Skip to main content
Log in

The Topography of Non-Linear Cortical Dynamics at Rest, in Mental Calculation and Moving Shape Perception

  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Differential cortical activation by cognitive processing was studied using dimensional complexity, a measure derived from nonlinear dynamics that indicates the degrees of freedom (complexity) of a dynamic system. We examined the EEG of 32 healthy subjects at rest, during a visually presented calculation task, and during a moving shape perception task. As a nonlinear measure of connectivity, the mutual dimension of selected electrode pairs was used. The first Lyapunov coefficient was also calculated. Data were tested for non-linearity using a surrogate data method and compared to spectral EEG measures (power, coherence). Surrogate data testing confirmed the presence of nonlinear structure in the data. Cognitive activation led to a highly significant rise in dimensional complexity. While both tasks activated central, parietal and temporal areas, mental arithmetic showed frontal activation and an activity maximum at T3, while the moving shape task led to occipital activation and a right parietal activity maximum. Analysis of mutual dimension showed activation of a bilateral temporal-right frontal network in calculation. The Lyapunov coefficent showed clear topographic variation, but was not significantly changed by mental tasks (p<.09). While dimensional complexity was almost unrelated to power values, nonlinear (mutual dimension) and linear (coherence) measures of connectivity shared up to 37% of variance. Data are interpreted in terms of increased cortical complexity as a result of recruitment of asynchronously active, distributed neuronal assemblies in cognition. The topography of nonlinear dynamics are related to neuropsychological and neuroimaging findings on mental calculation and moving shape perception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, O. and Andersson, S.A. Physiological basis of the alpha rhythm. Appleton-Century-Crofts, New York, 1968.

    Google Scholar 

  • Ardila, A. and Rosselli, M. Spatial acalculia. Int. J. Neurosci., 1994, 78: 177–184.

    Google Scholar 

  • Babloyantz, A. and Salazar, J.M. Evidence of chaotic dynamics of brain activity during the sleep cycle. Phys. Lett. A., 1985, 111: 152–156.

    Google Scholar 

  • Baddeley, A. Working memory. Science, 1992, 255: 556–559.

    Google Scholar 

  • Bondarenko, V.E. A simple neural network model chaos similar to the human EEG. Physics Letters A., 1994, 196: 195–200.

    Google Scholar 

  • Burbaud, P., Degreze, P., Lafon, P., Franconi, J.M., Bouligand, B., Bioulac, B., Caille, J.M., and Allard, M. Lateralization of prefrontal activation during internal mental calculation: a functional magnetic resonance imaging study. J. Neurophysiol., 1995, 74: 2194–2200.

    Google Scholar 

  • Buzug, T., Pawelzik, K., von Stamm, J. and Pfister, G. Mutual information and global stange attractors in Taylor-Couette flow. Physica D., 1994, 72: 343–350.

    Google Scholar 

  • Cheng, K., Fujita, H., Kanno, I., Miura, S. and Tanaka, K. Human cortical regions activated by wide-field visual motion: an H2(15)O PET study. J. Neurophysiol., 1995, 74: 413–427.

    Google Scholar 

  • Clark, J.M. and Campbell, J.I. Integrated versus modular theories of number skills and acalculia. Brain Cogn., 1991, 17: 204–239.

    Google Scholar 

  • de Jong, B.M., Shipp, S., Skidmore, B., Frackowiak, R.S. and Zeki, S. The cerebral activity related to the visual perception of forward motion in depth. Brain, 1994, 117: 1039–1054.

    Google Scholar 

  • Fell, J., Röschke, J., Mann, K. and Schaffner, C. Discrimination of sleep stages: a comparison between spectral and nonlinear EEG measures. Electroencephalogr. Clin. Neurophysiol., 1996, 98: 401–410.

    Google Scholar 

  • Fernandez, T., Harmony, T., Rodriguez, M., Bernal, J., Silva, J., Reyes, A. and Marosi, E. EEG activation patterns during the performance of tasks involving different components of mental calculation. Electroencephalogr. Clin. Neurophysiol., 1995, 94: 175–182.

    Google Scholar 

  • Ffytche, D.H., Guy, C.N. and Zeki, S. The parallel visual motion inputs into areas V1 and V5 of human cerebral cortex. Brain, 1995, 118: 1375–1394.

    Google Scholar 

  • Frank, G.W., Lookman, T., Nerenberg, M.A.H. and Essex, C. Chaotic time series analyses of epileptic seizures. Physica D., 1992, 46: 427–433.

    Google Scholar 

  • Goodale, M.A. and Milner, A.D. Separate visual pathways for perception and action. Trends Neurosci., 1992, 15: 20–25.

    Google Scholar 

  • Grassberger, P. and Procaccia, I. Measuring the strangeness of strange attractors. Physica D., 1983, 9: 189–208.

    Google Scholar 

  • Gregson, R.A., Campbell, E.A. and Gates, G.R. Cognitive load as a determinant of the dimensionality of the electroencephalogram: a replication study. Biol. Psychol., 1993, 35: 165–178.

    Google Scholar 

  • Iasemidis, L.D., Sackellares, J.C., Zaveri, H.P. and Williams, W.J. Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures. Brain Topogr., 1990, 2: 187–201.

    Google Scholar 

  • Inouye, T., Shinosaki, K., Iyama, A. and Matsumoto, Y. Localization of activated areas and directional EEG patterns during mental arithmetic. Electroencephalogr. Clin. Neurophysiol., 1993, 86: 224–230.

    Google Scholar 

  • Joseph, C. EEG and autonomic arousal measures in schizophrenics. Int. J. Neurosci., 1989, 45: 261–276.

    Google Scholar 

  • Kahn, H.J. and Whitaker, H.A. Acalculia: an historical review of localization. Brain Cogn., 1991, 17: 102–115.

    Google Scholar 

  • Lehnertz, K. and Elger, C.E. Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss. Electroencephalogr. Clin. Neurophysiol., 1995, 95: 108–117.

    Google Scholar 

  • Lewin, J.S., Friedman, L., Wu, D., Miller, D.A., Thompson, L.A., Klein, S.K., Wise, A.L., Hedera, P., Buckley, P., Meltzer, H., Friedland, R.P. and Duerk, J.L. Cortical localization of human sustained attention: detection with functional MR using a visual vigilance paradigm. J. Comput. Assist. Tomogr., 1996, 20: 695–701.

    Google Scholar 

  • Lopes da Silva, F.H. Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr. Clin. Neurophysiol., 1991, 79: 81–93.

    Google Scholar 

  • Lopes da Silva, F.H. EEG analysis: theory and practice. In: E. Niedermeyer and F.H. Lopes da Silva, (Eds.), Electroencephalography. Williams & Wilkins, Baltimore, 1992: 1097–1124.

    Google Scholar 

  • Lutzenberger, W., Elbert, T., Birbaumer, N., Ray, W.J. and Schupp, H. The scalp distribution of the fractal dimension of the EEG and its variation with mental tasks. Brain Topogr., 1992, 5: 27–34.

    Google Scholar 

  • Lutzenberger, W., Preissl, H. and Pulvermuller, F. Fractal dimension of electroencephalographic time series and underlying brain processes. Biol. Cybern., 1995a, 73: 477–482.

    Google Scholar 

  • Lutzenberger, W., Stevens, A. and Bartels, M. Do schizophrenics not differentiate between perception and imagination? an EEG study using dimensional analysis. Neurosci. Lett., 1995b, 199: 119–122.

    Google Scholar 

  • Mesulam, M.M. A cortical network for directed attention and unilateral neglect. Ann. Neurol., 1981, 10: 309–325.

    Google Scholar 

  • Meyer-Lindenberg, A. The evolution of complexity in human brain development: an EEG study. Electroencephalogr. Clin. Neurophysiol., 1996, 99: 405–411.

    Google Scholar 

  • Molle, M., Marshall, L., Lutzenberger, W., Pietrowsky, R., Fehm, H.L. and Born, J. Enhanced dynamic complexity in the human EEG during creative thinking. Neurosci. Lett., 1996, 208: 61–64.

    Google Scholar 

  • Nan, X. and Jinghua, X. The fractal dimension of EEG as a physical measure of conscious human brain activities. Bull Math Biol., 1988, 50: 559–565.

    Google Scholar 

  • Osborne, A.R. and Provenzale, A. A finite correlation dimension for stochastic systems with power-law spectra. Physica D., 1989, 35: 357–381.

    Google Scholar 

  • Peitgen, H.O., Jürgens, H. and Saupe, D. Chaos and Fractals. New Frontiers of Science. Springer, New York-Berlin-Heidelberg-London-Paris-Tokyo-Hong Kong-Barcelona-Budapest, 1992: 739–743.

    Google Scholar 

  • Perrin, F., Pernier, J., Bertrand, O., Giard, M.H. and Echallier, J.F. Mapping of scalp potentials by surface spline interpolation. Electroencephalogr. Clin. Neurophysiol., 1987, 66: 75–81.

    Google Scholar 

  • Petsche, H. The scintillating world of attention: Neurophysiological aspects of cognitive processes. Z EEG EMG, 1995, 26: 1–18.

    Google Scholar 

  • Prichard, D. and Theiler, J. Generating surrogate data for time series with several simultaneously measured variables. Physical Rev. A., 1994, 73: 951–954.

    Google Scholar 

  • Pritchard, W.S. and Duke, D.W. Measuring chaos in the brain: a tutorial review of nonlinear dynamical EEG analysis. Int. J. Neurosci., 1992, 67: 31–80.

    Google Scholar 

  • Rapp, P.E., Bashore, T.R., Martinerie, J.M., Albano, A.M., Zimmerman, I.D. and Mees, A.I. Dynamics of brain electrical activity. Brain Topogr., 1989, 2: 99–118.

    Google Scholar 

  • Rosselli, M. and Ardila, A. Calculation deficits in patients with right and left hemisphere damage. Neuropsychologia., 1989, 27: 607–617.

    Google Scholar 

  • Shipp, S., de Jong, B.M., Zihl, J., Frackowiak, R.S. and Zeki, S. The brain activity related to residual motion vision in a patient with bilateral lesions of V5. Brain, 1994, 117: 1023–1038.

    Google Scholar 

  • Stam, C.J., van Woerkom, T.C. and Pritchard, W.S. Use of non-linear EEG measures to characterize EEG changes during mental activity. Electroencephalogr. Clin. Neurophysiol., 1996, 99: 214–224.

    Google Scholar 

  • Stam, K.J., Tavy, D.L., Jelles, B., Achtereekte, H.A., Slaets, J.P. and Keunen, R.W. Non-linear dynamical analysis of multichannel EEG: clinical applications in dementia and Parkinson's disease. Brain Topogr., 1994, 7: 141–150.

    Google Scholar 

  • Takens, F. Detecting strange attractors in turbulence. In: D.A. Rand and L.S. Young (Eds.), Dynamical systems and turbulence. Springer, New York-Berlin-Heidelberg-London-Paris-Tokyo-Hong Kong-Barcelona-Budapest, 1981: 366–381

    Google Scholar 

  • Theiler, J. On the evidence for low-dimensional chaos in an epileptic electroencephalogram. Phys. Lett. A., 1994, 196: 335–341.

    Google Scholar 

  • Theiler, J., Eubank, S., Longtin, A., Galdrikian, B. and Farmer, J.D. Testing for nonlinearity in time series. The method of surrogate data. Physica D., 1992, 58: 77–94.

    Google Scholar 

  • Theiler, J. and Rapp, P.E. Re-examination of the evidence for low-dimensional, nonlinear structure in the human electroencephalogram. Electroencephalogr. Clin. Neurophysiol., 1996, 98: 213–222.

    Google Scholar 

  • Thomeer, E.C., Stam, C.J. and van Woerkom, T.C. EEG changes during mental activation. Clin. Electroencephalogr., 1994, 25: 94–98.

    Google Scholar 

  • Tohgi, H., Saitoh, K., Takahashi, S., Takahashi, H., Utsugisawa, K., Yonezawa, H., Hatano, K. and Sasaki, T. Agraphia and acalculia after a left prefrontal (F1,F2) infarction. J. Neurol. Neurosurg. Psychiatry, 1995, 58: 629–632.

    Google Scholar 

  • Troup, G.A., Bradshaw, J.L. and Nettleton, N.C. The lateralization of arithmetic and number processing: a review. Int. J. Neurosci., 1983, 19: 231–241.

    Google Scholar 

  • Versavel, M., Leonard, J.P. and Herrmann, W.M. Standard operating procedure for the registration and computer-supported evaluation of pharmaco-EEG data. ‘EEG in Phase I’ of the Collegium Internationale Psychiatriae Scalarum (CIPS). Neuropsychobiology, 1995, 32: 166–170.

    Google Scholar 

  • Wackermann, J., Lehmann, D., Dvorak, I. and Michel, C.M. Global dimensional complexity of multi-channel EEG indicates change of human brain functional state after a single dose of a nootropic drug. Electroencephalogr. Clin. Neurophysiol., 1993, 86: 193–198.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer-Lindenberg, A., Bauer, U., Krieger, S. et al. The Topography of Non-Linear Cortical Dynamics at Rest, in Mental Calculation and Moving Shape Perception. Brain Topogr 10, 291–299 (1998). https://doi.org/10.1023/A:1022227108139

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022227108139

Navigation