Skip to main content

3D Scenery Construction of Agricultural Environments for Robotics Awareness

  • Chapter
  • First Online:
Information and Communication Technologies for Agriculture—Theme III: Decision

Abstract

Depth cameras started to gain popularity in agricultural applications during the last years. This type of cameras has been implemented mainly for three-dimensional (3D) reconstruction of objects in indoor or outdoor sceneries. The use of such cameras in the construction of 3D models for simulation purposes of complex structures that are usually met in nature, such as trees and other plants, is a great challenge. Remarkably, agricultural environments are extremely complex. Thus, the proper setup and implementation of such technologies is particularly important in order to attain useable data. So far, the depth information collected using these cameras varies among different objects’ structure and sensing conditions due to the uncertainty of the outdoor environment. The use of a specific methodology using color and depth images gives the opportunity to extract geometrical characteristics information about point clouds of the targeted objects. This chapter explores the different technologies used by depth cameras and presents several applications concerning indoor and outdoor environments by presenting indicative scenarios for agricultural applications. Towards that direction, a 3D reconstruction of trees was established producing point clouds from Red Green Blue Depth (RGB-D) images acquired in real field conditions. The point cloud samples of trees were collected using an unmanned ground vehicle (UGV) and imported in Gazebo in order to visualize a simulation of the environment. This simulation technique can be used for testing and evaluating the navigation of robotic systems. By further analyzing the resulted 3D point clouds, various geometrical measurements of the simulated samples, such as the volume or the height of tree canopies, can be calculated. Possible weaknesses of this procedure are mainly attributed to the camera’s limitations and the sampling parameters. However, results show that it is possible to establish a suitable simulation environment to implement it in several agricultural applications by utilizing automated unmanned robotic platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., et al. (2011). KinectFusion: Real-time 3D reconstruction and interaction using a moving depth camera. In Proceedings of the UIST’11 - Proceedings of the 24th annual ACM symposium on user interface software and technology. ACM Press, New York, NY, pp. 559–568.

    Google Scholar 

  2. Pan, H., Guan, T., Luo, Y., Duan, L., Tian, Y., Yi, L., Zhao, Y., & Yu, J. (2016). Dense 3D reconstruction combining depth and RGB information. Neurocomputing, 175, 644–651. https://doi.org/10.1016/j.neucom.2015.10.104

    Article  Google Scholar 

  3. Biskup, B., Scharr, H., Schurr, U., & Rascher, U. (2007). A stereo imaging system for measuring structural parameters of plant canopies. Plant, Cell and Environment, 30, 1299–1308. https://doi.org/10.1111/j.1365-3040.2007.01702.x

    Article  Google Scholar 

  4. Schöps, T., Sattler, T., Häne, C., & Pollefeys, M. (2017). Large-scale outdoor 3D reconstruction on a mobile device. Computer Vision and Image Understanding, 157, 151–166. https://doi.org/10.1016/j.cviu.2016.09.007

    Article  Google Scholar 

  5. Li, J., Huang, W., Shao, L., & Allinson, N. (2014). Building recognition in urban environments: A survey of state-of-the-art and future challenges. Information Sciences (NY), 277, 406–420. https://doi.org/10.1016/j.ins.2014.02.112

    Article  Google Scholar 

  6. Guo, Y., Sohel, F., Bennamoun, M., Wan, J., & Lu, M. (2015). A novel local surface feature for 3D object recognition under clutter and occlusion. Information Sciences (NY), 293, 196–213. https://doi.org/10.1016/j.ins.2014.09.015

    Article  Google Scholar 

  7. Kim, D. Y., & Jeon, M. (2014). Data fusion of radar and image measurements for multi-object tracking via Kalman filtering. Information Sciences (NY), 278, 641–652. https://doi.org/10.1016/j.ins.2014.03.080

    Article  MathSciNet  Google Scholar 

  8. Yang, D., Liu, Z., Sun, F., Zhang, J., Liu, H., & Wang, S. (2014). Recursive depth parametrization of monocular visual navigation: Observability analysis and performance evaluation. Information Sciences (NY), 287, 38–49. https://doi.org/10.1016/j.ins.2014.07.025

    Article  MathSciNet  MATH  Google Scholar 

  9. Viejo, D., Garcia-Rodriguez, J., & Cazorla, M. (2014). Combining visual features and Growing Neural Gas networks for robotic 3D SLAM. Information Sciences (NY), 276, 174–185. https://doi.org/10.1016/j.ins.2014.02.053

    Article  Google Scholar 

  10. Gálvez, A., & Iglesias, A. (2012). Particle swarm optimization for non-uniform rational B-spline surface reconstruction from clouds of 3D data points. Information Sciences (NY), 192, 174–192. https://doi.org/10.1016/j.ins.2010.11.007

    Article  Google Scholar 

  11. Nevatia, R. (1976). Depth measurement by motion stereo. Comput. Graph. Image Process., 5, 203–214. https://doi.org/10.1016/0146-664X(76)90028-9

    Article  Google Scholar 

  12. Mrovlje, J., & Vrani, D. (2008). Distance measuring based on stereoscopic pictures. In 9th Int. PhD Work. Syst. Control Young Gener. Viewp.

    Google Scholar 

  13. Liu, Z., & Chen, T. (2009). Distance measurement system based on binocular stereo vision. In Proceedings of the IJCAI international joint conference on artificial intelligence; pp. 456–459.

    Google Scholar 

  14. Condotta, I. C. F. S., Brown-Brandl, T. M., Pitla, S. K., Stinn, J. P., & Silva-Miranda, K. O. (2020). Evaluation of low-cost depth cameras for agricultural applications. Computers and Electronics in Agriculture, 173, 105394. https://doi.org/10.1016/j.compag.2020.105394

    Article  Google Scholar 

  15. Bertheloot, J., Cournède, P.-H., & Andrieu, B. PART OF A SPECIAL ISSUE ON FUNCTIONAL-STRUCTURAL PLANT MODELLING—NEMA, a functional-structural model of nitrogen economy within wheat culms after flowering. I. Model description. Annals of Botany, 108, 1085–1096. https://doi.org/10.1093/aob/mcr119

  16. Vos, J., Evers, J. B., Buck-Sorlin, G. H., Andrieu, B., Chelle, M., & De Visser, P. H. B. (2010). Functional-structural plant modelling: A new versatile tool in crop science. Journal of Experimental Botany, 61, 2101–2115.

    Article  Google Scholar 

  17. Zhu, C., Zhang, X., Hu, B., & Jaeger, M. (2008). Reconstruction of tree crown shape from scanned data. In Proceedings of the lecture notes in computer science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer, Berlin, Heidelberg, Vol. 5093 LNCS, pp. 745–756.

    Google Scholar 

  18. Omasa, K., Hosoi, F., & Konishi, A. (2007). 3D lidar imaging for detecting and understanding plant responses and canopy structure. Journal of Experimental Botany, 58, 881–898.

    Article  Google Scholar 

  19. Binney, J., & Sukhatme, G. S. (2009). 3D tree reconstruction from laser range data. In Proceedings of the proceedings - IEEE international conference on robotics and automation, pp. 1321–1326.

    Google Scholar 

  20. Chéné, Y., Rousseau, D., Lucidarme, P., Bertheloot, J., Caffier, V., Morel, P., Belin, É., & Chapeau-Blondeau, F. (2012). On the use of depth camera for 3D phenotyping of entire plants. Computers and Electronics in Agriculture, 82, 122–127. https://doi.org/10.1016/j.compag.2011.12.007

    Article  Google Scholar 

  21. Andújar, D., Dorado, J., Fernández-Quintanilla, C., & Ribeiro, A. (2016). An approach to the use of depth cameras for weed volume estimation. Sensors, 16, 972. https://doi.org/10.3390/s16070972

    Article  Google Scholar 

  22. Orriordan, A., Newe, T., Dooly, G., & Toal, D. (2019). Stereo vision sensing: Review of existing systems. In Proceedings of the Proceedings of the international conference on sensing technology, ICST; IEEE computer society, Vol. 2018-Decem, pp. 178–184.

    Google Scholar 

  23. Tran, V. L., & Lin, H. Y. (2018). A structured light RGB-D camera system for accurate depth measurement. International Journal of Optics, 2018. https://doi.org/10.1155/2018/8659847

  24. Lachat, E., Macher, H., Mittet, M.-A., Landes, T., & Grussenmeyer, P. (2015). FIRST EXPERIENCES WITH KINECT V2 SENSOR FOR CLOSE RANGE 3D MODELLING. In ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., XL-5/W4, 93–100. https://doi.org/10.5194/isprsarchives-XL-5-W4-93-2015.

  25. Kirsten, E., Inocencio, L. C., Veronez, M. R., Da Silveira, L. G., Bordin, F., & Marson, F. P. (2018). 3D data acquisition using stereo camera. In Proceedings of the international geoscience and remote sensing symposium (IGARSS), Institute of Electrical and Electronics Engineers Inc., Vol. 2018-July, pp. 9214–9217.

    Google Scholar 

  26. Marin, G., Agresti, G., Minto, L., & Zanuttigh, P. (2019). A multi-camera dataset for depth estimation in an indoor scenario. Open Data BR, 27, 104619. https://doi.org/10.1016/j.dib.2019.104619

    Article  Google Scholar 

  27. Endres, F., Hess, J., Sturm, J., Cremers, D., & Burgard, W. (2014). 3-D Mapping with an RGB-D camera. IEEE Transactions on Robotics, 30, 177–187. https://doi.org/10.1109/TRO.2013.2279412

    Article  Google Scholar 

  28. Tran, T. M., Ta, K. D., Hoang, M., Nguyen, T. V., Nguyen, N. D., & Pham, G. N. (2020). A study on determination of simple objects volume using ZED stereo camera based on 3D-points and segmentation images. International Journal of Emerging Engineering Research and Technology, 8, 1990–1995. https://doi.org/10.30534/ijeter/2020/85852020

    Article  Google Scholar 

  29. Sarker, M. M., Ali, T. A., Abdelfatah, A., Yehia, S., & Elaksher, A. (2017). A cost-effective method for crack detection and measurement on concrete surface. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, XLII-2/W8, 237–241. https://doi.org/10.5194/isprs-archives-XLII-2-W8-237-2017

    Article  Google Scholar 

  30. Burdziakowski, P. (2018). Low cost real time UAV stereo photogrammetry modelling technique-accuracy considerations. In Proceedings of the E3S web of conferences, EDP sciences, Vol. 63, p. 00020.

    Google Scholar 

  31. Gupta, T., & Li, H. (2017). Indoor mapping for Smart Cities-An affordable approach: Using kinect sensor and ZED stereo camera. In Proceedings of the 2017 international conference on indoor positioning and indoor navigation, IPIN 2017, Institute of Electrical and Electronics Engineers Inc., Vol. 2017-Janua, pp. 1–8.

    Google Scholar 

  32. Halmetschlager-Funek, G., Suchi, M., Kampel, M., & Vincze, M. (2019). An empirical evaluation of ten depth cameras: Bias, precision, lateral noise, different lighting conditions and materials, and multiple sensor setups in indoor environments. IEEE Robotics and Automation Magazine, 26, 67–77. https://doi.org/10.1109/MRA.2018.2852795

    Article  Google Scholar 

  33. Wang, W., & Li, C. (2014). Size estimation of sweet onions using consumer-grade RGB-depth sensor. Journal of Food Engineering, 142, 153–162. https://doi.org/10.1016/j.jfoodeng.2014.06.019

    Article  Google Scholar 

  34. Wang, Q., & Zhang, Q. (2013). Three-dimensional reconstruction of a dormant tree using RGB-D Cameras. In Proceedings of the 2013 Kansas City, Missouri, July 21–July 24, 2013, American Society of Agricultural and Biological Engineers, St. Joseph, MI, Vol. 2, pp. 1341–1350.

    Google Scholar 

  35. Andújar, D., Ribeiro, A., Fernández-Quintanilla, C., & Dorado, J. (2016). Using depth cameras to extract structural parameters to assess the growth state and yield of cauliflower crops. Computers and Electronics in Agriculture, 122, 67–73. https://doi.org/10.1016/j.compag.2016.01.018

    Article  Google Scholar 

  36. van der Heijden, G., Song, Y., Horgan, G., Polder, G., Dieleman, A., Bink, M., Palloix, A., van Eeuwijk, F., & Glasbey, C. (2012). SPICY: Towards automated phenotyping of large pepper plants in the greenhouse. Functional Plant Biology, 39, 870. https://doi.org/10.1071/FP12019

    Article  Google Scholar 

  37. Kazmi, W., Foix, S., & Alenyà, G. (2012). Plant leaf imaging using time of flight camera under sunlight, shadow and room conditions. In Proceedings of the 2012 IEEE International Symposium on Robotic and Sensors Environments, ROSE 2012 – Proceedings, IEEE Computer Society, pp. 192–197.

    Google Scholar 

  38. Swain, K. C., Zaman, Q. U., Schumann, A. W., Percival, D. C., & Bochtis, D. D. (2010). Computer vision system for wild blueberry fruit yield mapping. Biosystems Engineering, 106. https://doi.org/10.1016/j.biosystemseng.2010.05.001

  39. Mai, C., Zheng, L., Sun, H., & Yang, W. (2015). Research on 3D reconstruction of fruit tree and fruit recognition and location method based on RGB-D camera. Nongye Jixie Xuebao/Transactions Chinese Soc. Agricultural Machinery, 46, 35–40. https://doi.org/10.6041/j.issn.1000-1298.2015.S0.006

    Article  Google Scholar 

  40. Nguyen, T. T., Vandevoorde, K., Wouters, N., Kayacan, E., De Baerdemaeker, J. G., & Saeys, W. (2016). Detection of red and bicoloured apples on tree with an RGB-D camera. Biosystems Engineering, 146, 33–44. https://doi.org/10.1016/j.biosystemseng.2016.01.007

    Article  Google Scholar 

  41. Tian, Y., Duan, H., Luo, R., Zhang, Y., Jia, W., Lian, J., Zheng, Y., Ruan, C., & Li, C. (2019). Fast recognition and location of target fruit based on depth information. IEEE Access, 7, 170553–170563. https://doi.org/10.1109/ACCESS.2019.2955566

    Article  Google Scholar 

  42. Gené-Mola, J., Gregorio, E., Auat Cheein, F., Guevara, J., Llorens, J., Sanz-Cortiella, R., Escolà, A., & Rosell-Polo, J. R. (2020). Fruit detection, yield prediction and canopy geometric characterization using LiDAR with forced air flow. Computers and Electronics in Agriculture, 168, 105121. https://doi.org/10.1016/j.compag.2019.105121

    Article  Google Scholar 

  43. Häni, N., Roy, P., & Isler, V. (2020). A comparative study of fruit detection and counting methods for yield mapping in apple orchards. Journal of Field Robotics, 37, 263–282. https://doi.org/10.1002/rob.21902

    Article  Google Scholar 

  44. Bochtis, D. D., Sørensen, C. G., Jørgensen, R. N., Nørremark, M., Hameed, I. A., & Swain, K. C. (2011). Robotic weed monitoring. Acta Agriculturae Scandinavica Section B Soil and Plant Science, 61. https://doi.org/10.1080/09064711003796428

  45. Anagnostis, A., Tagarakis, A. C., Asiminari, G., Papageorgiou, E., Kateris, D., Moshou, D., & Bochtis, D. (2021). A deep learning approach for anthracnose infected trees classification in walnut orchards. Computers and Electronics in Agriculture, 182, 105998. https://doi.org/10.1016/j.compag.2021.105998

    Article  Google Scholar 

  46. Anagnostis, A., Asiminari, G., Papageorgiou, E., & Bochtis, D. (2020). A convolutional neural networks based method for anthracnose infected walnut tree leaves identification. Applied Sciences, 10. https://doi.org/10.3390/app10020469

  47. Fu, L., Gao, F., Wu, J., Li, R., Karkee, M., & Zhang, Q. (2020). Application of consumer RGB-D cameras for fruit detection and localization in field: A critical review. Computers and Electronics in Agriculture, 177, 105687.

    Article  Google Scholar 

  48. Kise, M., & Zhang, Q. (2008). Development of a stereovision sensing system for 3D crop row structure mapping and tractor guidance. Biosystems Engineering, 101, 191–198. https://doi.org/10.1016/j.biosystemseng.2008.08.001

    Article  Google Scholar 

  49. Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., & Burgard, W. (2013). OctoMap: An efficient probabilistic 3D mapping framework based on octrees. Autonomous Robots, 34, 189–206. https://doi.org/10.1007/s10514-012-9321-0

    Article  Google Scholar 

  50. De Silva, K. T. D. S., Cooray, B. P. A., Chinthaka, J. I., Kumara, P. P., & Sooriyaarachchi, S. J. (2019). Comparative analysis of octomap and RTABMap for multi-robot disaster site mapping (pp. 433–438). Institute of Electrical and Electronics Engineers (IEEE).

    Google Scholar 

  51. Wang, Z. (2020). Digital twin technology. In Industry 4.0 - Impact on Intelligent Logistics and Manufacturing, IntechOpen.

    Google Scholar 

  52. Glaessgen, E. H., & Stargel, D. S. (2012). The digital twin paradigm for future NASA and U.S. Air force vehicles. In Proceedings of the Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference.

    Google Scholar 

  53. Vachalek, J., Bartalsky, L., Rovny, O., Sismisova, D., Morhac, M., & Loksik, M. (2017). The digital twin of an industrial production line within the industry 4.0 concept. In Proceedings of the proceedings of the 2017 21st international conference on process control, PC 2017, Institute of Electrical and Electronics Engineers Inc., pp. 258–262.

    Google Scholar 

  54. Knapp, G. L., Mukherjee, T., Zuback, J. S., Wei, H. L., Palmer, T. A., De, A., & DebRoy, T. (2017). Building blocks for a digital twin of additive manufacturing. Acta Materialia, 135, 390–399. https://doi.org/10.1016/j.actamat.2017.06.039

    Article  Google Scholar 

  55. Söderberg, R., Wärmefjord, K., Carlson, J. S., & Lindkvist, L. (2017). Toward a Digital Twin for real-time geometry assurance in individualized production. CIRP Annual, 66, 137–140. https://doi.org/10.1016/j.cirp.2017.04.038

    Article  Google Scholar 

  56. Rosen, R., Von Wichert, G., Lo, G., & Bettenhausen, K. D. (2015). About the importance of autonomy and digital twins for the future of manufacturing. Proceedings of the IFAC-Papers, 28, 567–572.

    Article  Google Scholar 

  57. Gabor, T., Belzner, L., Kiermeier, M., Beck, M. T., & Neitz, A. (2016). A simulation-based architecture for smart cyber-physical systems. In Proceedings of the Proceedings – 2016 IEEE International Conference on Autonomic Computing, ICAC 2016, Institute of Electrical and Electronics Engineers Inc., pp. 374–379.

    Google Scholar 

  58. Kang, H. S., Lee, J. Y., Choi, S., Kim, H., Park, J. H., Son, J. Y., Kim, B. H., & Noh, S. (2016). Do Smart manufacturing: Past research, present findings, and future directions. International Journal of Precision Engineering and Manufacturing-Green Technology, 3, 111–128. https://doi.org/10.1007/s40684-016-0015-5

    Article  Google Scholar 

  59. Wang, L., Törngren, M., & Onori, M. (2015). Current status and advancement of cyber-physical systems in manufacturing. Journal of Manufacturing Systems, 37, 517–527. https://doi.org/10.1016/j.jmsy.2015.04.008

    Article  Google Scholar 

  60. Tao, F., Zhang, L., & Laili, Y. (2015). CLPS-GA for energy-aware cloud service scheduling (pp. 191–224).

    Google Scholar 

  61. Zhang, M., Sui, F., Liu, A., Tao, F., & Nee, A. Y. C. (2020). Digital twin driven smart product design framework. In Digital twin driven smart design (pp. 3–32). Elsevier.

    Chapter  Google Scholar 

  62. Kousi, N., Gkournelos, C., Aivaliotis, S., Giannoulis, C., Michalos, G., & Makris, S. (2019). Digital twin for adaptation of robots’ behavior in flexible robotic assembly lines. In Proceedings of the procedia manufacturing (Vol. 28, pp. 121–126). Elsevier B.V.

    Google Scholar 

  63. Moshrefzadeh, M., Machl, T., Gackstetter, D., Donaubauer, A., & Kolbe, T. H. (2020). Towards a distributed digital twin of the agricultural landscape. Journal of Digital Landscape Architecture, 5, 173–118.

    Google Scholar 

  64. Alves, R. G., Souza, G., Maia, R. F., Tran, A. L. H., Kamienski, C., Soininen, J. P., Aquino, P. T., & Lima, F. (2019). A digital twin for smart farming. In Proceedings of the 2019 IEEE global humanitarian technology conference, GHTC 2019, Institute of Electrical and Electronics Engineers Inc.

    Google Scholar 

  65. Verdouw, C., & Kruize, J. W. (2017). Digital twins in farm management: Illustrations from the FIWARE accelerators SmartAgriFood and Fractals. In Proceedings of the 7th Asian-Australasian conference on precision agriculture, pp. 1–5.

    Google Scholar 

  66. Qian, W., Xia, Z., Xiong, J., Gan, Y., Guo, Y., Weng, S., Deng, H., Hu, Y., & Zhang, J. (2014). Manipulation task simulation using ROS and Gazebo. In Proceedings of the 2014 IEEE international conference on robotics and biomimetics, IEEE ROBIO 2014, Institute of Electrical and Electronics Engineers Inc., pp. 2594–2598.

    Google Scholar 

  67. Edwards, G., Christiansen, M., Bochtis, D., & Sørensen, C. (2013). A test platform for planned field operations using LEGO mindstorms NXT. Robotics, 2, 203–216. https://doi.org/10.3390/robotics2040203

    Article  Google Scholar 

  68. Moysiadis, V., Tsolakis, N., Katikaridis, D., Sørensen, C. G., Pearson, S., & Bochtis, D. (2020). Mobile robotics in agricultural operations: A narrative review on planning aspects. Applied Sciences, 10, 3453. https://doi.org/10.3390/app10103453

    Article  Google Scholar 

  69. Anagnostis, A., Benos, L., Tsaopoulos, D., Tagarakis, A., Tsolakis, N., & Bochtis, D. (2021). Human activity recognition through reccurent neural networks for human-robot interaction. Applied Sciences, 11(5), 2188. https://doi.org/10.3390/app11052188

  70. Benos, L., Bechar, A., & Bochtis, D. (2020). Safety and ergonomics in human-robot interactive agricultural operations. Biosystems Engineering, 200, 55–72. https://doi.org/10.1016/j.biosystemseng.2020.09.009

    Article  Google Scholar 

  71. Benos, L., Tsaopoulos, D., & Bochtis, D. (2020). A review on ergonomics in agriculture. Part I: Manual operations. Applied Sciences, 10, 1–21.

    Google Scholar 

  72. Benos, L., Tsaopoulos, D., & Bochtis, D. (2020). A review on ergonomics in agriculture. part II: Mechanized operations. Applied Sciences, 10, 3484.

    Article  Google Scholar 

  73. Marinoudi, V., Sørensen, C. G., Pearson, S., & Bochtis, D. (2019). Robotics and labour in agriculture. A context consideration. Biosystems Engineering, 184, 111–121. https://doi.org/10.1016/j.biosystemseng.2019.06.013

    Article  Google Scholar 

  74. Marinoudi, V., Lampridi, M., Sørensen, C. G., Pearson, S., & Bochtis, D. (2021). The agricultural occupations landscape in view of work automation. In Bio-economy and agri-production (pp. 289–348). Elsevier.

    Chapter  Google Scholar 

  75. Shamshiri, R. R., Hameed, I. A., Pitonakova, L., Weltzien, C., Balasundram, S. K., Yule, I. J., Grift, T. E., & Chowdhary, G. (2018). Simulation software and virtual environments for acceleration of agricultural robotics: Features highlights and performance comparison. International Journal of Agricultural and Biological Engineering, 11, 15–31. https://doi.org/10.25165/ijabe.v11i4.4032

    Article  Google Scholar 

  76. Tsolakis, N., Bechtsis, D., & Bochtis, D. (2019). Agros: A robot operating system based emulation tool for agricultural robotics. Agronomy. https://doi.org/10.3390/agronomy9070403

  77. Lavrenov, R., Zakiev, A., & Magid, E. (2017). Automatic mapping and filtering tool: From a sensor-based occupancy grid to a 3D Gazebo octomap. In Proceedings of the 2017 international conference on mechanical, system and control engineering, ICMSC 2017, Institute of Electrical and Electronics Engineers Inc., pp. 190–195.

    Google Scholar 

  78. Guzman, R., Navarro, R., Beneto, M., & Carbonell, D. (2016). Robotnik—Professional service robotics applications with ROS. Studies in Computational Intelligence, 625, 253–288. https://doi.org/10.1007/978-3-319-26054-9_10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aristotelis Christos Tagarakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tagarakis, A.C., Kalaitzidis, D., Filippou, E., Benos, L., Bochtis, D. (2022). 3D Scenery Construction of Agricultural Environments for Robotics Awareness. In: Bochtis, D.D., Sørensen, C.G., Fountas, S., Moysiadis, V., Pardalos, P.M. (eds) Information and Communication Technologies for Agriculture—Theme III: Decision. Springer Optimization and Its Applications, vol 184. Springer, Cham. https://doi.org/10.1007/978-3-030-84152-2_6

Download citation

Publish with us

Policies and ethics