Skip to main content

Convolutional Model for Predicting SNP Interactions

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11305))

Included in the following conference series:

Abstract

Single-nucleotide polymorphisms (SNPs) are genetic markers that empower researchers to examine for genes associated with complex diseases. Several efforts have been contributed by researchers to study the interaction effects between multi-locus SNPs for discerning the status of complex diseases. However, the current conventional machine learning techniques are still left with several caveats. Deep learning is a new breed of machine learning technique that elucidates the hidden structure of the raw data by transforming it into multiple high levels of abstractions, using the power of parallel and distributed computing. It promises empirical success in the number of applications including bioinformatics to drive insights of biological complexities. The deep learning approach in the multi-locus interaction studies is yet to meet its potential achievements. In this paper, a convolutional neural network is trained to identify true causative two-locus SNP interactions. The performance of the method is evaluated on hypertension data. Highly ranked two-locus SNP interactions are identified for the manifestation of hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bush, W.S., Moore, J.H.: Genome-wide association studies. PLoS Comput. Biol. 8(12), e1002822 (2012)

    Article  Google Scholar 

  2. Onay, V.Ü., et al.: SNP-SNP interactions in breast cancer susceptibility. BMC Cancer 6, 114 (2006)

    Article  Google Scholar 

  3. Padyukov, L.: Between the Lines of Genetic Code: Genetic Interactions in Understanding Disease and Complex Phenotypes. Academic Press, Cambridge (2013)

    Google Scholar 

  4. Uppu, S., Krishna, A., Gopalan, R.: A review on methods for detecting SNP interactions in high-dimensional genomic data. IEEE/ACM Trans. Comput. Biol. Bioinf. 15(2), 599–612 (2018)

    Article  Google Scholar 

  5. Ritchie, M.D., et al.: Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am. J. Hum. Genet. 69, 138–147 (2001)

    Article  Google Scholar 

  6. Schwender, H., Ickstadt, K.: Identification of SNP interactions using logic regression. Biostatistics 9, 187–198 (2008)

    Article  Google Scholar 

  7. Wang, Y., Liu, X., Robbins, K., Rekaya, R.: AntEpiSeeker: detecting epistatic interactions for case-control studies using a two-stage ant colony optimization algorithm. BMC Res. Notes 3, 117 (2010)

    Article  Google Scholar 

  8. Tang, W., Wu, X., Jiang, R., Li, Y.: Epistatic module detection for case-control studies: a Bayesian model with a Gibbs sampling strategy. PLoS Genet. 5, e1000464 (2009)

    Article  Google Scholar 

  9. Zhang, Y., Liu, J.S.: Bayesian inference of epistatic interactions in case-control studies. Nat. Genet. 39, 1167–1173 (2007)

    Article  Google Scholar 

  10. Wan, X., et al.: BOOST: a fast approach to detecting gene-gene interactions in genome-wide case-control studies. Am. J. Hum. Genet. 87, 325–340 (2010)

    Article  Google Scholar 

  11. Motsinger, A.A., Lee, S.L., Mellick, G., Ritchie, M.D.: GPNN: power studies and applications of a neural network method for detecting gene-gene interactions in studies of human disease. BMC Bioinform. 7, 39 (2006)

    Article  Google Scholar 

  12. Fang, Y.H., Chiu, Y.F.: SVM-based generalized multifactor dimensionality reduction approaches for detecting gene-gene interactions in family studies. Genet. Epidemiol. 36, 88–98 (2012)

    Article  Google Scholar 

  13. Purcell, S., et al.: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007)

    Article  Google Scholar 

  14. Schwarz, D.F., König, I.R., Ziegler, A.: On safari to Random Jungle: a fast implementation of Random Forests for high-dimensional data. Bioinformatics 26, 1752–1758 (2010)

    Article  Google Scholar 

  15. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  16. Min, S., Lee, B., Yoon, S.: Deep learning in bioinformatics. Brief. Bioinform. 18(5), 851–869 (2016)

    Google Scholar 

  17. Uppu, S., Krishna, A., Gopalan, R.P.: A deep learning approach to detect SNP interactions. JSW 11, 965–975 (2016)

    Article  Google Scholar 

  18. Uppu, S., Krishna, A.: Improving strategy for discovering interacting genetic variants in association studies. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9947, pp. 461–469. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46687-3_51

    Chapter  Google Scholar 

  19. Bengio, Y., Goodfellow, I.J., Courville, A.: Deep learning. An MIT Press book in Preparation (2015). http://www.iro.umontreal.ca/~bengioy/dlbook

  20. Uppu, S., Krishna, A.: Tuning hyperparameters for gene interaction models in genome-wide association studies. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, El-Sayed M. (eds.) ICONIP 2017. LNCS, vol. 10638, pp. 791–801. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70139-4_80

    Chapter  Google Scholar 

  21. Wu, S.J., Chiang, F.T., Chen, W. J., Liu, P.H., Hsu, K.L., Hwang, J.J., Lai, L.P., Lin, J.L., Tseng, C.D., Tseng, Y.Z.: Three single-nucleotide polymorphisms of the angiotensinogen gene and susceptibility to hypertension: single locus genotype vs. haplotype analysis. Physiol. Genomics 17, 79–86 (2004)

    Article  Google Scholar 

  22. Wu, J.: Introduction to convolutional neural networks. National Key Lab for Novel Software Technology, Nanjing University, China (2017)

    Google Scholar 

  23. Moore, J.H., Hahn, L.W., Ritchie, M.D., Thornton, T.A., White, B.C.: Application of genetic algorithms to the discovery of complex models for simulation studies in human genetics. In Proceedings of the Genetic and Evolutionary Computation Conference/GECCO, p. 1150 (2002)

    Google Scholar 

  24. Ritchie, M.D., Hahn, L.W., Moore, J.H.: Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genet. Epidemiol. 24, 150–157 (2003)

    Article  Google Scholar 

  25. Urbanowicz, R.J., Kiralis, J., Sinnott-Armstrong, N.A., Heberling, T., Fisher, J.M., Moore, J.H.: GAMETES: a fast, direct algorithm for generating pure, strict, epistatic models with random architectures. BioData Min. 5, 1–14 (2012)

    Article  Google Scholar 

  26. Uppu, S., Krishna, A., Gopalan, R.P.: Rule-based analysis for detecting epistasis using associative classification mining. Netw. Model. Anal. Health Inform. Bioinform. 4, 1–19 (2015)

    Article  Google Scholar 

  27. Candel, A., Parmar, V., LeDell, E., Arora, A.: Deep Learning with H2O (2015)

    Google Scholar 

  28. Chen, T., et al.: MXNet: a flexible and efficient machine learning library for heterogeneous distributed systems. arXiv preprint arXiv:1512.01274 (2015)

  29. Glander, S.: Building deep neural nets with H2O and rsparkling that predict arrhythmia of the heart (2017). https://shiring.github.io/machine_learning/2017/02/27/h2o

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suneetha Uppu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Uppu, S., Krishna, A. (2018). Convolutional Model for Predicting SNP Interactions. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11305. Springer, Cham. https://doi.org/10.1007/978-3-030-04221-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04221-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04220-2

  • Online ISBN: 978-3-030-04221-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics