scholar 

  16. Erdös P, Rényi A (1959) On random graphs. Publ Math Debrecen 6:290–297

    MathSciNet  MATH  Google Scholar 

  17. Fletcher P (1998) The missing link: a failure of fronto-hippocampal integration in schizophrenia. Nat Neurosci 1:266–267

    Article  Google Scholar 

  18. Frank GW, Lookman T, Nerenberg MAH, Essex C (1990) Chaotic time series analyses of epileptic seizures. Physica D 46:427–433

    Article  MATH  Google Scholar 

  19. Freund HJ (1987) Differential effects of cortical lesions in humans. Ciba Found Symp 132:269–281

    Google Scholar 

  20. Freund HJ, Hummelsheim H (1985) esions of premotor cortex in man. Brain 108:697–733

    Article  Google Scholar 

  21. Friston KJ (1996) Theoretical neurobiology and schizophrenia. Brit Med Bull 52:644–655

    Google Scholar 

  22. Friston KJ (1998) The disconnection hypothesis. Schizophr Res 30:115–125

    Article  Google Scholar 

  23. Frith C (1995) Functional imaging and cognitive abnormalities. Lancet 346: 615–620

    Article  Google Scholar 

  24. Gerloff C, Corwell B, Chen R, Hallett M, Cohen LG (1997) Stimulation over the human supplementary motor area interferes with the organization of future elements in complex motor sequences. Brain 120:1587–1602

    Article  Google Scholar 

  25. Gerloff C, Corwell B, Chen R, Hallett M, Cohen LG (1998) The role of the human motor cortex in the control of complex and simple finger movement sequences. Brain 121:1695–1709

    Article  Google Scholar 

  26. Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Physica D 9:189–208

    Article  MATH  MathSciNet  Google Scholar 

  27. Haken H (1983) Synergetics. Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  28. Haken H (1996) Principles of Brain Functioning. Springer, Berlin

    MATH  Google Scholar 

  29. Humphries MD, Gurney K, Prescott TJ (2006) The brainstem reticular formation is a small-world, not scale-free, network. Proc Biol Sci 273:503–511

    Article  Google Scholar 

  30. Jirsa VK, Fuchs A, Kelso JAS (1998) Connecting cortical and behavioral dynamics: bimanual coordination. Neural Comput 10:2019–2045

    Article  Google Scholar 

  31. de Jong BM, Willemsen AT, Paans AM (1999) Brain activation related to the change between bimanual motor programs. Neuroimage 9:290–297

    Article  Google Scholar 

  32. Kelso JAS (1984) Phase transitions and critical behavior in human bimanual coordination. Am J Physiol 15:1000–1004

    Google Scholar 

  33. Koukkou M, Lehmann D, Federspiel A, Merlo MC (1995) EEG reactivity and EEG activity in never-treated acute schizophrenics, measured with spectral parameters and dimensional complexity. J Neural Transm Gen Sect 99:89–102

    Article  Google Scholar 

  34. Lee KH, Williams LM, Breakspear M, Gordon E (2003) Synchronous gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia. Brain Res Rev 41:57–78

    Article  Google Scholar 

  35. Lopes da Silva FH (1993) EEG analysis: theory and practice. In: Niedermeyer E, Lopes da Silva FH (eds) Electroencephalography. Williams & Wilkins, Baltimore

    Google Scholar 

  36. von der Malsburg C (1981) The Correlation Theory of Brain Function. MPI Biophysical Chemistry, Internal Report 81-82

    Google Scholar 

  37. von der Malsburg C (1999) The what and why of binding: the modelers perspective. Neuron 24:95–104

    Article  Google Scholar 

  38. Meyer-Lindenberg A (1996) The evolution of complexity in human brain development: an EEG study. Electroen Clin Neuro 99:405–411

    Article  Google Scholar 

  39. Meyer-Lindenberg A (1999) Nichtlineare Dynamik im EEG gesunder Probanden und schizophrener Patienten (Nonlinear dynamics in the EEG of healthy subjects and schizophrenic patients). PhD Thesis, Justus-Liebig-University, Giessen

    Google Scholar 

  40. Meyer-Lindenberg A (2003) Nichtlineare Rauschunterdrckungsverfahren: algorithmische Aspekte und Anwendung auf Biosignale (Nonlinear noise supression methods: algorithms and application to biosignals). MSc, University of Hagen, Hagen

    Google Scholar 

  41. Meyer-Lindenberg A, Bauer U, Krieger S, Lis S, Vehmeyer K, Schuler G, Gallhofer B (1998) The topography of non-linear cortical dynamics at rest, in mental calculation and moving shape perception. Brain Topogr 10:291–299

    Article  Google Scholar 

  42. Meyer-Lindenberg A, Kohn PD, Kolachana B, Kippenhan S, McInerney-Leo A, Nussbaum R, Weinberger DR, Berman KF (2005) Midbrain dopamine and prefrontal function in humans: interaction and modulation by COMT genotype. Nat Neurosci 8:594–596

    Article  Google Scholar 

  43. Meyer-Lindenberg A, Poline JB, Kohn PD, Holt JL, Egan MF, Weinberger DR, Berman KF (2001) Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. Am J Psychiat 158:1809–1817

    Article  Google Scholar 

  44. Meyer-Lindenberg A, Ziemann U, Hajak G, Cohen L, Berman KF (2002) Transitions between dynamical states of differing stability in the human brain. Proc Natl Acad Sci USA 99:10948–10953

    Article  Google Scholar 

  45. Motter AE, Zhou CS, Kurths J (2005) Enhancing complex-network synchronization. Europhys Lett 69:334–340

    Article  Google Scholar 

  46. Osborne AR, Provenzale A (1989) Finite correlation dimension for stochastic systems with power-law spectra. Physica D 35:357–381

    Article  MATH  MathSciNet  Google Scholar 

  47. Paulus MP, Geyer MA, Braff DL (1996) Use of methods from chaos theory to quantify a fundamental dysfunction in the behavioral organization of schizophrenic patients. Am J Psychiat 153:714–717

    Google Scholar 

  48. Peitgen HO, Jürgens H, Saupe D (1992) Chaos and Fractals. New Frontiers of Science. Springer, New York, Berlin, Heidelberg, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest

    MATH  Google Scholar 

  49. Percival DB, Waiden AT (2000) Wavelet methods for time series analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  50. Perrin F, Pernier J, Bertrand O, Giard MH, Echallier JF (1987) Mapping of scalp potentials by surface spline interpolation. Electroen Clin Neuro 66: 75–81

    Article  Google Scholar 

  51. Pritchard WS, Duke DW (1992) Measuring chaos in the brain: a tutorial review of nonlinear dynamical EEG analysis. Int J Neurosci 67:31–80

    Article  Google Scholar 

  52. Prichard D, Theiler J (1994) Generating surrogate data for time series with several simultaneously measured variables. Phys Rev A 73:951–954

    Article  Google Scholar 

  53. Rabinovich MI, Abarbanel HD (1998) The role of chaos in neural systems. Neuroscience 87:5–14

    Article  Google Scholar 

  54. Rose G, Siebler M (1995) Cooperative effects of neuronal ensembles. Exp Brain Res 106:106–110

    Article  Google Scholar 

  55. Sadato N, Yonekura Y, Waki A, Yamada H, Ishii Y (1997) Role of the supplementary motor area and the right premotor cortex in the coordination of bimanual finger movements. J Neurosci 17:9667–9674

    Google Scholar 

  56. Schöner G, Kelso JA (1988) Dynamic pattern generation in behavioral and neural systems. Science 239:1513–1520

    Article  Google Scholar 

  57. Shank T, Wagner D (2004) Approximating clustering-coefficient and transitivity. Technical Report 2004-9. Universität Karlsruhe Fakultät fur Informatik, Karlsruhe

    Google Scholar 

  58. Stam CJ, van Woerkom TC, Pritchard WS (1996) Use of non-linear EEG measures to characterize EEG changes during mental activity. Electroen Clin Neuro 99:214–224

    Article  Google Scholar 

  59. Stephan KM, Binkofski F, Halsband U, Dohle C, Wunderlich G, Schnitzler A, Tass P, Herzog H, Sturm V, Zilles K Scitz RJ, Freund HJ (1999) The role of ventral medial wall motor areas in bimanual co-ordination. Brain 122:351–368

    Article  Google Scholar 

  60. Takens F (1981) Detecting strange attractors in turbulence. In: Rand DA, Young LS (eds) Dynamical systems and turbulence. Springer, Berlin

    Google Scholar 

  61. Theiler J (1994) On the evidence for low-dimensional chaos in an epileptic electroencephalogram. Phys Lett A 196:335–341

    Article  Google Scholar 

  62. Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time series: the method of surrogate data. Physica D 58: 77–94

    Article  Google Scholar 

  63. Toyokura M, Muro I, Komiya T, Obara M (1999) Relation of bimanual coordination to activation in the sensorimotor cortex and supplementary motor area: analysis using functional magnetic resonance imaging. Brain Res Bull 48:211–217

    Article  Google Scholar 

  64. Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DG, Goodale MA, Mansfield RJW (eds) Analysis of visual behaviour. MIT Press, Cambridge

    Google Scholar 

  65. Versavel M, Leonard JP, Herrmann WM (1995) Standard operating procedure for the registration and computer-supported evaluation of pharmaco-EEG data. ‘EEG in Phase I’ of the Collegium Internationale Psychiatriae Scalarum (CIPS). Neuropsychobiology 32:166–170

    Google Scholar 

  66. Viviani P, Perani D, Grassi F, Bettinardi V, Fazio F (1998) Hemispheric asymmetries and bimanual asynchrony in left-and right-handers. Exp Brain Res 120:531–536

    Article  Google Scholar 

  67. Wackermann J, Lehmann D, Dvorak I, Michel CM (1993) Global dimensional complexity of multi-channel EEG indicates change of human brain functional state after a single dose of a nootropic drug. Electroen Clin Neuro 86:193–198

    Article  Google Scholar 

  68. Wallenstein GV, Nash AJ, Kelso JAS (1995) Slow cortical potentials and their frequency and phase characteristics preceding bimanual finger movements. Electroencephalogr Clin Neurophysiol 94:50–59

    Article  Google Scholar 

  69. Watts DJ, Strogatz SH (1998) Collective dynamics of’ small-world’ networks. Nature 393:440–442

    Article  Google Scholar 

  70. Weinberger DR, Berman KF, Suddath R, Torrey EF (1992) Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: a magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. Am J Psychiat 149:890–897

    Google Scholar 

  71. Whitcher B, Guttorp P, Percival DB (2000) Wavelet analysis of covariance with application to atmospheric time series. J Geophys Res 105:941–962

    Article  Google Scholar 

  72. Wise SM (1985) The primate premotor cortex: past, present, and preparatory. Annu Rev Neurosci 8:1–19

    Article  Google Scholar 

  73. Wright JJ, Liley DTL (1996) Dynamics of the brain at global and microscopic scales: Neural networks and the EEG. Behav Brain Sci 19:285–320

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meyer-Lindenberg, A., Bassett, D.S. (2008). Nonlinear and Cooperative Dynamics in the Human Brain: Evidence from Multimodal Neuroimaging. In: Fuchs, A., Jirsa, V.K. (eds) Coordination: Neural, Behavioral and Social Dynamics. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74479-5_8

Download citation

Publish with us

Policies and ethics