Skip to main content

Electrophoretic Mobility Shift Assay and Dimethyl Sulfate Footprinting for Characterization of G-Quadruplexes and G-Quadruplex-Protein Complexes

  • Protocol
  • First Online:
G-Quadruplex Nucleic Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2035))

Abstract

DNA G-quadruplexes are globular nucleic acid secondary structures which occur throughout the human genome under physiological conditions. There is accumulating evidence supporting G-quadruplex involvement in a number of important aspects of genome functions, including transcription, replication, and genomic stability, and that protein and enzyme recognition of G-quadruplexes may represent a key event to regulate physiological or pathological pathways. Two important techniques to study G-quadruplexes and their protein interactions are the electrophoretic mobility shift assay (EMSA) and dimethyl sulfate (DMS) footprinting assay. EMSA, one of the most sensitive and robust methods for studying the DNA-protein interactions, can be used to determine the binding parameters and relative affinities of a protein for the G-quadruplex. DMS footprinting is a powerful assay for the initial characterization of G-quadruplexes, which can be used to deduce the guanine bases involved in the formation of G-tetrads under physiological salt conditions. DMS footprinting can also reveal important information in G-quadruplex-protein complexes on protein contacts and regional changes in DNA G-quadruplex upon protein binding. In this paper, we will provide a detailed protocol for the EMSA and DMS footprinting assays for characterization of G-quadruplexes and G-quadruplex-protein complexes. Expected outcomes and references to extensions of the method will be further discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang D, Okamoto K (2010) Structural insights into G-quadruplexes: towards new anticancer drugs. Future Med Chem 2(4):619–646

    Article  CAS  PubMed  Google Scholar 

  2. Hansel-Hertsch R, Di Antonio M, Balasubramanian S (2017) DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat Rev Mol Cell Biol 18(5):279–284. https://doi.org/10.1038/nrm.2017.3

    Article  CAS  PubMed  Google Scholar 

  3. Palm W, de Lange T (2008) How shelterin protects mammalian telomeres. Annu Rev Genet 42:301–334. https://doi.org/10.1146/annurev.genet.41.110306.130350

    Article  CAS  PubMed  Google Scholar 

  4. Wu Y, Shin-ya K, Brosh RM Jr (2008) FANCJ helicase defective in Fanconia anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability. Mol Cell Biol 28(12):4116–4128. https://doi.org/10.1128/mcb.02210-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gonzalez-Peña V (2007) Molecular interactions of nucleolin with the c-MYC G-quadruplex structure. In: AACR Annual Meeting, Los Angeles Convention Center, Los Angeles, CA, USA, Tuesday, April 17 2007

    Google Scholar 

  6. Chen LY, Redon S, Lingner J (2012) The human CST complex is a terminator of telomerase activity. Nature 488(7412):540–544. https://doi.org/10.1038/nature11269

    Article  CAS  PubMed  Google Scholar 

  7. Haeusler AR, Donnelly CJ, Periz G, Simko EA, Shaw PG, Kim MS, Maragakis NJ, Troncoso JC, Pandey A, Sattler R, Rothstein JD, Wang J (2014) C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 507(7491):195–200. https://doi.org/10.1038/nature13124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carle CM, Zaher HS, Chalker DL (2016) A parallel G quadruplex-binding protein regulates the boundaries of DNA elimination events of tetrahymena thermophila. PLoS Genet 12(3):e1005842. https://doi.org/10.1371/journal.pgen.1005842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gonzalez V, Guo K, Hurley L, Sun D (2009) Identification and characterization of nucleolin as a c-myc G-quadruplex-binding protein. J Biol Chem 284(35):23622–23635. https://doi.org/10.1074/jbc.M109.018028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lago S, Tosoni E, Nadai M, Palumbo M, Richter SN (2017) The cellular protein nucleolin preferentially binds long-looped G-quadruplex nucleic acids. Biochim Biophys Acta 1861(5 Pt B):1371–1381. https://doi.org/10.1016/j.bbagen.2016.11.036

    Article  CAS  Google Scholar 

  11. Fried M, Crothers DM (1981) Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res 9(23):6505–6525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garner MM, Revzin A (1981) A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res 9(13):3047–3060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Paeschke K, Simonsson T, Postberg J, Rhodes D, Lipps HJ (2005) Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo. Nat Struct Mol Biol 12(10):847–854. https://doi.org/10.1038/nsmb982

    Article  CAS  PubMed  Google Scholar 

  14. Ciribilli Y, Borlak J (2017) Oncogenomics of c-Myc transgenic mice reveal novel regulators of extracellular signaling, angiogenesis and invasion with clinical significance for human lung adenocarcinoma. Oncotarget 8(60):101808–101831. https://doi.org/10.18632/oncotarget.21981

    Article  PubMed  PubMed Central  Google Scholar 

  15. Carey MF, Peterson CL, Smale ST (2012) Experimental strategies for the identification of DNA-binding proteins. Cold Spring Harb Protoc 2012(1):18–33. https://doi.org/10.1101/pdb.top067470

    Article  PubMed  Google Scholar 

  16. Hellman LM, Fried MG (2007) Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat Protoc 2(8):1849–1861. https://doi.org/10.1038/nprot.2007.249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rye HS, Drees BL, Nelson HC, Glazer AN (1993) Stable fluorescent dye-DNA complexes in high sensitivity detection of protein-DNA interactions. Application to heat shock transcription factor. J Biol Chem 268(33):25229–25238

    CAS  PubMed  Google Scholar 

  18. Forwood JK, Jans DA (2006) Quantitative analysis of DNA-protein interactions using double-labeled native gel electrophoresis and fluorescence-based imaging. Electrophoresis 27(16):3166–3170. https://doi.org/10.1002/elps.200500872

    Article  CAS  PubMed  Google Scholar 

  19. Li Y, Jiang Z, Chen H, Ma WJ (2004) A modified quantitative EMSA and its application in the study of RNA—protein interactions. J Biochem Biophys Methods 60(2):85–96. https://doi.org/10.1016/j.jbbm.2004.03.008

    Article  CAS  PubMed  Google Scholar 

  20. Fried MG (1989) Measurement of protein-DNA interaction parameters by electrophoresis mobility shift assay. Electrophoresis 10(5–6):366–376. https://doi.org/10.1002/elps.1150100515

    Article  CAS  PubMed  Google Scholar 

  21. Tijerina P, Mohr S, Russell R (2007) DMS footprinting of structured RNAs and RNA-protein complexes. Nat Protoc 2(10):2608–2623. https://doi.org/10.1038/nprot.2007.380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci U S A 74(2):560–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huppert JL (2008) Four-stranded nucleic acids: structure, function and targeting of G-quadruplexes. Chem Soc Rev 37(7):1375–1384. https://doi.org/10.1039/b702491f

    Article  CAS  PubMed  Google Scholar 

  24. Kim MG, Camerini-Otero RD (1997) An alteration in the structure of the minor groove of duplex DNA induced by the formation of an intermolecular d(GA)n:d(GA)n.d(TC)n triplex. Mol Cell 7(5):641–647

    CAS  Google Scholar 

  25. Sun D, Hurley LH (2010) Biochemical techniques for the characterization of G-quadruplex structures: EMSA, DMS footprinting, and DNA polymerase stop assay. Methods Mol Biol 608:65–79. https://doi.org/10.1007/978-1-59745-363-9_5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Butcher SE, Burke JM (1994) Structure-mapping of the hairpin ribozyme. Magnesium-dependent folding and evidence for tertiary interactions within the ribozyme-substrate complex. J Mol Biol 244(1):52–63. https://doi.org/10.1006/jmbi.1994.1703

    Article  CAS  PubMed  Google Scholar 

  27. De Armond R, Wood S, Sun D, Hurley LH, Ebbinghaus SW (2005) Evidence for the presence of a guanine quadruplex forming region within a polypurine tract of the hypoxia inducible factor 1alpha promoter. Biochemistry 44(49):16341–16350. https://doi.org/10.1021/bi051618u

    Article  CAS  PubMed  Google Scholar 

  28. Zheng KW, Chen Z, Hao YH, Tan Z (2010) Molecular crowding creates an essential environment for the formation of stable G-quadruplexes in long double-stranded DNA. Nucleic Acids Res 38(1):327–338. https://doi.org/10.1093/nar/gkp898

    Article  CAS  PubMed  Google Scholar 

  29. Li XM, Zheng KW, Zhang JY, Liu HH, He YD, Yuan BF, Hao YH, Tan Z (2015) Guanine-vacancy-bearing G-quadruplexes responsive to guanine derivatives. Proc Natl Acad Sci U S A 112(47):14581–14586. https://doi.org/10.1073/pnas.1516925112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Onel B, Carver M, Wu G, Timonina D, Kalarn S, Larriva M, Yang D (2016) A new G-quadruplex with hairpin loop immediately upstream of the human BCL2 P1 promoter modulates transcription. J Am Chem Soc 138(8):2563–2570. https://doi.org/10.1021/jacs.5b08596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Umeyama T, Ito T (2017) DMS-Seq for in vivo genome-wide mapping of protein-DNA interactions and nucleosome Centers. Cell Rep 21(1):289–300. https://doi.org/10.1016/j.celrep.2017.09.035

    Article  CAS  PubMed  Google Scholar 

  32. Brown RV, Wang T, Chappeta VR, Wu G, Onel B, Chawla R, Quijada H, Camp SM, Chiang ET, Lassiter QR, Lee C, Phanse S, Turnidge MA, Zhao P, Garcia JGN, Gokhale V, Yang D, Hurley LH (2017) The consequences of overlapping G-quadruplexes and i-motifs in the platelet-derived growth factor receptor beta core promoter nuclease hypersensitive element can explain the unexpected effects of mutations and provide opportunities for selective targeting of both structures by small molecules to downregulate gene expression. J Am Chem Soc 139(22):7456–7475. https://doi.org/10.1021/jacs.6b10028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jin RZ, Breslauer KJ, Jones RA, Gaffney BL (1990) Tetraplex formation of a guanine-containing nonameric DNA fragment. Science (New York, NY) 250(4980):543–546

    Article  CAS  Google Scholar 

  34. Sun D, Hurley LH (2009) The importance of negative superhelicity in inducing the formation of G-quadruplex and i-motif structures in the c-Myc promoter: implications for drug targeting and control of gene expression. J Med Chem 52(9):2863–2874. https://doi.org/10.1021/jm900055s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brooks TA, Kendrick S, Hurley L (2010) Making sense of G-quadruplex and i-motif functions in oncogene promoters. FEBS J 277(17):3459–3469. https://doi.org/10.1111/j.1742-4658.2010.07759.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dexheimer TS, Sun D, Hurley LH (2006) Deconvoluting the structural and drug-recognition complexity of the G-quadruplex-forming region upstream of the bcl-2 P1 promoter. J Am Chem Soc 128(16):5404–5415. https://doi.org/10.1021/ja0563861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Agrawal P, Hatzakis E, Guo K, Carver M, Yang D (2013) Solution structure of the major G-quadruplex formed in the human VEGF promoter in K+: insights into loop interactions of the parallel G-quadruplexes. Nucleic Acids Res 41(22):10584–10592. https://doi.org/10.1093/nar/gkt784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Griffin WC, Gao J, Byrd AK, Chib S, Raney KD (2017) A biochemical and biophysical model of G-quadruplex DNA recognition by positive coactivator of transcription 4. J Biol Chem 292(23):9567–9582. https://doi.org/10.1074/jbc.M117.776211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Phan AT, Kuryavyi V, Luu KN, Patel DJ (2007) Structure of two intramolecular G-quadruplexes formed by natural human telomere sequences in K+ solution. Nucleic Acids Res 35(19):6517–6525. https://doi.org/10.1093/nar/gkm706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dai J, Carver M, Punchihewa C, Jones RA, Yang D (2007) Structure of the Hybrid-2 type intramolecular human telomeric G-quadruplex in K+ solution: insights into structure polymorphism of the human telomeric sequence. Nucleic Acids Res 35(15):4927–4940. https://doi.org/10.1093/nar/gkm522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang Y, Patel DJ (1993) Solution structure of a parallel-stranded G-quadruplex DNA. J Mol Biol 234(4):1171–1183. https://doi.org/10.1006/jmbi.1993.1668

    Article  CAS  PubMed  Google Scholar 

  42. Carey J (1988) Gel retardation at low pH resolves trp repressor-DNA complexes for quantitative study. Proc Natl Acad Sci U S A 85(4):975–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Record MT, Mossing MC Jr (1987) Physical chemical origins of stability, specificity and control of protein-DNA interactions. In: RNA polymerase and regulation of transcription. Elsevier, New York, NY

    Google Scholar 

  44. Tsai C, Smider V, Hwang BJ, Chu G (2012) Electrophoretic mobility shift assays for protein-DNA complexes involved in DNA repair. Methods Mol Biol 920:53–78. https://doi.org/10.1007/978-1-61779-998-3_5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rasimas JJ, Pegg AE, Fried MG (2003) DNA-binding mechanism of O6-alkylguanine-DNA alkyltransferase. Effects of protein and DNA alkylation on complex stability. J Biol Chem 278(10):7973–7980. https://doi.org/10.1074/jbc.M211854200

    Article  CAS  PubMed  Google Scholar 

  46. Dey B, Thukral S, Krishnan S, Chakrobarty M, Gupta S, Manghani C, Rani V (2012) DNA-protein interactions: methods for detection and analysis. Mol Cell Biochem 365(1–2):279–299. https://doi.org/10.1007/s11010-012-1269-z

    Article  CAS  PubMed  Google Scholar 

  47. Buratowski S, Chodosh LA (2001) Mobility shift DNA-binding assay using gel electrophoresis. Curr Protoc Pharmacol Chapter 6:Unit6.8. https://doi.org/10.1002/0471141755.ph0608s13

    Article  Google Scholar 

  48. Varshavsky A (1987) Electrophoretic assay for DNA-binding proteins. Methods Enzymol 151:551–565

    Article  CAS  PubMed  Google Scholar 

  49. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172. https://doi.org/10.3389/fmicb.2014.00172

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wingfield PT (2015) Overview of the purification of recombinant proteins. Curr Protoc Protein Sci 80:6.1.1–6.135. https://doi.org/10.1002/0471140864.ps0601s80

    Article  Google Scholar 

  51. Dignam JD, Lebovitz RM, Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11(5):1475–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Manley JL, Fire A, Samuels M, Sharp PA (1983) In vitro transcription: whole-cell extract. Methods Enzymol 101:568–582

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Institutes of Health (R01CA122952 (DY), R01CA177585 (DY), and P30CA023168 (Purdue Center for Cancer Research)). We thank Dr. Megan Carver for her thoughtful suggestions and proofreading this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danzhou Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Onel, B., Wu, G., Sun, D., Lin, C., Yang, D. (2019). Electrophoretic Mobility Shift Assay and Dimethyl Sulfate Footprinting for Characterization of G-Quadruplexes and G-Quadruplex-Protein Complexes. In: Yang, D., Lin, C. (eds) G-Quadruplex Nucleic Acids. Methods in Molecular Biology, vol 2035. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9666-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9666-7_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9665-0

  • Online ISBN: 978-1-4939-9666-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics