Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

DMS footprinting of structured RNAs and RNA–protein complexes

Abstract

We describe a protocol in which dimethyl sulfate (DMS) modification of the base-pairing faces of unpaired adenosine and cytidine nucleotides is used for structural analysis of RNAs and RNA–protein complexes (RNPs). The protocol is optimized for RNAs of small to moderate size (≤500 nt). The RNA or RNP is first exposed to DMS under conditions that promote formation of the folded structure or complex, as well as 'control' conditions that do not allow folding or complex formation. The positions and extents of modification are then determined by primer extension, polyacrylamide gel electrophoresis and quantitative analysis. From changes in the extent of modification upon folding or protein binding (appearance of a 'footprint'), it is possible to detect local changes in the secondary and tertiary structure of RNA, as well as the formation of RNA–protein contacts. This protocol takes 1.5–3 d to complete, depending on the type of analysis used.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General schematic diagram of DMS footprinting.
Figure 2: Establishment of a solution quench of DMS modification reaction.
Figure 3: DMS footprinting of an RNP and quantitative analysis using manual boxing.
Figure 4: Quantitative analysis of DMS footprinting to monitor RNA folding.
Figure 5: DMS footprinting gel from an experiment in which the RNA degradation steps were omitted (Steps 25 and 26).

Similar content being viewed by others

References

  1. Golden, B.L. Preparation and crystallization of RNA. Methods Mol. Biol. 363, 239–257 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Wu, H., Finger, L.D. & Feigon, J. Structure determination of protein/RNA complexes by NMR. Methods Enzymol. 394, 525–545 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Myong, S., Stevens, B.C. & Ha, T. Bridging conformational dynamics and function using single-molecule spectroscopy. Structure 14, 633–643 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Lipfert, J. & Doniach, S. Small-angle X-ray scattering from RNA, proteins, and protein complexes. Annu. Rev. Biophys. Biomol. Struct. 36, 307–327 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Kim, N.K., Murali, A. & DeRose, V.J. A distance ruler for RNA using EPR and site-directed spin labeling. Chem. Biol. 11, 939–948 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Das, R., Travers, K.J., Bai, Y. & Herschlag, D. Determining the Mg2+ stoichiometry for folding an RNA metal ion core. J. Am. Chem. Soc. 127, 8272–8273 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Su, L.J., Brenowitz, M. & Pyle, A.M. An alternative route for the folding of large RNAs: apparent two-state folding by a group II intron ribozyme. J. Mol. Biol. 334, 639–652 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Lilley, D.M. Analysis of global conformational transitions in ribozymes. Methods Mol. Biol. 252, 77–108 (2004).

    CAS  PubMed  Google Scholar 

  9. Tullius, T.D. & Greenbaum, J.A. Mapping nucleic acid structure by hydroxyl radical cleavage. Curr. Opin. Chem. Biol. 9, 127–134 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Brenowitz, M., Chance, M.R., Dhavan, G. & Takamoto, K. Probing the structural dynamics of nucleic acids by quantitative time-resolved and equilibrium hydroxyl radical 'footprinting'. Curr. Opin. Struct. Biol. 12, 648–653 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Shcherbakova, I., Mitra, S., Beer, R.H. & Brenowitz, M. Fast Fenton footprinting: a laboratory-based method for the time-resolved analysis of DNA, RNA and proteins. Nucleic Acids Res. 34, e48 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Culver, G.M. & Noller, H.F. Directed hydroxyl radical probing of RNA from iron(II) tethered to proteins in ribonucleoprotein complexes. Methods Enzymol. 318, 461–475 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Black, D.L. & Pinto, A.L. U5 small nuclear ribonucleoprotein: RNA structure analysis and ATP-dependent interaction with U4/U6. Mol. Cell. Biol. 9, 3350–3359 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zarrinkar, P.P. & Williamson, J.R. Kinetic intermediates in RNA folding. Science 265, 918–924 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Ryder, S.P., Ortoleva-Donnelly, L., Kosek, A.B. & Strobel, S.A. Chemical probing of RNA by nucleotide analog interference mapping. Methods Enzymol. 317, 92–109 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Soukup, G.A. & Breaker, R.R. Relationship between internucleotide linkage geometry and the stability of RNA. RNA 5, 1308–1325 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Merino, E.J., Wilkinson, K.A., Coughlan, J.L. & Weeks, K.M. RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J. Am. Chem. Soc. 127, 4223–4231 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Wilkinson, K.A., Merino, E.J. & Weeks, K.M. Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nat. Protoc. 1, 1610–1616 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Mortimer, S.A. & Weeks, K.M. A fast-acting reagent for accurate analysis of RNA secondary and tertiary structure by SHAPE chemistry. J. Am. Chem. Soc. 129, 4144–4145 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Russell, R. & Herschlag, D. New pathways in folding of the Tetrahymena group I RNA enzyme. J. Mol. Biol. 291, 1155–1167 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Peattie, D.A. & Gilbert, W. Chemical probes for higher-order structure in RNA. Proc. Natl. Acad. Sci. USA 77, 4679–4682 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maxam, A.M. & Gilbert, W. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74, 560–564 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peattie, D.A. Direct chemical method for sequencing RNA. Proc. Natl. Acad. Sci. USA 76, 1760–1764 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gilbert, W., Maxam, A.M. & Mirzabekov, A. in Control of Ribosome Synthesis (eds. Kjeldgaard, N.O. & Malaloe, O.) 139–148 (Academic, New York, 1976).

    Google Scholar 

  25. Johnsrud, L. Contacts between Escherichia coli RNA polymerase and a lac operon promoter. Proc. Natl. Acad. Sci. USA 75, 5314–5318 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Siebenlist, U. & Gilbert, W. Contacts between Escherichia coli RNA polymerase and an early promoter of phage T7. Proc. Natl. Acad. Sci. USA 77, 122–126 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lawley, P.D. & Brookes, P. Further studies on the alkylation of nucleic acids and their constituent nucleotides. Biochem. J. 89, 127–138 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Inoue, T. & Cech, T. Secondary structure of the circular form of the Tetrahymena rRNA intervening sequence: a technique for RNA structure analysis using chemical probes and reverse transcriptase. Proc. Natl. Acad. Sci. USA 82, 648–652 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lempereur, L. et al. Conformation of yeast 18S rRNA. Direct chemical probing of the 5′ domain in ribosomal subunits and in deproteinized RNA by reverse transcriptase mapping of dimethyl sulfate-accessible sites. Nucleic Acids Res. 13, 8339–8357 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Moazed, D., Stern, S. & Noller, H.F. Rapid chemical probing of conformation in 16 S ribosomal RNA and 30 S ribosomal subunits using primer extension. J. Mol. Biol. 187, 399–416 (1986).

    Article  CAS  PubMed  Google Scholar 

  31. Stern, S., Wilson, R.C. & Noller, H.F. Localization of the binding site for protein S4 on 16 S ribosomal RNA by chemical and enzymatic probing and primer extension. J. Mol. Biol. 192, 101–110 (1986).

    Article  CAS  PubMed  Google Scholar 

  32. Moazed, D. & Noller, H.F. Transfer RNA shields specific nucleotides in 16S ribosomal RNA from attack by chemical probes. Cell 47, 985–994 (1986).

    Article  CAS  PubMed  Google Scholar 

  33. Egebjerg, J., Leffers, H., Christensen, A., Andersen, H. & Garrett, R.A. Structure and accessibility of domain I of Escherichia coli 23 S RNA in free RNA, in the L24-RNA complex and in 50 S subunits. Implications for ribosomal assembly. J. Mol. Biol. 196, 125–136 (1987).

    Article  CAS  PubMed  Google Scholar 

  34. Baudin, F. et al. Higher-order structure of domain III in Escherichia coli 16S ribosomal RNA, 30S subunit and 70S ribosome. Biochimie 69, 1081–1096 (1987).

    Article  CAS  PubMed  Google Scholar 

  35. Mougel, M., Philippe, C., Ebel, J.P., Ehresmann, B. & Ehresmann, C. The E. coli 16S rRNA binding site of ribosomal protein S15: higher-order structure in the absence and in the presence of the protein. Nucleic Acids Res. 16, 2825–2839 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Svensson, P., Changchien, L.M., Craven, G.R. & Noller, H.F. Interaction of ribosomal proteins, S6, S8, S15 and S18 with the central domain of 16 S ribosomal RNA. J. Mol. Biol. 200, 301–308 (1988).

    Article  CAS  PubMed  Google Scholar 

  37. Stern, S., Changchien, L.M., Craven, G.R. & Noller, H.F. Interaction of proteins S16, S17 and S20 with 16 S ribosomal RNA. J. Mol. Biol. 200, 291–299 (1988).

    Article  CAS  PubMed  Google Scholar 

  38. Powers, T., Changchien, L.M., Craven, G.R. & Noller, H.F. Probing the assembly of the 3′ major domain of 16 S ribosomal RNA. Quaternary interactions involving ribosomal proteins S7, S9 and S19. J. Mol. Biol. 200, 309–319 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. Powers, T., Stern, S., Changchien, L.M. & Noller, H.F. Probing the assembly of the 3′ major domain of 16 S rRNA. Interactions involving ribosomal proteins S2, S3, S10, S13 and S14. J. Mol. Biol. 201, 697–716 (1988).

    Article  CAS  PubMed  Google Scholar 

  40. Moazed, D., Robertson, J.M. & Noller, H.F. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature 334, 362–364 (1988).

    Article  CAS  PubMed  Google Scholar 

  41. Moazed, D. & Noller, H.F. Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites. Cell 57, 585–597 (1989).

    Article  CAS  PubMed  Google Scholar 

  42. Moazed, D. & Noller, H.F. Intermediate states in the movement of transfer RNA in the ribosome. Nature 342, 142–148 (1989).

    Article  CAS  PubMed  Google Scholar 

  43. Stern, S., Powers, T., Changchien, L.M. & Noller, H.F. RNA–protein interactions in 30S ribosomal subunits: folding and function of 16S rRNA. Science 244, 783–790 (1989).

    Article  CAS  PubMed  Google Scholar 

  44. Moazed, D. & Noller, H.F. Sites of interaction of the CCA end of peptidyl-tRNA with 23S rRNA. Proc. Natl. Acad. Sci. USA 88, 3725–3728 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Banerjee, A.R., Jaeger, J.A. & Turner, D.H. Thermal unfolding of a group I ribozyme: the low-temperature transition is primarily disruption of tertiary structure. Biochemistry 32, 153–163 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Murphy, F.L. & Cech, T.R. An independently folding domain of RNA tertiary structure within the Tetrahymena ribozyme. Biochemistry 32, 5291–5300 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Mohr, G., Caprara, M.G., Guo, Q. & Lambowitz, A.M. A tyrosyl-tRNA synthetase can function similarly to an RNA structure in the Tetrahymena ribozyme. Nature 370, 147–150 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Emerick, V.L. & Woodson, S.A. Fingerprinting the folding of a group I precursor RNA. Proc. Natl. Acad. Sci. USA 91, 9675–9679 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Doherty, E.A. & Doudna, J.A. The P4–P6 domain directs higher order folding of the Tetrahymena ribozyme core. Biochemistry 36, 3159–3169 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Caprara, M.G., Myers, C.A. & Lambowitz, A.M. Interaction of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) with the group I intron P4–P6 domain. Thermodynamic analysis and the role of metal ions. J. Mol. Biol. 308, 165–190 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Russell, R. et al. Exploring the folding landscape of a structured RNA. Proc. Natl. Acad. Sci. USA 99, 155–160 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Mohr, S., Stryker, J.M. & Lambowitz, A.M. A DEAD-box protein functions as an ATP-dependent RNA chaperone in group I intron splicing. Cell 109, 769–779 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Russell, R. et al. The paradoxical behavior of a highly structured misfolded intermediate in RNA folding. J. Mol. Biol. 363, 531–544 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Russell, R., Tijerina, P., Chadee, A.B. & Bhaskaran, H. Deletion of the P5abc peripheral element accelerates early and late folding steps of the Tetrahymena group I ribozyme. Biochemistry 46, 4951–4961 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Costa, M., Christian, E.L. & Michel, F. Differential chemical probing of a group II self-splicing intron identifies bases involved in tertiary interactions and supports an alternative secondary structure model of domain V. RNA 4, 1055–1068 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Konforti, B.B., Liu, Q. & Pyle, A.M. A map of the binding site for catalytic domain 5 in the core of a group II intron ribozyme. EMBO J. 17, 7105–7117 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tranguch, A.J., Kindelberger, D.W., Rohlman, C.E., Lee, J.Y. & Engelke, D.R. Structure-sensitive RNA footprinting of yeast nuclear ribonuclease P. Biochemistry 33, 1778–1787 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Kumar, P.K., Taira, K. & Nishikawa, S. Chemical probing studies of variants of the genomic hepatitis delta virus ribozyme by primer extension analysis. Biochemistry 33, 583–592 (1994).

    Article  CAS  PubMed  Google Scholar 

  59. Butcher, S.E. & Burke, J.M. Structure-mapping of the hairpin ribozyme. Magnesium-dependent folding and evidence for tertiary interactions within the ribozyme–substrate complex. J. Mol. Biol. 244, 52–63 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Keiper, S., Bebenroth, D., Seelig, B., Westhof, E. & Jaschke, A. Architecture of a Diels-Alderase ribozyme with a preformed catalytic pocket. Chem. Biol. 11, 1217–1227 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Wang, Y.H., Sczekan, S.R. & Theil, E.C. Structure of the 5′ untranslated regulatory region of ferritin mRNA studied in solution. Nucleic Acids Res. 18, 4463–4468 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rettberg, C.C., Prere, M.F., Gesteland, R.F., Atkins, J.F. & Fayet, O. A three-way junction and constituent stem-loops as the stimulator for programmed -1 frameshifting in bacterial insertion sequence IS911. J. Mol. Biol. 286, 1365–1378 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Fernandez-Miragall, O. & Martinez-Salas, E. Structural organization of a viral IRES depends on the integrity of the GNRA motif. RNA 9, 1333–1344 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ruschak, A.M. et al. Secondary structure models of the 3′ untranslated regions of diverse R2 RNAs. RNA 10, 978–987 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rose, M.A. & Weeks, K.M. Visualizing induced fit in early assembly of the human signal recognition particle. Nat. Struct. Biol. 8, 515–520 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Menichelli, E., Isel, C., Oubridge, C. & Nagai, K. Protein-induced conformational changes of RNA during the assembly of human signal recognition particle. J. Mol. Biol. 367, 187–203 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Krol, A. et al. Solution structure of human U1 snRNA. Derivation of a possible three-dimensional model. Nucleic Acids Res. 18, 3803–3811 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hartmuth, K., Raker, V.A., Huber, J., Branlant, C. & Luhrmann, R. An unusual chemical reactivity of Sm site adenosines strongly correlates with proper assembly of core U snRNP particles. J. Mol. Biol. 285, 133–147 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Ast, G., Pavelitz, T. & Weiner, A.M. Sequences upstream of the branch site are required to form helix II between U2 and U6 snRNA in a trans-splicing reaction. Nucleic Acids Res. 29, 1741–1749 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Brunel, C., Romby, P., Westhof, E., Ehresmann, C. & Ehresmann, B. Three-dimensional model of Escherichia coli ribosomal 5 S RNA as deduced from structure probing in solution and computer modeling. J. Mol. Biol. 221, 293–308 (1991).

    Article  CAS  PubMed  Google Scholar 

  71. Mathews, D.H. et al. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc. Natl. Acad. Sci. USA 101, 7287–7292 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lavery, R. & Pullman, A. A new theoretical index of biochemical reactivity combining steric and electrostatic factors. An application to yeast tRNAPhe. Biophys. Chem. 19, 171–181 (1984).

    Article  CAS  PubMed  Google Scholar 

  73. Muth, G.W., Ortoleva-Donnelly, L. & Strobel, S.A. A single adenosine with a neutral pKa in the ribosomal peptidyl transferase center. Science 289, 947–950 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Bayfield, M.A., Dahlberg, A.E., Schulmeister, U., Dorner, S. & Barta, A. A conformational change in the ribosomal peptidyl transferase center upon active/inactive transition. Proc. Natl. Acad. Sci. USA 98, 10096–10101 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Muth, G.W., Chen, L., Kosek, A.B. & Strobel, S.A. pH-dependent conformational flexibility within the ribosomal peptidyl transferase center. RNA 7, 1403–1415 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Altuvia, S., Kornitzer, D., Teff, D. & Oppenheim, A.B. Alternative mRNA structures of the cIII gene of bacteriophage lambda determine the rate of its translation initiation. J. Mol. Biol. 210, 265–280 (1989).

    Article  CAS  PubMed  Google Scholar 

  77. Matsumura, S., Ikawa, Y. & Inoue, T. Biochemical characterization of the kink-turn RNA motif. Nucleic Acids Res. 31, 5544–5551 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Egebjerg, J., Christiansen, J., Brown, R.S., Larsen, N. & Garrett, R.A. Protein L18 binds primarily at the junctions of helix II and internal loops A and B in Escherichia coli 5 S RNA. Implications for 5 S RNA structure. J. Mol. Biol. 206, 651–668 (1989).

    Article  CAS  PubMed  Google Scholar 

  79. Moazed, D., Samaha, R.R., Gualerzi, C. & Noller, H.F. Specific protection of 16 S rRNA by translational initiation factors. J. Mol. Biol. 248, 207–210 (1995).

    CAS  PubMed  Google Scholar 

  80. Merryman, C., Moazed, D., McWhirter, J. & Noller, H.F. Nucleotides in 16S rRNA protected by the association of 30S and 50S ribosomal subunits. J. Mol. Biol. 285, 97–105 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Dahlquist, K.D. & Puglisi, J.D. Interaction of translation initiation factor IF1 with the E. coli ribosomal A site. J. Mol. Biol. 299, 1–15 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Green, C.D., Long, K.S., Shi, H. & Wolin, S.L. Binding of the 60-kDa Ro autoantigen to Y RNAs: evidence for recognition in the major groove of a conserved helix. RNA 4, 750–765 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Argaman, L. & Altuvia, S. fhlA repression by OxyS RNA: kissing complex formation at two sites results in a stable antisense-target RNA complex. J. Mol. Biol. 300, 1101–1112 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Moazed, D. & Noller, H.F. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327, 389–394 (1987).

    Article  CAS  PubMed  Google Scholar 

  85. Woodcock, J., Moazed, D., Cannon, M., Davies, J. & Noller, H.F. Interaction of antibiotics with A- and P-site-specific bases in 16S ribosomal RNA. EMBO J. 10, 3099–3103 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Spickler, C., Brunelle, M.N. & Brakier-Gingras, L. Streptomycin binds to the decoding center of 16 S ribosomal RNA. J. Mol. Biol. 273, 586–599 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Purohit, P. & Stern, S. Interactions of a small RNA with antibiotic and RNA ligands of the 30S subunit. Nature 370, 659–662 (1994).

    Article  CAS  PubMed  Google Scholar 

  88. Moazed, D., Van Stolk, B.J., Douthwaite, S. & Noller, H.F. Interconversion of active and inactive 30 S ribosomal subunits is accompanied by a conformational change in the decoding region of 16 S rRNA. J. Mol. Biol. 191, 483–493 (1986).

    Article  CAS  PubMed  Google Scholar 

  89. Powers, T., Daubresse, G. & Noller, H.F. Dynamics of in vitro assembly of 16 S rRNA into 30 S ribosomal subunits. J. Mol. Biol. 232, 362–374 (1993).

    Article  CAS  PubMed  Google Scholar 

  90. Powers, T. & Noller, H.F. A temperature-dependent conformational rearrangement in the ribosomal protein S4.16 S rRNA complex. J. Biol. Chem. 270, 1238–1242 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. Karginov, F.V. & Uhlenbeck, O.C. Interaction of Escherichia coli DbpA with 23S rRNA in different functional states of the enzyme. Nucleic Acids Res. 32, 3028–3032 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hennelly, S.P. et al. A time-resolved investigation of ribosomal subunit association. J. Mol. Biol. 346, 1243–1258 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Fabbretti, A. et al. The real-time path of translation factor IF3 onto and off the ribosome. Mol. Cell 25, 285–296 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Herr, W., Chapman, N.M. & Noller, H.F. Mechanism of ribosomal subunit association: discrimination of specific sites in 16 S RNA essential for association activity. J. Mol. Biol. 130, 433–449 (1979).

    Article  CAS  PubMed  Google Scholar 

  95. Peattie, D.A. & Herr, W. Chemical probing of the tRNA–ribosome complex. Proc. Natl. Acad. Sci. USA 78, 2273–2277 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. von Ahsen, U. & Noller, H.F. Identification of bases in 16S rRNA essential for tRNA binding at the 30S ribosomal P site. Science 267, 234–237 (1995).

    Article  CAS  PubMed  Google Scholar 

  97. Pan, J. & Woodson, S.A. Folding intermediates of a self-splicing RNA: mispairing of the catalytic core. J. Mol. Biol. 280, 597–609 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Zaug, A.J. & Cech, T.R. Analysis of the structure of Tetrahymena nuclear RNAs in vivo: telomerase RNA, the self-splicing rRNA intron, and U2 snRNA. RNA 1, 363–374 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Charpentier, B., Stutz, F. & Rosbash, M. A dynamic in vivo view of the HIV-I Rev-RRE interaction. J. Mol. Biol. 266, 950–962 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Iseni, F., Baudin, F., Blondel, D. & Ruigrok, R.W. Structure of the RNA inside the vesicular stomatitis virus nucleocapsid. RNA 6, 270–281 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bricker, A.L. & Belasco, J.G. Importance of a 5′ stem-loop for longevity of papA mRNA in Escherichia coli. J. Bacteriol. 181, 3587–3590 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Doktycz, M.J., Larimer, F.W., Pastrnak, M. & Stevens, A. Comparative analyses of the secondary structures of synthetic and intracellular yeast MFA2 mRNAs. Proc. Natl. Acad. Sci. USA 95, 14614–14621 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Luo, D., Condon, C., Grunberg-Manago, M. & Putzer, H. In vitro and in vivo secondary structure probing of the thrS leader in Bacillus subtilis. Nucleic Acids Res. 26, 5379–5387 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Waldsich, C., Grossberger, R. & Schroeder, R. RNA chaperone StpA loosens interactions of the tertiary structure in the td group I intron in vivo. Genes Dev. 16, 2300–2312 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Disney, M.D., Haidaris, C.G. & Turner, D.H. Uptake and antifungal activity of oligonucleotides in Candida albicans. Proc. Natl. Acad. Sci. USA 100, 1530–1534 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wells, S.E., Hughes, J.M., Igel, A.H. & Ares, M. Jr. Use of dimethyl sulfate to probe RNA structure in vivo. Methods Enzymol. 318, 479–493 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Ehresmann, C. et al. Probing the structure of RNAs in solution. Nucleic Acids Res. 15, 9109–9128 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Christiansen, J. & Garrett, R. Enzymatic and chemical probing of ribosomal RNA–protein interactions. Methods Enzymol. 164, 456–468 (1988).

    Article  CAS  PubMed  Google Scholar 

  109. Stern, S., Moazed, D. & Noller, H.F. Structural analysis of RNA using chemical and enzymatic probing monitored by primer extension. Methods Enzymol. 164, 481–489 (1988).

    Article  CAS  PubMed  Google Scholar 

  110. Merryman, C. & Noller, H.F. in RNA:Protein Interactions, a Practical Approach (ed. Smith, C.W.J.) 237–253 (Oxford University Press, Oxford, 1998).

    Google Scholar 

  111. Brunel, C. & Romby, P. Probing RNA structure and RNA–ligand complexes with chemical probes. Methods Enzymol. 318, 3–21 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Sanger, F., Nicklen, S. & Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cate, J.H. et al. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273, 1678–1685 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. Nissen, P., Ippolito, J.A., Ban, N., Moore, P.B. & Steitz, T.A. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc. Natl. Acad. Sci. USA 98, 4899–4903 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Balasubramanian, B., Pogozelski, W.K. & Tullius, T.D. DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone. Proc. Natl. Acad. Sci. USA 95, 9738–9743 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Latham, J.A. & Cech, T.R. Defining the inside and outside of a catalytic RNA molecule. Science 245, 276–282 (1989).

    Article  CAS  PubMed  Google Scholar 

  117. King, P.A., Jamison, E., Strahs, D., Anderson, V.E. & Brenowitz, M. 'Footprinting' proteins on DNA with peroxonitrous acid. Nucleic Acids Res. 21, 2473–2478 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chaulk, S.G. & MacMillan, A.M. Characterization of the Tetrahymena ribozyme folding pathway using the kinetic footprinting reagent peroxynitrous acid. Biochemistry 39, 2–8 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Kent, O., Chaulk, S.G. & MacMillan, A.M. Kinetic analysis of the M1 RNA folding pathway. J. Mol. Biol. 304, 699–705 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Kwok, L.W. et al. Concordant exploration of the kinetics of RNA folding from global and local perspectives. J. Mol. Biol. 355, 282–293 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Lindahl, T., Adams, A. & Fresco, J.R. Renaturation of transfer ribonucleic acids through site binding of magnesium. Proc. Natl. Acad. Sci. USA 55, 941–948 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Weidner, H. & Crothers, D.M. Pathway-dependent refolding of E. coli 5S RNA. Nucleic Acids Res. 4, 3401–3414 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sugimoto, N., Kierzek, R. & Turner, D.H. Kinetics for reaction of a circularized intervening sequence with CU, UCU, CUCU, and CUCUCU: mechanistic implications from the dependence on temperature and on oligomer and Mg2+ concentrations. Biochemistry 27, 6384–6392 (1988).

    Article  CAS  PubMed  Google Scholar 

  124. Walstrum, S.A. & Uhlenbeck, O.C. The self-splicing RNA of Tetrahymena is trapped in a less active conformation by gel purification. Biochemistry 29, 10573–10576 (1990).

    Article  CAS  PubMed  Google Scholar 

  125. Herschlag, D. & Cech, T.R. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 1. Kinetic description of the reaction of an RNA substrate complementary to the active site. Biochemistry 29, 10159–10171 (1990).

    Article  CAS  PubMed  Google Scholar 

  126. Zarrinkar, P.P., Wang, J. & Williamson, J.R. Slow folding kinetics of RNase P RNA. RNA 2, 564–573 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Pan, J., Thirumalai, D. & Woodson, S.A. Folding of RNA involves parallel pathways. J. Mol. Biol. 273, 7–13 (1997).

    Article  CAS  PubMed  Google Scholar 

  128. Esteban, J.A., Banerjee, A.R. & Burke, J.M. Kinetic mechanism of the hairpin ribozyme. Identification and characterization of two nonexchangeable conformations. J. Biol. Chem. 272, 13629–13639 (1997).

    Article  CAS  PubMed  Google Scholar 

  129. Pan, T. & Sosnick, T.R. Intermediates and kinetic traps in the folding of a large ribozyme revealed by circular dichroism and UV absorbance spectroscopies and catalytic activity. Nat. Struct. Biol. 4, 931–938 (1997).

    Article  CAS  PubMed  Google Scholar 

  130. Russell, R. & Herschlag, D. Probing the folding landscape of the Tetrahymena ribozyme: commitment to form the native conformation is late in the folding pathway. J. Mol. Biol. 308, 839–851 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Pichler, A. & Schroeder, R. Folding problems of the 5′ splice site containing the P1 stem of the group I thymidylate synthase intron: substrate binding inhibition in vitro and mis-splicing in vivo. J. Biol. Chem. 277, 17987–17993 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Chadalavada, D.M., Senchak, S.E. & Bevilacqua, P.C. The folding pathway of the genomic hepatitis delta virus ribozyme is dominated by slow folding of the pseudoknots. J. Mol. Biol. 317, 559–575 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Gerard, G.F., Fox, D.K., Nathan, M. & D'Alessio, J.M. Reverse transcriptase. The use of cloned Moloney murine leukemia virus reverse transcriptase to synthesize DNA from RNA. Mol. Biotechnol. 8, 61–77 (1997).

    Article  CAS  PubMed  Google Scholar 

  134. Das, R., Laederach, A., Pearlman, S.M., Herschlag, D. & Altman, R.B. SAFA: semi-automated footprinting analysis software for high-throughput quantification of nucleic acid footprinting experiments. RNA 11, 344–354 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Stein, A. & Crothers, D.M. Conformational changes of transfer RNA. The role of magnesium(II). Biochemistry 15, 160–168 (1976).

    Article  CAS  PubMed  Google Scholar 

  136. Grilley, D., Soto, A.M. & Draper, D.E. Mg2+–RNA interaction free energies and their relationship to the folding of RNA tertiary structures. Proc. Natl. Acad. Sci. USA 103, 14003–14008 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Matsuura, M., Noah, J.W. & Lambowitz, A.M. Mechanism of maturase-promoted group II intron splicing. EMBO J. 20, 7259–7270 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Yaqi Wan for assistance in preparing Figure 4 and Liz Doherty and Jennifer Doudna for early advice on footprinting and for sharing their protocol. Research in our labs is supported by grants from the NIH (R01-GM070456 to R.R. and R01-GM037951 to Alan M. Lambowitz) and the Welch Foundation (F-1563 to R.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rick Russell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tijerina, P., Mohr, S. & Russell, R. DMS footprinting of structured RNAs and RNA–protein complexes. Nat Protoc 2, 2608–2623 (2007). https://doi.org/10.1038/nprot.2007.380

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.380

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing