Skip to main content

Immune Co-signaling to Treat Cancer

  • Chapter
  • First Online:
Cancer Immunotherapy

Abstract

The past two decades have been marked by a growing understanding of the co-stimulatory and co-inhibitory pathways that are critical to the generation of an effective, well-regulated immune response. Capitalizing on an increasingly nuanced appreciation for the role that these molecules play in anti-tumor immune responses, a diversity of novel therapies to treat human cancers are being explored. The ground-breaking success of anti-CTLA-4 therapy in the treatment of advanced melanoma has set the stage for the clinical development of agents targeting a diversity of co-stimulatory and co-inhibitory molecules. Herein, we review the co-signaling molecules that regulate T cell activation with a focus on their potential role(s) in anti-tumor immune responses. Where available, pre-clinical and clinical studies evaluating the anti-tumor activity of agents targeting these molecules are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baxter AG, Hodgkin PD (2002) Activation rules: the two-signal theories of immune activation. Nat Rev Immunol 2:439–446

    PubMed  CAS  Google Scholar 

  2. Jenkins MK, Schwartz RH (1987) Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J Exp Med 165:302–319

    Article  PubMed  CAS  Google Scholar 

  3. Lafferty KJ, Cunningham AJ (1975) A new analysis of allogeneic interactions. Aust J Exp Biol Med Sci 53:27–42

    Article  PubMed  CAS  Google Scholar 

  4. Bretscher P, Cohn M (1970) A theory of self-nonself discrimination. Science 169:1042–1049

    Article  PubMed  CAS  Google Scholar 

  5. Buckwalter MR, Srivastava PK (2008) "It is the antigen(s), stupid" and other lessons from over a decade of vaccitherapy of human cancer. Semin Immunol 20:296–300

    Article  PubMed  CAS  Google Scholar 

  6. Hashiguchi M et al (2008) Triggering receptor expressed on myeloid cell-like transcript 2 (TLT-2) is a counter-receptor for B7-H3 and enhances T cell responses. Proc Natl Acad Sci USA 105:10495–10500

    Article  PubMed  CAS  Google Scholar 

  7. Townsend SE, Allison JP (1993) Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science 259:368–370

    Article  PubMed  CAS  Google Scholar 

  8. Chen L et al (1992) Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 71:1093–1102

    Article  PubMed  CAS  Google Scholar 

  9. Hodi FS et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  PubMed  CAS  Google Scholar 

  10. Gmunder H, Lesslauer W (1984) A 45-kDa human T-cell membrane glycoprotein functions in the regulation of cell proliferative responses. Eur J Biochem 142:153–160

    Article  PubMed  CAS  Google Scholar 

  11. Hansen JA, Martin PJ, Nowinski RC (1980) Monoclonal antibodies identifying a novel T-Cell antigen and Ia antigens of human lymphocytes. Immunogenetics 11:429–439

    Article  PubMed  Google Scholar 

  12. Yokochi T, Holly RD, Clark EA (1982) B lymphoblast antigen (BB-1) expressed on Epstein-Barr virus-activated B cell blasts, B lymphoblastoid cell lines, and Burkitt's lymphomas. J Immunol 128:823–827

    PubMed  CAS  Google Scholar 

  13. Azuma M et al (1993) B70 antigen is a second ligand for CTLA-4 and CD28. Nature 366:76–79

    Article  PubMed  CAS  Google Scholar 

  14. Hathcock KS et al (1993) Identification of an alternative CTLA-4 ligand co-stimulatory for T cell activation. Science 262:905–907

    Article  PubMed  CAS  Google Scholar 

  15. Freeman GJ et al (1993) Cloning of B7-2: a CTLA-4 counter-receptor that costimulates human T cell proliferation. Science 262:909–911

    Article  PubMed  CAS  Google Scholar 

  16. Hathcock KS, Laszlo G, Pucillo C, Linsley P, Hodes RJ (1994) Comparative analysis of B7-1 and B7-2 co-stimulatory ligands: expression and function. J Exp Med 180:631–640

    Article  PubMed  CAS  Google Scholar 

  17. Larsen CP et al (1994) Regulation of immunostimulatory function and co-stimulatory molecule (B7-1 and B7-2) expression on murine dendritic cells. J Immunol 152:5208–5219

    PubMed  CAS  Google Scholar 

  18. Lenschow DJ, Walunas TL, Bluestone JA (1996) CD28/B7 system of T cell costimulation. Annu Rev Immunol 14:233–258

    Article  PubMed  CAS  Google Scholar 

  19. Rudd CE, Taylor A, Schneider H (2009) CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev 229:12–26

    Article  PubMed  CAS  Google Scholar 

  20. Shahinian A et al (1993) Differential T cell co-stimulatory requirements in CD28-deficient mice. Science 261:609–612

    Article  PubMed  CAS  Google Scholar 

  21. Kundig TM et al (1996) Duration of TCR stimulation determines co-stimulatory requirement of T cells. Immunity 5:41–52

    Article  PubMed  CAS  Google Scholar 

  22. Borriello F et al (1997) B7-1 and B7-2 have overlapping, critical roles in immunoglobulin class switching and germinal center formation. Immunity 6:303–313

    Article  PubMed  CAS  Google Scholar 

  23. Brunet JF et al (1987) A new member of the immunoglobulin superfamily–CTLA-4. Nature 328:267–270

    Article  PubMed  CAS  Google Scholar 

  24. Krummel MF, Allison JP (1995) CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 182:459–465

    Article  PubMed  CAS  Google Scholar 

  25. Thompson CB, Allison JP (1997) The emerging role of CTLA-4 as an immune attenuator. Immunity 7:445–450

    Article  PubMed  CAS  Google Scholar 

  26. Walunas TL et al (1994) CTLA-4 can function as a negative regulator of T cell activation. Immunity 1:405–413

    Article  PubMed  CAS  Google Scholar 

  27. Linsley PS et al (1991) CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med 174:561–569

    Article  PubMed  CAS  Google Scholar 

  28. Krummel MF, Allison JP (1996) CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med 183:2533–2540

    Article  PubMed  CAS  Google Scholar 

  29. Walunas TL, Bakker CY, Bluestone JA (1996) CTLA-4 ligation blocks CD28-dependent T cell activation. J Exp Med 183:2541–2550

    Article  PubMed  CAS  Google Scholar 

  30. Brunner MC et al (1999) CTLA-4-Mediated inhibition of early events of T cell proliferation. J Immunol 162:5813–5820

    PubMed  CAS  Google Scholar 

  31. Greenwald RJ, Boussiotis VA, Lorsbach RB, Abbas AK, Sharpe AH (2001) CTLA-4 regulates induction of anergy in vivo. Immunity 14:145–155

    Article  PubMed  CAS  Google Scholar 

  32. Waterhouse P et al (1995) Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270:985–988

    Article  PubMed  CAS  Google Scholar 

  33. Tivol EA et al (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3:541–547

    Article  PubMed  CAS  Google Scholar 

  34. Chambers CA, Sullivan TJ, Allison JP (1997) Lymphoproliferation in CTLA-4-deficient mice is mediated by costimulation-dependent activation of CD4+ T cells. Immunity 7:885–895

    Article  PubMed  CAS  Google Scholar 

  35. Chuang E et al (1997) Interaction of CTLA-4 with the clathrin-associated protein AP50 results in ligand-independent endocytosis that limits cell surface expression. J Immunol 159:144–151

    PubMed  CAS  Google Scholar 

  36. Shiratori T et al (1997) Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity 6:583–589

    Article  PubMed  CAS  Google Scholar 

  37. Egen JG, Kuhns MS, Allison JP (2002) CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol 3:611–618

    Article  PubMed  CAS  Google Scholar 

  38. Zhang Y, Allison JP (1997) Interaction of CTLA-4 with AP50, a clathrin-coated pit adaptor protein. Proc Natl Acad Sci USA 94:9273–9278

    Article  PubMed  CAS  Google Scholar 

  39. Pentcheva-Hoang T, Egen JG, Wojnoonski K, Allison JP (2004) B7-1 and B7-2 selectively recruit CTLA-4 and CD28 to the immunological synapse. Immunity 21:401–413

    Article  PubMed  CAS  Google Scholar 

  40. Egen JG, Allison JP (2002) Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity 16:23–35

    Article  PubMed  CAS  Google Scholar 

  41. Stamper CC et al (2001) Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses. Nature 410:608–611

    Article  PubMed  CAS  Google Scholar 

  42. Peggs KS, Quezada SA, Allison JP (2008) Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy. Immunol Rev 224:141–165

    Article  PubMed  CAS  Google Scholar 

  43. Riley JL et al (2002) Modulation of TCR-induced transcriptional profiles by ligation of CD28, ICOS, and CTLA-4 receptors. Proc Natl Acad Sci USA 99:11790–11795

    Article  PubMed  CAS  Google Scholar 

  44. Masteller EL, Chuang E, Mullen AC, Reiner SL, Thompson CB (2000) Structural analysis of CTLA-4 function in vivo. J Immunol 164:5319–5327

    PubMed  CAS  Google Scholar 

  45. Schneider H, Smith X, Liu H, Bismuth G, Rudd CE (2008) CTLA-4 disrupts ZAP70 microcluster formation with reduced T cell/APC dwell times and calcium mobilization. Eur J Immunol 38:40–47

    Article  PubMed  CAS  Google Scholar 

  46. Schneider H, Valk E, Leung R, Rudd CE (2008) CTLA-4 activation of phosphatidylinositol 3-kinase (PI 3-K) and protein kinase B (PKB/AKT) sustains T-cell anergy without cell death. PLoS One 3:e3842

    Article  PubMed  CAS  Google Scholar 

  47. Schneider H et al (2002) Cutting edge: CTLA-4 (CD152) differentially regulates mitogen-activated protein kinases (extracellular signal-regulated kinase and c-Jun N-terminal kinase) in CD4+ T cells from receptor/ligand-deficient mice. J Immunol 169:3475–3479

    PubMed  CAS  Google Scholar 

  48. Calvo CR, Amsen D, Kruisbeek AM (1997) Cytotoxic T lymphocyte antigen 4 (CTLA-4) interferes with extracellular signal-regulated kinase (ERK) and Jun NH2-terminal kinase (JNK) activation, but does not affect phosphorylation of T cell receptor zeta and ZAP70. J Exp Med 186:1645–1653

    Article  PubMed  CAS  Google Scholar 

  49. Pioli C, Gatta L, Frasca D, Doria G (1999) Cytotoxic T lymphocyte antigen 4 (CTLA-4) inhibits CD28-induced IkappaBalpha degradation and RelA activation. Eur J Immunol 29:856–863

    Article  PubMed  CAS  Google Scholar 

  50. Olsson C, Riesbeck K, Dohlsten M, Michaelsson E (1999) CTLA-4 ligation suppresses CD28-induced NF-kappaB and AP-1 activity in mouse T cell blasts. J Biol Chem 274:14400–14405

    Article  PubMed  CAS  Google Scholar 

  51. Grohmann U et al (2002) CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol 3:1097–1101

    Article  PubMed  CAS  Google Scholar 

  52. Munn DH, Sharma MD, Mellor AL (2004) Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J Immunol 172:4100–4110

    PubMed  CAS  Google Scholar 

  53. Taylor PA et al (2004) B7 expression on T cells down-regulates immune responses through CTLA-4 ligation via T-T interactions [corrections]. J Immunol 172:34–39

    PubMed  CAS  Google Scholar 

  54. Paust S, Lu L, McCarty N, Cantor H (2004) Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease. Proc Natl Acad Sci USA 101:10398–10403

    Article  PubMed  CAS  Google Scholar 

  55. Salomon B et al (2000) B7/CD28 costimulation is essential for the homeostasis of the CD4 + CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12:431–440

    Article  PubMed  CAS  Google Scholar 

  56. Bachmann MF, Kohler G, Ecabert B, Mak TW, Kopf M (1999) Cutting edge: lymphoproliferative disease in the absence of CTLA-4 is not T cell autonomous. J Immunol 163:1128–1131

    PubMed  CAS  Google Scholar 

  57. Read S, Malmstrom V, Powrie F (2000) Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 192:295–302

    Article  PubMed  CAS  Google Scholar 

  58. Takahashi T et al (2000) Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192:303–310

    Article  PubMed  CAS  Google Scholar 

  59. Chai JG et al (2002) CD4 + CD25+ T cells as immunoregulatory T cells in vitro. Eur J Immunol 32:2365–2375

    Article  PubMed  CAS  Google Scholar 

  60. Kataoka H et al (2005) CD25(+)CD4(+) regulatory T cells exert in vitro suppressive activity independent of CTLA-4. Int Immunol 17:421–427

    Article  PubMed  CAS  Google Scholar 

  61. Tang Q et al (2004) Distinct roles of CTLA-4 and TGF-beta in CD4 + CD25+ regulatory T cell function. Eur J Immunol 34:2996–3005

    Article  PubMed  CAS  Google Scholar 

  62. Wing K et al (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science 322:271–275

    Article  PubMed  CAS  Google Scholar 

  63. Chambers CA, Sullivan TJ, Truong T, Allison JP (1998) Secondary but not primary T cell responses are enhanced in CTLA-4-deficient CD8+ T cells. Eur J Immunol 28:3137–3143

    Article  PubMed  CAS  Google Scholar 

  64. Chambers CA, Kuhns MS, Allison JP (1999) Cytotoxic T lymphocyte antigen-4 (CTLA-4) regulates primary and secondary peptide-specific CD4(+) T cell responses. Proc Natl Acad Sci USA 96:8603–8608

    Article  PubMed  CAS  Google Scholar 

  65. Greenwald RJ et al (2002) CTLA-4 regulates cell cycle progression during a primary immune response. Eur J Immunol 32:366–373

    Article  PubMed  CAS  Google Scholar 

  66. McCoy KD, Hermans IF, Fraser JH, Le Gros G, Ronchese F (1999) Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) can regulate dendritic cell-induced activation and cytotoxicity of CD8(+) T cells independently of CD4(+) T cell help. J Exp Med 189:1157–1162

    Article  PubMed  CAS  Google Scholar 

  67. Tivol EA, Gorski J (2002) Re-establishing peripheral tolerance in the absence of CTLA-4: complementation by wild-type T cells points to an indirect role for CTLA-4. J Immunol 169:1852–1858

    PubMed  CAS  Google Scholar 

  68. Friedline RH et al (2009) CD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance. J Exp Med 206:421–434

    Article  PubMed  CAS  Google Scholar 

  69. Li Y, McGowan P, Hellstrom I, Hellstrom KE, Chen L (1994) Costimulation of tumor-reactive CD4+ and CD8+ T lymphocytes by B7, a natural ligand for CD28, can be used to treat established mouse melanoma. J Immunol 153:421–428

    PubMed  CAS  Google Scholar 

  70. Townsend SE, Su FW, Atherton JM, Allison JP (1994) Specificity and longevity of antitumor immune responses induced by B7-transfected tumors. Cancer Res 54:6477–6483

    PubMed  CAS  Google Scholar 

  71. Yang G, Hellstrom KE, Hellstrom I, Chen L (1995) Antitumor immunity elicited by tumor cells transfected with B7-2, a second ligand for CD28/CTLA-4 co-stimulatory molecules. J Immunol 154:2794–2800

    PubMed  CAS  Google Scholar 

  72. Hull GW et al (2000) Prostate cancer gene therapy: comparison of adenovirus-mediated expression of interleukin 12 with interleukin 12 plus B7-1 for in situ gene therapy and gene-modified, cell-based vaccines. Clin Cancer Res 6:4101–4109

    PubMed  CAS  Google Scholar 

  73. Li G et al (2011) Triple expression of B7-1, B7-2 and 4-1BBL enhanced antitumor immune response against mouse H22 hepatocellular carcinoma. J Cancer Res Clin Oncol 137:695–703

    Article  PubMed  CAS  Google Scholar 

  74. Antonia SJ et al (2002) Phase I trial of a B7-1 (CD80) gene modified autologous tumor cell vaccine in combination with systemic interleukin-2 in patients with metastatic renal cell carcinoma. J Urol 167:1995–2000

    Article  PubMed  CAS  Google Scholar 

  75. Raez LE et al (2004) Allogeneic vaccination with a B7.1 HLA-A gene-modified adenocarcinoma cell line in patients with advanced non-small-cell lung cancer. J Clin Oncol 22:2800–2807

    Article  PubMed  CAS  Google Scholar 

  76. Dols A et al (2003) Vaccination of women with metastatic breast cancer, using a co-stimulatory gene (CD80)-modified, HLA-A2-matched, allogeneic, breast cancer cell line: clinical and immunological results. Hum Gene Ther 14:1117–1123

    Article  PubMed  CAS  Google Scholar 

  77. Dols A et al (2003) Identification of tumor-specific antibodies in patients with breast cancer vaccinated with gene-modified allogeneic tumor cells. J Immunother 26:163–170

    Article  PubMed  Google Scholar 

  78. Kaufman HL et al (2005) Targeting the local tumor microenvironment with vaccinia virus expressing B7.1 for the treatment of melanoma. J Clin Invest 115:1903–1912

    Article  PubMed  CAS  Google Scholar 

  79. Fishman M et al (2008) Phase II trial of B7-1 (CD-86) transduced, cultured autologous tumor cell vaccine plus subcutaneous interleukin-2 for treatment of stage IV renal cell carcinoma. J Immunother 31:72–80

    Article  PubMed  Google Scholar 

  80. Horig H et al (2000) Phase I clinical trial of a recombinant canarypoxvirus (ALVAC) vaccine expressing human carcinoembryonic antigen and the B7.1 co-stimulatory molecule. Cancer Immunol Immunother 49:504–514

    Article  PubMed  CAS  Google Scholar 

  81. von Mehren M et al (2000) Pilot study of a dual gene recombinant avipox vaccine containing both carcinoembryonic antigen (CEA) and B7.1 transgenes in patients with recurrent CEA-expressing adenocarcinomas. Clin Cancer Res 6:2219–2228

    Google Scholar 

  82. Morse MA (2001) Technology evaluation: CEA-TRICOM, Therion Biologics Corp. Curr Opin Mol Ther 3:407–412

    PubMed  CAS  Google Scholar 

  83. Levy B, Panicalli D, Marshall J (2004) TRICOM: enhanced vaccines as anticancer therapy. Expert Rev Vaccines 3:397–402

    Article  PubMed  CAS  Google Scholar 

  84. Gulley JL et al (2008) Pilot study of vaccination with recombinant CEA-MUC-1-TRICOM poxviral-based vaccines in patients with metastatic carcinoma. Clin Cancer Res 14:3060–3069

    Article  PubMed  CAS  Google Scholar 

  85. Litzinger MT, Foon KA, Tsang KY, Schlom J, Palena C (2010) Comparative analysis of MVA-CD40L and MVA-TRICOM vectors for enhancing the immunogenicity of chronic lymphocytic leukemia (CLL) cells. Leuk Res 34:1351–1357

    Article  PubMed  CAS  Google Scholar 

  86. Doehn C, Kausch I, Bohmer T, Sommerauer M, Jocham D (2007) Drug evaluation: Therion's rV-PSA-TRICOM + rF-PSA-TRICOM prime-boost prostate cancer vaccine. Curr Opin Mol Ther 9:183–189

    PubMed  CAS  Google Scholar 

  87. Ahlers CM, Camphausen K, Citrin D, Arlen PM, Gulley JL (2006) A pilot trial of a carcinoembryonic antigen/ TRICOM-based vaccine and radiation to liver metastases in patients with carcinoembryonic antigen-positive solid tumors. Clin Colorectal Cancer 6:72–75

    Article  PubMed  Google Scholar 

  88. Garnett CT et al (2006) TRICOM vector based cancer vaccines. Curr Pharm Des 12:351–361

    Article  PubMed  CAS  Google Scholar 

  89. DiPaola RS et al (2006) A phase I trial of pox PSA vaccines (PROSTVAC-VF) with B7-1, ICAM-1, and LFA-3 co-stimulatory molecules (TRICOM) in patients with prostate cancer. J Transl Med 4:1

    Article  PubMed  CAS  Google Scholar 

  90. Marshall JL et al (2005) Phase I study of sequential vaccinations with fowlpox-CEA(6D)-TRICOM alone and sequentially with vaccinia-CEA(6D)-TRICOM, with and without granulocyte-macrophage colony-stimulating factor, in patients with carcinoembryonic antigen-expressing carcinomas. J Clin Oncol 23:720–731

    Article  PubMed  CAS  Google Scholar 

  91. Kaufman HL et al (2007) Poxvirus-based vaccine therapy for patients with advanced pancreatic cancer. J Transl Med 5:60

    Article  PubMed  CAS  Google Scholar 

  92. Kaufman HL et al (2003) Clinical protocol. Intra-Lesional rF-B7.1 versus rF-TRICOM vaccine in the treatment of metastatic cancer. Hum Gene Ther 14:803–827

    Article  PubMed  CAS  Google Scholar 

  93. Kaufman HL et al (2001) A phase I trial of intralesional rV-Tricom vaccine in the treatment of malignant melanoma. Hum Gene Ther 12:1459–1480

    Article  PubMed  CAS  Google Scholar 

  94. Kaufman HL et al (2006) Local delivery of vaccinia virus expressing multiple co-stimulatory molecules for the treatment of established tumors. Hum Gene Ther 17:239–244

    Article  PubMed  CAS  Google Scholar 

  95. Allison JP, Hurwitz AA, Leach DR (1995) Manipulation of co-stimulatory signals to enhance antitumor T-cell responses. Curr Opin Immunol 7:682–686

    Article  PubMed  CAS  Google Scholar 

  96. Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734–1736

    Article  PubMed  CAS  Google Scholar 

  97. Kwon ED et al (1997) Manipulation of T cell co-stimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc Natl Acad Sci USA 94:8099–8103

    Article  PubMed  CAS  Google Scholar 

  98. Yang YF et al (1997) Enhanced induction of antitumor T-cell responses by cytotoxic T lymphocyte-associated molecule-4 blockade: the effect is manifested only at the restricted tumor-bearing stages. Cancer Res 57:4036–4041

    PubMed  CAS  Google Scholar 

  99. Shrikant P, Khoruts A, Mescher MF (1999) CTLA-4 blockade reverses CD8+ T cell tolerance to tumor by a CD4+ T cell- and IL-2-dependent mechanism. Immunity 11:483–493

    Article  PubMed  CAS  Google Scholar 

  100. Sotomayor EM, Borrello I, Tubb E, Allison JP, Levitsky HI (1999) In vivo blockade of CTLA-4 enhances the priming of responsive T cells but fails to prevent the induction of tumor antigen-specific tolerance. Proc Natl Acad Sci USA 96:11476–11481

    Article  PubMed  CAS  Google Scholar 

  101. Mokyr MB, Kalinichenko T, Gorelik L, Bluestone JA (1998) Realization of the therapeutic potential of CTLA-4 blockade in low-dose chemotherapy-treated tumor-bearing mice. Cancer Res 58:5301–5304

    PubMed  CAS  Google Scholar 

  102. Davila E, Kennedy R, Celis E (2003) Generation of antitumor immunity by cytotoxic T lymphocyte epitope peptide vaccination, CpG-oligodeoxynucleotide adjuvant, and CTLA-4 blockade. Cancer Res 63:3281–3288

    PubMed  CAS  Google Scholar 

  103. Gregor PD et al (2004) CTLA-4 blockade in combination with xenogeneic DNA vaccines enhances T-cell responses, tumor immunity and autoimmunity to self antigens in animal and cellular model systems. Vaccine 22:1700–1708

    Article  PubMed  CAS  Google Scholar 

  104. Daftarian P et al (2004) Two distinct pathways of immuno-modulation improve potency of p53 immunization in rejecting established tumors. Cancer Res 64:5407–5414

    Article  PubMed  CAS  Google Scholar 

  105. Demaria S et al (2005) Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res 11:728–734

    PubMed  CAS  Google Scholar 

  106. Met O et al (2006) The effect of a therapeutic dendritic cell-based cancer vaccination depends on the blockage of CTLA-4 signaling. Cancer Lett 231:247–256

    Article  PubMed  CAS  Google Scholar 

  107. Gao Y, Whitaker-Dowling P, Griffin JA, Barmada MA, Bergman I (2009) Recombinant vesicular stomatitis virus targeted to Her2/neu combined with anti-CTLA4 antibody eliminates implanted mammary tumors. Cancer Gene Ther 16:44–52

    Article  PubMed  CAS  Google Scholar 

  108. van Elsas A, Hurwitz AA, Allison JP (1999) Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med 190:355–366

    Article  PubMed  Google Scholar 

  109. Kwon ED et al (1999) Elimination of residual metastatic prostate cancer after surgery and adjunctive cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) blockade immunotherapy. Proc Natl Acad Sci USA 96:15074–15079

    Article  PubMed  CAS  Google Scholar 

  110. Dewan MZ et al (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15:5379–5388

    Article  PubMed  CAS  Google Scholar 

  111. den Brok MH et al (2006) Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. Br J Cancer 95:896–905

    Article  CAS  Google Scholar 

  112. Hurwitz AA, Yu TF, Leach DR, Allison JP (1998) CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc Natl Acad Sci USA 95:10067–10071

    Article  PubMed  CAS  Google Scholar 

  113. van Elsas A et al (2001) Elucidating the autoimmune and antitumor effector mechanisms of a treatment based on cytotoxic T lymphocyte antigen-4 blockade in combination with a B16 melanoma vaccine: comparison of prophylaxis and therapy. J Exp Med 194:481–489

    Article  PubMed  Google Scholar 

  114. Hurwitz AA et al (2000) Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res 60:2444–2448

    PubMed  CAS  Google Scholar 

  115. Mangsbo SM et al (2010) Enhanced tumor eradication by combining CTLA-4 or PD-1 blockade with CpG therapy. J Immunother 33:225–235

    Article  PubMed  CAS  Google Scholar 

  116. Curran MA, Allison JP (2009) Tumor vaccines expressing flt3 ligand synergize with ctla-4 blockade to reject preimplanted tumors. Cancer Res 69:7747–7755

    Article  PubMed  CAS  Google Scholar 

  117. Quezada SA, Peggs KS, Curran MA, Allison JP (2006) CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J Clin Invest 116:1935–1945

    Article  PubMed  CAS  Google Scholar 

  118. Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP (2009) Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med 206:1717–1725

    Article  PubMed  CAS  Google Scholar 

  119. Phan GQ et al (2003) Cancer regression and autoimmunity induced by cytotoxic Tlymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 100:8372–8377

    Article  PubMed  CAS  Google Scholar 

  120. Ribas A et al (2005) Antitumor activity in melanoma and anti-self responses in a phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675,206. J Clin Oncol 23:8968–8977

    Article  PubMed  CAS  Google Scholar 

  121. Weber JS et al (2008) Phase I/II study of ipilimumab for patients with metastatic melanoma. J Clin Oncol 26:5950–5956

    Article  PubMed  CAS  Google Scholar 

  122. Tchekmedyian S et al (2002) MDX-010 (human anti-CTLA4): a phase I trial in malignant melanoma. Proc Am Soc Clin Oncol 21:223 (abstr 56)

    Google Scholar 

  123. Hodi FS et al (2003) Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci USA 100:4712–4717

    Article  PubMed  CAS  Google Scholar 

  124. Attia P et al (2005) Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J Clin Oncol 23:6043–6053

    Article  PubMed  CAS  Google Scholar 

  125. Sanderson K et al (2005) Autoimmunity in a phase I trial of a fully human anti-cytotoxic T-lymphocyte antigen-4 monoclonal antibody with multiple melanoma peptides and Montanide ISA 51 for patients with resected stages III and IV melanoma. J Clin Oncol 23:741–750

    Article  PubMed  CAS  Google Scholar 

  126. Maker AV et al (2005) Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte-associated antigen 4 blockade and interleukin 2: a phase I/II study. Ann Surg Oncol 12:1005–1016

    Article  PubMed  Google Scholar 

  127. Downey SG et al (2007) Prognostic factors related to clinical response in patients with metastatic melanoma treated by CTL-associated antigen-4 blockade. Clin Cancer Res 13:6681–6688

    Article  PubMed  CAS  Google Scholar 

  128. Wolchok JD et al (2010) Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol 11:155–164

    Article  PubMed  CAS  Google Scholar 

  129. Hersh EM et al (2011) A phase II multicenter study of ipilimumab with or without dacarbazine in chemotherapy-naive patients with advanced melanoma. Invest New Drugs 29:489–498

    Article  PubMed  CAS  Google Scholar 

  130. Robert C et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364:2517–2526

    Article  PubMed  CAS  Google Scholar 

  131. Small EJ et al (2007) A pilot trial of CTLA-4 blockade with human anti-CTLA-4 in patients with hormone-refractory prostate cancer. Clin Cancer Res 13:1810–1815

    Article  PubMed  CAS  Google Scholar 

  132. Small E et al (2006) Randomized phase II study comparing 4 monthly doses of ipilimumab (MDX-010) as a single agent or in combination with a single dose of docetaxel in patients with hormone-refractory prostate cancer. J Clin Oncol 24(18s):4609, ASCO Annual Meeting Proceedings Part I. (June 20 Supplement)

    Google Scholar 

  133. Fong L et al (2009) Potentiating endogenous antitumor immunity to prostate cancer through combination immunotherapy with CTLA4 blockade and GM-CSF. Cancer Res 69:609–615

    Article  PubMed  CAS  Google Scholar 

  134. Slovin SF et al (2009) Initial phase II experience of ipilimumab (IPI) alone and in combination with radiotherapy (XRT) in patients with metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol 27:15s (suppl; abstr 5138)

    Article  Google Scholar 

  135. Mohebtash M et al (2009) Phase I trial of targeted therapy with PSA-TRICOM vaccine (V) and ipilimumab (ipi) in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol 27:15s (suppl; abstr 5144)

    Article  Google Scholar 

  136. Lynch TJ et al (2010) Phase II trial of ipilimumab (IPI) and paclitaxel/carboplatin (P/C) in first-line stage IIIb/IV non-small cell lung cancer (NON-SMALL CELL LUNG CANCER). J Clin Oncol 28:15s (suppl; abstr 7531)

    Article  CAS  Google Scholar 

  137. Ansell SM et al (2009) Phase I study of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res 15:6446–6453

    Article  PubMed  CAS  Google Scholar 

  138. Bashey A et al (2009) CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood 113:1581–1588

    Article  PubMed  CAS  Google Scholar 

  139. Yang JC et al (2007) Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J Immunother 30:825–830

    Article  PubMed  CAS  Google Scholar 

  140. Royal RE et al (2010) Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother 33:828–833

    Article  PubMed  CAS  Google Scholar 

  141. Liakou CI et al (2008) CTLA-4 blockade increases IFNgamma-producing CD4 + ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc Natl Acad Sci USA 105:14987–14992

    Article  PubMed  CAS  Google Scholar 

  142. Chen H et al (2009) Anti-CTLA-4 therapy results in higher CD4 + ICOShi T cell frequency and IFN-gamma levels in both nonmalignant and malignant prostate tissues. Proc Natl Acad Sci USA 106:2729–2734

    Article  PubMed  CAS  Google Scholar 

  143. Carthon BC et al (2010) Preoperative CTLA-4 blockade: tolerability and immune monitoring in the setting of a presurgical clinical trial. Clin Cancer Res 16:2861–2871

    Article  PubMed  CAS  Google Scholar 

  144. Reuben JM et al (2006) Biologic and immunomodulatory events after CTLA-4 blockade with ticilimumab in patients with advanced malignant melanoma. Cancer 106:2437–2444

    Article  PubMed  CAS  Google Scholar 

  145. Camacho LH et al (2009) Phase I/II trial of tremelimumab in patients with metastatic melanoma. J Clin Oncol 27:1075–1081

    Article  PubMed  CAS  Google Scholar 

  146. Kirkwood JM et al (2010) Phase II trial of tremelimumab (CP-675,206) in patients with advanced refractory or relapsed melanoma. Clin Cancer Res 16:1042–1048

    Article  PubMed  CAS  Google Scholar 

  147. Ribas, A., et al. (2009) Phase III, open-label, randomized, comparative study of tremelimumab (CP-675,206) and chemotherapy (temozolomide or dacar- bazine) in patients with advanced melanoma [abstract LBA9011]. J Clin Oncol 26 (Suppl.)

    Google Scholar 

  148. Marshall MA, Ribas A, Huang B (2010) Evaluation of baseline serum C-reactive protein (CRP) and benefit from tremelimumab compared to chemotherapy in first-line melanoma. J Clin Oncol 28:15s (suppl; abstr 2609)

    Article  Google Scholar 

  149. Vonderheide RH et al (2010) Tremelimumab in combination with exemestane in patients with advanced breast cancer and treatment-associated modulation of inducible costimulator expression on patient T cells. Clin Cancer Res 16:3485–3494

    Article  PubMed  CAS  Google Scholar 

  150. Zatloukal P et al (2009) Randomized phase II clinical trial comparing tremelimumab (CP-675,206) with best supportive care (BSC) following first-line platinum-based therapy in patients (pts) with advanced non-small cell lung cancer (NON-SMALL CELL LUNG CANCER). J Clin Oncol 27:15s (suppl; abstr 8071)

    Article  Google Scholar 

  151. Rini BI et al (2011) Phase 1 dose-escalation trial of tremelimumab plus sunitinib in patients with metastatic renal cell carcinoma. Cancer 117:758–767

    Article  PubMed  CAS  Google Scholar 

  152. Oble DA et al (2008) Alpha-CTLA-4 mAb-associated panenteritis: a histologic and immunohistochemical analysis. Am J Surg Pathol 32:1130–1137

    Article  PubMed  Google Scholar 

  153. Di Giacomo AM, Biagioli M, Maio M (2010) The emerging toxicity profiles of anti-CTLA-4 antibodies across clinical indications. Semin Oncol 37:499–507

    Article  PubMed  CAS  Google Scholar 

  154. Beck KE et al (2006) Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. J Clin Oncol 24:2283–2289

    Article  PubMed  CAS  Google Scholar 

  155. Weber J (2009) Ipilimumab: controversies in its development, utility and autoimmune adverse events. Cancer Immunol Immunother 58:823–830

    Article  PubMed  CAS  Google Scholar 

  156. Blansfield JA et al (2005) Cytotoxic T-lymphocyte-associated antigen-4 blockage can induce autoimmune hypophysitis in patients with metastatic melanoma and renal cancer. J Immunother 28:593–598

    Article  PubMed  CAS  Google Scholar 

  157. Dillard T, Yedinak CG, Alumkal J, Fleseriu M (2010) Anti-CTLA-4 antibody therapy associated autoimmune hypophysitis: serious immune related adverse events across a spectrum of cancer subtypes. Pituitary 13:29–38

    Article  PubMed  CAS  Google Scholar 

  158. Phan GQ et al (2003) Immunization of patients with metastatic melanoma using both class I- and class II-restricted peptides from melanoma-associated antigens. J Immunother 26:349–356

    Article  PubMed  CAS  Google Scholar 

  159. Ku GY et al (2010) Single-institution experience with ipilimumab in advanced melanoma patients in the compassionate use setting: lymphocyte count after 2 doses correlates with survival. Cancer 116:1767–1775

    Article  PubMed  CAS  Google Scholar 

  160. Wolchok JD et al (2009) Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res 15:7412–7420

    Article  PubMed  CAS  Google Scholar 

  161. Berman D et al (2009) Association of peripheral blood absolute lymphocyte count (ALC) and clinical activity in patients (pts) with advanced melanoma treated with ipilimumab [abstract]. J Clin Oncol 27:3020

    Article  CAS  Google Scholar 

  162. Yang A et al (2010) CTLA-4 blockade with ipilimumab increases peripheral CD8+ T cells: correlation with clinical outcomes [abstract]. J Clin Oncol 28:2555

    Google Scholar 

  163. Yuan J et al (2008) CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proc Natl Acad Sci USA 105:20410–20415

    Article  PubMed  CAS  Google Scholar 

  164. Ishida Y, Agata Y, Shibahara K, Honjo T (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11:3887–3895

    PubMed  CAS  Google Scholar 

  165. Agata Y et al (1996) Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 8:765–772

    Article  PubMed  CAS  Google Scholar 

  166. Petrovas C et al (2006) PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection. J Exp Med 203:2281–2292

    Article  PubMed  CAS  Google Scholar 

  167. Zhang X et al (2004) Structural and functional analysis of the co-stimulatory receptor programmed death-1. Immunity 20:337–347

    Article  PubMed  CAS  Google Scholar 

  168. Finger LR et al (1997) The human PD-1 gene: complete cDNA, genomic organization, and developmentally regulated expression in B cell progenitors. Gene 197:177–187

    Article  PubMed  CAS  Google Scholar 

  169. Shinohara T, Taniwaki M, Ishida Y, Kawaichi M, Honjo T (1994) Structure and chromosomal localization of the human PD-1 gene (PDCD1). Genomics 23:704–706

    Article  PubMed  CAS  Google Scholar 

  170. Dong H, Zhu G, Tamada K, Chen L (1999) B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5:1365–1369

    Article  PubMed  CAS  Google Scholar 

  171. Freeman GJ et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034

    Article  PubMed  CAS  Google Scholar 

  172. Yamazaki T et al (2002) Expression of programmed death 1 ligands by murine T cells and APC. J Immunol 169:5538–5545

    PubMed  CAS  Google Scholar 

  173. Schreiner B et al (2004) Interferon-beta enhances monocyte and dendritic cell expression of B7-H1 (PD-L1), a strong inhibitor of autologous T-cell activation: relevance for the immune modulatory effect in multiple sclerosis. J Neuroimmunol 155:172–182

    Article  PubMed  CAS  Google Scholar 

  174. Ishida M et al (2002) Differential expression of PD-L1 and PD-L2, ligands for an inhibitory receptor PD-1, in the cells of lymphohematopoietic tissues. Immunol Lett 84:57–62

    Article  PubMed  CAS  Google Scholar 

  175. Wintterle S et al (2003) Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res 63:7462–7467

    PubMed  CAS  Google Scholar 

  176. Ohigashi Y et al (2005) Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer. Clin Cancer Res 11:2947–2953

    Article  PubMed  CAS  Google Scholar 

  177. Thompson RH et al (2004) Co-stimulatory B7-H1 in renal cell carcinoma patients: indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci USA 101:17174–17179

    Article  PubMed  CAS  Google Scholar 

  178. Liu J et al (2007) Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-{gamma} and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood 110:296–304

    Article  PubMed  CAS  Google Scholar 

  179. Parsa AT et al (2007) Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 13:84–88

    Article  PubMed  CAS  Google Scholar 

  180. Hamanishi J et al (2007) Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci USA 104:3360–3365

    Article  PubMed  CAS  Google Scholar 

  181. Inman BA et al (2007) PD-L1 (B7-H1) expression by urothelial carcinoma of the bladder and BCG-induced granulomata: associations with localized stage progression. Cancer 109:1499–1505

    Article  PubMed  CAS  Google Scholar 

  182. Konishi J et al (2004) B7-H1 expression on non-small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression. Clin Cancer Res 10:5094–5100

    Article  PubMed  CAS  Google Scholar 

  183. Nakanishi J et al (2007) Overexpression of B7-H1 (PD-L1) significantly associates with tumor grade and postoperative prognosis in human urothelial cancers. Cancer Immunol Immunother 56:1173–1182

    Article  PubMed  CAS  Google Scholar 

  184. Nomi T et al (2007) Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res 13:2151–2157

    Article  PubMed  CAS  Google Scholar 

  185. Wu C et al (2006) Immunohistochemical localization of programmed death-1 ligand-1 (PD-L1) in gastric carcinoma and its clinical significance. Acta Histochem 108:19–24

    Article  PubMed  Google Scholar 

  186. Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    Article  PubMed  CAS  Google Scholar 

  187. Eppihimer MJ et al (2002) Expression and regulation of the PD-L1 immunoinhibitory molecule on microvascular endothelial cells. Microcirculation 9:133–145

    PubMed  CAS  Google Scholar 

  188. Lee SJ et al (2006) Interferon regulatory factor-1 is prerequisite to the constitutive expression and IFN-gamma-induced upregulation of B7-H1 (CD274). FEBS Lett 580:755–762

    Article  PubMed  CAS  Google Scholar 

  189. Latchman Y et al (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2:261–268

    Article  PubMed  CAS  Google Scholar 

  190. Tseng SY et al (2001) B7-DC, a new dendritic cell molecule with potent co-stimulatory properties for T cells. J Exp Med 193:839–846

    Article  PubMed  CAS  Google Scholar 

  191. Nakae S et al (2006) Mast cells enhance T cell activation: importance of mast cell co-stimulatory molecules and secreted TNF. J Immunol 176:2238–2248

    PubMed  CAS  Google Scholar 

  192. Zhong X, Tumang JR, Gao W, Bai C, Rothstein TL (2007) PD-L2 expression extends beyond dendritic cells/macrophages to B1 cells enriched for V(H)11/V(H)12 and phosphatidylcholine binding. Eur J Immunol 37:2405–2410

    Article  PubMed  CAS  Google Scholar 

  193. Loke P, Allison JP (2003) PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc Natl Acad Sci USA 100:5336–5341

    Article  PubMed  CAS  Google Scholar 

  194. Carter L et al (2002) PD-1:PD-L inhibitory pathway affects both CD4(+) and CD8(+) T cells and is overcome by IL-2. Eur J Immunol 32:634–643

    Article  PubMed  CAS  Google Scholar 

  195. Bennett F et al (2003) Program death-1 engagement upon TCR activation has distinct effects on costimulation and cytokine-driven proliferation: attenuation of ICOS, IL-4, and IL-21, but not CD28, IL-7, and IL-15 responses. J Immunol 170:711–718

    PubMed  CAS  Google Scholar 

  196. Saunders PA, Hendrycks VR, Lidinsky WA, Woods ML (2005) PD-L2:PD-1 involvement in T cell proliferation, cytokine production, and integrin-mediated adhesion. Eur J Immunol 35:3561–3569

    Article  PubMed  CAS  Google Scholar 

  197. Fife BT, Bluestone JA (2008) Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev 224:166–182

    Article  PubMed  CAS  Google Scholar 

  198. Nurieva R et al (2006) T-cell tolerance or function is determined by combinatorial co-stimulatory signals. EMBO J 25:2623–2633

    Article  PubMed  CAS  Google Scholar 

  199. Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo T (2001) PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci USA 98:13866–13871

    Article  PubMed  CAS  Google Scholar 

  200. Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL (2004) SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol 173:945–954

    PubMed  CAS  Google Scholar 

  201. Parry RV et al (2005) CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 25:9543–9553

    Article  PubMed  CAS  Google Scholar 

  202. Sheppard KA et al (2004) PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett 574:37–41

    Article  PubMed  CAS  Google Scholar 

  203. Pentcheva-Hoang T, Chen L, Pardoll DM, Allison JP (2007) Programmed death-1 concentration at the immunological synapse is determined by ligand affinity and availability. Proc Natl Acad Sci USA 104:17765–17770

    Article  PubMed  CAS  Google Scholar 

  204. Nguyen LT et al (2002) Cross-linking the B7 family molecule B7-DC directly activates immune functions of dendritic cells. J Exp Med 196:1393–1398

    Article  PubMed  CAS  Google Scholar 

  205. Radhakrishnan S et al (2003) Naturally occurring human IgM antibody that binds B7-DC and potentiates T cell stimulation by dendritic cells. J Immunol 170:1830–1838

    PubMed  CAS  Google Scholar 

  206. Kuipers H et al (2006) Contribution of the PD-1 ligands/PD-1 signaling pathway to dendritic cell-mediated CD4+ T cell activation. Eur J Immunol 36:2472–2482

    Article  PubMed  CAS  Google Scholar 

  207. Van Keulen VP et al (2006) Immunomodulation using the recombinant monoclonal human B7-DC cross-linking antibody rHIgM12. Clin Exp Immunol 143:314–321

    Article  PubMed  CAS  Google Scholar 

  208. Blocki FA et al (2006) Induction of a gene expression program in dendritic cells with a cross-linking IgM antibody to the co-stimulatory molecule B7-DC. FASEB J 20:2408–2410

    Article  PubMed  CAS  Google Scholar 

  209. Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ (2007) Programmed death-1 ligand 1 interacts specifically with the B7-1 co-stimulatory molecule to inhibit T cell responses. Immunity 27:111–122

    Article  PubMed  CAS  Google Scholar 

  210. Nishimura H et al (2001) Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291:319–322

    Article  PubMed  CAS  Google Scholar 

  211. Nishimura H, Nose M, Hiai H, Minato N, Honjo T (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11:141–151

    Article  PubMed  CAS  Google Scholar 

  212. Latchman YE et al (2004) PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc Natl Acad Sci USA 101:10691–10696

    Article  PubMed  CAS  Google Scholar 

  213. Dong H et al (2004) B7-H1 determines accumulation and deletion of intrahepatic CD8(+) T lymphocytes. Immunity 20:327–336

    Article  PubMed  CAS  Google Scholar 

  214. Ansari MJ et al (2003) The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J Exp Med 198:63–69

    Article  PubMed  CAS  Google Scholar 

  215. Salama AD et al (2003) Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. J Exp Med 198:71–78

    Article  PubMed  CAS  Google Scholar 

  216. Wang J et al (2005) Establishment of NOD-Pdcd1−/− mice as an efficient animal model of type I diabetes. Proc Natl Acad Sci USA 102:11823–11828

    Article  PubMed  CAS  Google Scholar 

  217. Thompson RH et al (2005) Co-stimulatory molecule B7-H1 in primary and metastatic clear cell renal cell carcinoma. Cancer 104:2084–2091

    Article  PubMed  CAS  Google Scholar 

  218. Dong H et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800

    PubMed  CAS  Google Scholar 

  219. Brown JA et al (2003) Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol 170:1257–1266

    PubMed  CAS  Google Scholar 

  220. Thompson RH et al (2006) Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res 66:3381–3385

    Article  PubMed  CAS  Google Scholar 

  221. Xerri L et al (2008) Programmed death 1 is a marker of angioimmunoblastic T-cell lymphoma and B-cell small lymphocytic lymphoma/chronic lymphocytic leukemia. Hum Pathol 39:1050–1058

    Article  PubMed  CAS  Google Scholar 

  222. Dorfman DM, Brown JA, Shahsafaei A, Freeman GJ (2006) Programmed death-1 (PD-1) is a marker of germinal center-associated T cells and angioimmunoblastic T-cell lymphoma. Am J Surg Pathol 30:802–810

    Article  PubMed  Google Scholar 

  223. Rosenwald A et al (2003) Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med 198:851–862

    Article  PubMed  CAS  Google Scholar 

  224. Tamura H et al (2005) Expression of functional B7-H2 and B7.2 co-stimulatory molecules and their prognostic implications in de novo acute myeloid leukemia. Clin Cancer Res 11:5708–5717

    Article  PubMed  CAS  Google Scholar 

  225. Iwai Y et al (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 99:12293–12297

    Article  PubMed  CAS  Google Scholar 

  226. Thompson RH et al (2005) B7-H1 glycoprotein blockade: a novel strategy to enhance immunotherapy in patients with renal cell carcinoma. Urology 66:10–14

    Article  PubMed  Google Scholar 

  227. Wong RM et al (2007) Programmed death-1 blockade enhances expansion and functional capacity of human melanoma antigen-specific CTLs. Int Immunol 19:1223–1234

    Article  PubMed  CAS  Google Scholar 

  228. Fourcade J et al (2009) PD-1 is a regulator of NY-ESO-1-specific CD8+ T cell expansion in melanoma patients. J Immunol 182:5240–5249

    Article  PubMed  CAS  Google Scholar 

  229. Matsuzaki J et al (2010) Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci USA 107:7875–7880

    Article  PubMed  CAS  Google Scholar 

  230. Ahmadzadeh M et al (2009) Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114:1537–1544

    Article  PubMed  CAS  Google Scholar 

  231. Strome SE et al (2003) B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res 63:6501–6505

    PubMed  CAS  Google Scholar 

  232. Blank C et al (2004) PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res 64:1140–1145

    Article  PubMed  CAS  Google Scholar 

  233. Hirano F et al (2005) Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res 65:1089–1096

    PubMed  CAS  Google Scholar 

  234. Curiel TJ et al (2003) Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 9:562–567

    Article  PubMed  CAS  Google Scholar 

  235. Iwai Y, Terawaki S, Honjo T (2005) PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int Immunol 17:133–144

    Article  PubMed  CAS  Google Scholar 

  236. Radhakrishnan S et al (2004) Immunotherapeutic potential of B7-DC (PD-L2) cross-linking antibody in conferring antitumor immunity. Cancer Res 64:4965–4972

    Article  PubMed  CAS  Google Scholar 

  237. Yuan Y et al (2004) Investigation on the effects of soluble programmed death-1 (sPD-1) enhancing anti-tumor immune response. J Huazhong Univ Sci Technolog Med Sci 24:531–534

    Article  PubMed  CAS  Google Scholar 

  238. He YF et al (2004) Blocking programmed death-1 ligand-PD-1 interactions by local gene therapy results in enhancement of antitumor effect of secondary lymphoid tissue chemokine. J Immunol 173:4919–4928

    PubMed  CAS  Google Scholar 

  239. Zhou Q et al (2010) Program death-1 signaling and regulatory T cells collaborate to resist the function of adoptively transferred cytotoxic T lymphocytes in advanced acute myeloid leukemia. Blood 116:2484–2493

    Article  PubMed  CAS  Google Scholar 

  240. Curran MA, Montalvo W, Yagita H, Allison JP (2010) PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA 107:4275–4280

    Article  PubMed  CAS  Google Scholar 

  241. Webster WS et al (2007) Targeting molecular and cellular inhibitory mechanisms for improvement of antitumor memory responses reactivated by tumor cell vaccine. J Immunol 179:2860–2869

    PubMed  CAS  Google Scholar 

  242. Li B et al (2009) Anti-programmed death-1 synergizes with granulocyte macrophage colony-stimulating factor–secreting tumor cell immunotherapy providing therapeutic benefit to mice with established tumors. Clin Cancer Res 15:1623–1634

    Article  PubMed  CAS  Google Scholar 

  243. Pilon-Thomas S, Mackay A, Vohra N, Mule JJ (2010) Blockade of programmed death ligand 1 enhances the therapeutic efficacy of combination immunotherapy against melanoma. J Immunol 184:3442–3449

    Article  PubMed  CAS  Google Scholar 

  244. Berger R et al (2008) Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res 14:3044–3051

    Article  PubMed  CAS  Google Scholar 

  245. Hardy B, Galli M, Rivlin E, Goren L, Novogrodsky A (1995) Activation of human lymphocytes by a monoclonal antibody to B lymphoblastoid cells; molecular mass and distribution of binding protein. Cancer Immunol Immunother 40:376–382

    Article  PubMed  CAS  Google Scholar 

  246. Hardy B, Kovjazin R, Raiter A, Ganor N, Novogrodsky A (1997) A lymphocyte-activating monoclonal antibody induces regression of human tumors in severe combined immunodeficient mice. Proc Natl Acad Sci USA 94:5756–5760

    Article  PubMed  CAS  Google Scholar 

  247. Hardy B, Yampolski I, Kovjazin R, Galli M, Novogrodsky A (1994) A monoclonal antibody against a human B lymphoblastoid cell line induces tumor regression in mice. Cancer Res 54:5793–5796

    PubMed  CAS  Google Scholar 

  248. Brahmer JR et al (2010) Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 28:3167–3175

    Article  PubMed  CAS  Google Scholar 

  249. Weber J (2010) Immune checkpoint proteins: a new therapeutic paradigm for cancer-preclinical background: CTLA-4 and PD-1 blockade. Semin Oncol 37:430–439

    Article  PubMed  CAS  Google Scholar 

  250. Watanabe N et al (2003) BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol 4:670–679

    Article  PubMed  CAS  Google Scholar 

  251. Han P, Goularte OD, Rufner K, Wilkinson B, Kaye J (2004) An inhibitory Ig superfamily protein expressed by lymphocytes and APCs is also an early marker of thymocyte positive selection. J Immunol 172:5931–5939

    PubMed  CAS  Google Scholar 

  252. Hurchla MA et al (2005) B and T lymphocyte attenuator exhibits structural and expression polymorphisms and is highly Induced in anergic CD4+ T cells. J Immunol 174:3377–3385

    PubMed  CAS  Google Scholar 

  253. Loyet KM, Ouyang W, Eaton DL, Stults JT (2005) Proteomic profiling of surface proteins on Th1 and Th2 cells. J Proteome Res 4:400–409

    Article  PubMed  CAS  Google Scholar 

  254. Otsuki N, Kamimura Y, Hashiguchi M, Azuma M (2006) Expression and function of the B and T lymphocyte attenuator (BTLA/CD272) on human T cells. Biochem Biophys Res Commun 344:1121–1127

    Article  PubMed  CAS  Google Scholar 

  255. Gavrieli M, Watanabe N, Loftin SK, Murphy TL, Murphy KM (2003) Characterization of phosphotyrosine binding motifs in the cytoplasmic domain of B and T lymphocyte attenuator required for association with protein tyrosine phosphatases SHP-1 and SHP-2. Biochem Biophys Res Commun 312:1236–1243

    Article  PubMed  CAS  Google Scholar 

  256. Sedy JR et al (2005) B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nat Immunol 6:90–98

    Article  PubMed  CAS  Google Scholar 

  257. Mauri DN et al (1998) LIGHT, a new member of the TNF superfamily, and lymphotoxin alpha are ligands for herpesvirus entry mediator. Immunity 8:21–30

    Article  PubMed  CAS  Google Scholar 

  258. Montgomery RI, Warner MS, Lum BJ, Spear PG (1996) Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell 87:427–436

    Article  PubMed  CAS  Google Scholar 

  259. Hsu H et al (1997) ATAR, a novel tumor necrosis factor receptor family member, signals through TRAF2 and TRAF5. J Biol Chem 272:13471–13474

    Article  PubMed  CAS  Google Scholar 

  260. Marsters SA et al (1997) Herpesvirus entry mediator, a member of the tumor necrosis factor receptor (TNFR) family, interacts with members of the TNFR-associated factor family and activates the transcription factors NF-kappaB and AP-1. J Biol Chem 272:14029–14032

    Article  PubMed  CAS  Google Scholar 

  261. Kwon BS et al (1997) A newly identified member of the tumor necrosis factor receptor superfamily with a wide tissue distribution and involvement in lymphocyte activation. J Biol Chem 272:14272–14276

    Article  PubMed  CAS  Google Scholar 

  262. Morel Y et al (2000) Reciprocal expression of the TNF family receptor herpes virus entry mediator and its ligand LIGHT on activated T cells: LIGHT down-regulates its own receptor. J Immunol 165:4397–4404

    PubMed  CAS  Google Scholar 

  263. Duhen T et al (2004) LIGHT costimulates CD40 triggering and induces immunoglobulin secretion; a novel key partner in T cell-dependent B cell terminal differentiation. Eur J Immunol 34:3534–3541

    Article  PubMed  CAS  Google Scholar 

  264. Harrop JA et al (1998) Herpesvirus entry mediator ligand (HVEM-L), a novel ligand for HVEM/TR2, stimulates proliferation of T cells and inhibits HT29 cell growth. J Biol Chem 273:27548–27556

    Article  PubMed  CAS  Google Scholar 

  265. Harrop JA et al (1998) Antibodies to TR2 (herpesvirus entry mediator), a new member of the TNF receptor superfamily, block T cell proliferation, expression of activation markers, and production of cytokines. J Immunol 161:1786–1794

    PubMed  CAS  Google Scholar 

  266. Scheu S et al (2002) Targeted disruption of LIGHT causes defects in co-stimulatory T cell activation and reveals cooperation with lymphotoxin beta in mesenteric lymph node genesis. J Exp Med 195:1613–1624

    Article  PubMed  CAS  Google Scholar 

  267. Wang J et al (2001) The critical role of LIGHT, a TNF family member, in T cell development. J Immunol 167:5099–5105

    PubMed  CAS  Google Scholar 

  268. Tamada K et al (2000) Modulation of T-cell-mediated immunity in tumor and graft-versus-host disease models through the LIGHT co-stimulatory pathway. Nat Med 6:283–289

    Article  PubMed  CAS  Google Scholar 

  269. Tamada K et al (2000) LIGHT, a TNF-like molecule, costimulates T cell proliferation and is required for dendritic cell-mediated allogeneic T cell response. J Immunol 164:4105–4110

    PubMed  CAS  Google Scholar 

  270. Yu KY et al (1999) A newly identified member of tumor necrosis factor receptor superfamily (TR6) suppresses LIGHT-mediated apoptosis. J Biol Chem 274:13733–13736

    Article  PubMed  CAS  Google Scholar 

  271. Granger SW, Rickert S (2003) LIGHT-HVEM signaling and the regulation of T cell-mediated immunity. Cytokine Growth Factor Rev 14:289–296

    Article  PubMed  CAS  Google Scholar 

  272. Morel Y, Truneh A, Sweet RW, Olive D, Costello RT (2001) The TNF superfamily members LIGHT and CD154 (CD40 ligand) costimulate induction of dendritic cell maturation and elicit specific CTL activity. J Immunol 167:2479–2486

    PubMed  CAS  Google Scholar 

  273. Anumanthan A et al (1998) Cloning of BY55, a novel Ig superfamily member expressed on NK cells, CTL, and intestinal intraepithelial lymphocytes. J Immunol 161:2780–2790

    PubMed  CAS  Google Scholar 

  274. Maiza H et al (1993) A novel 80-kD cell surface structure identifies human circulating lymphocytes with natural killer activity. J Exp Med 178:1121–1126

    Article  PubMed  CAS  Google Scholar 

  275. Maeda M et al (2005) Murine CD160, Ig-like receptor on NK cells and NKT cells, recognizes classical and nonclassical MHC class I and regulates NK cell activation. J Immunol 175:4426–4432

    PubMed  CAS  Google Scholar 

  276. Agrawal S et al (1999) Cutting edge: MHC class I triggering by a novel cell surface ligand costimulates proliferation of activated human T cells. J Immunol 162:1223–1226

    PubMed  CAS  Google Scholar 

  277. Le Bouteiller P et al (2002) Engagement of CD160 receptor by HLA-C is a triggering mechanism used by circulating natural killer (NK) cells to mediate cytotoxicity. Proc Natl Acad Sci USA 99:16963–16968

    Article  PubMed  CAS  Google Scholar 

  278. Barakonyi A et al (2004) Cutting edge: engagement of CD160 by its HLA-C physiological ligand triggers a unique cytokine profile secretion in the cytotoxic peripheral blood NK cell subset. J Immunol 173:5349–5354

    PubMed  CAS  Google Scholar 

  279. Bengsch B et al (2010) Coexpression of PD-1, 2B4, CD160 and KLRG1 on exhausted HCV-specific CD8+ T cells is linked to antigen recognition and T cell differentiation. PLoS Pathog 6:e1000947

    Article  PubMed  CAS  Google Scholar 

  280. Cai G et al (2008) CD160 inhibits activation of human CD4+ T cells through interaction with herpesvirus entry mediator. Nat Immunol 9:176–185

    Article  PubMed  CAS  Google Scholar 

  281. Cai G, Freeman GJ (2009) The CD160, BTLA, LIGHT/HVEM pathway: a bidirectional switch regulating T-cell activation. Immunol Rev 229:244–258

    Article  PubMed  CAS  Google Scholar 

  282. Adams AB, Larsen CP, Pearson TC, Newell KA (2002) The role of TNF receptor and TNF superfamily molecules in organ transplantation. Am J Transplant 2:12–18

    Article  PubMed  CAS  Google Scholar 

  283. Rabot M et al (2007) CD160-activating NK cell effector functions depend on the phosphatidylinositol 3-kinase recruitment. Int Immunol 19:401–409

    Article  PubMed  CAS  Google Scholar 

  284. Krieg C, Han P, Stone R, Goularte OD, Kaye J (2005) Functional analysis of B and T lymphocyte attenuator engagement on CD4+ and CD8+ T cells. J Immunol 175:6420–6427

    PubMed  CAS  Google Scholar 

  285. Giustiniani J, Bensussan A, Marie-Cardine A (2009) Identification and characterization of a transmembrane isoform of CD160 (CD160-TM), a unique activating receptor selectively expressed upon human NK cell activation. J Immunol 182:63–71

    PubMed  CAS  Google Scholar 

  286. Oya Y et al (2008) Development of autoimmune hepatitis-like disease and production of autoantibodies to nuclear antigens in mice lacking B and T lymphocyte attenuator. Arthritis Rheum 58:2498–2510

    Article  PubMed  CAS  Google Scholar 

  287. Deppong C et al (2006) Cutting edge: B and T lymphocyte attenuator and programmed death receptor-1 inhibitory receptors are required for termination of acute allergic airway inflammation. J Immunol 176:3909–3913

    PubMed  CAS  Google Scholar 

  288. Krieg C, Boyman O, Fu YX, Kaye J (2007) B and T lymphocyte attenuator regulates CD8+ T cell-intrinsic homeostasis and memory cell generation. Nat Immunol 8:162–171

    Article  PubMed  CAS  Google Scholar 

  289. Liu X et al (2009) Cutting edge: A critical role of B and T lymphocyte attenuator in peripheral T cell tolerance induction. J Immunol 182:4516–4520

    Article  PubMed  CAS  Google Scholar 

  290. Ye Q et al (2002) Modulation of LIGHT-HVEM costimulation prolongs cardiac allograft survival. J Exp Med 195:795–800

    Article  PubMed  CAS  Google Scholar 

  291. Tamada K et al (2002) Cutting edge: selective impairment of CD8+ T cell function in mice lacking the TNF superfamily member LIGHT. J Immunol 168:4832–4835

    PubMed  CAS  Google Scholar 

  292. Liu J et al (2003) LIGHT-deficiency impairs CD8+ T cell expansion, but not effector function. Int Immunol 15:861–870

    Article  PubMed  CAS  Google Scholar 

  293. Wang J et al (2001) The regulation of T cell homeostasis and autoimmunity by T cell-derived LIGHT. J Clin Invest 108:1771–1780

    PubMed  CAS  Google Scholar 

  294. Wang J et al (2004) Dysregulated LIGHT expression on T cells mediates intestinal inflammation and contributes to IgA nephropathy. J Clin Invest 113:826–835

    PubMed  CAS  Google Scholar 

  295. Wang Y et al (2005) The role of herpesvirus entry mediator as a negative regulator of T cell-mediated responses. J Clin Invest 115:711–717

    PubMed  CAS  Google Scholar 

  296. Zhai Y et al (1998) LIGHT, a novel ligand for lymphotoxin beta receptor and TR2/HVEM induces apoptosis and suppresses in vivo tumor formation via gene transfer. J Clin Invest 102:1142–1151

    Article  PubMed  CAS  Google Scholar 

  297. Costello RT et al (2003) Stimulation of non-Hodgkin's lymphoma via HVEM: an alternate and safe way to increase Fas-induced apoptosis and improve tumor immunogenicity. Leukemia 17:2500–2507

    Article  PubMed  CAS  Google Scholar 

  298. Cheung KJ et al (2010) Acquired TNFRSF14 mutations in follicular lymphoma are associated with worse prognosis. Cancer Res 70:9166–9174

    Article  PubMed  CAS  Google Scholar 

  299. Liu FT et al (2010) CD160 signaling mediates PI3K-dependent survival and growth signals in chronic lymphocytic leukemia. Blood 115:3079–3088

    Article  PubMed  CAS  Google Scholar 

  300. Derre L et al (2010) BTLA mediates inhibition of human tumor-specific CD8+ T cells that can be partially reversed by vaccination. J Clin Invest 120:157–167

    Article  PubMed  CAS  Google Scholar 

  301. Paulos CM, June CH (2010) Putting the brakes on BTLA in T cell-mediated cancer immunotherapy. J Clin Invest 120:76–80

    Article  PubMed  CAS  Google Scholar 

  302. Yu P, Fu YX (2008) Targeting tumors with LIGHT to generate metastasis-clearing immunity. Cytokine Growth Factor Rev 19:285–294

    Article  PubMed  CAS  Google Scholar 

  303. Yu P et al (2004) Priming of naive T cells inside tumors leads to eradication of established tumors. Nat Immunol 5:141–149

    Article  PubMed  CAS  Google Scholar 

  304. Rooney IA et al (2000) The lymphotoxin-beta receptor is necessary and sufficient for LIGHT-mediated apoptosis of tumor cells. J Biol Chem 275:14307–14315

    Article  PubMed  CAS  Google Scholar 

  305. Kanodia S et al (2010) Expression of LIGHT/TNFSF14 combined with vaccination against human papillomavirus Type 16 E7 induces significant tumor regression. Cancer Res 70:3955–3964

    Article  PubMed  CAS  Google Scholar 

  306. Yu P et al (2007) Targeting the primary tumor to generate CTL for the effective eradication of spontaneous metastases. J Immunol 179:1960–1968

    PubMed  CAS  Google Scholar 

  307. Han L et al (2009) Soluble B and T lymphocyte attenuator possesses antitumor effects and facilitates heat shock protein 70 vaccine-triggered antitumor immunity against a murine TC-1 cervical cancer model in vivo. J Immunol 183:7842–7850

    Article  PubMed  CAS  Google Scholar 

  308. Triebel F et al (1990) LAG-3, a novel lymphocyte activation gene closely related to CD4. J Exp Med 171:1393–1405

    Article  PubMed  CAS  Google Scholar 

  309. Kisielow M, Kisielow J, Capoferri-Sollami G, Karjalainen K (2005) Expression of lymphocyte activation gene 3 (LAG-3) on B cells is induced by T cells. Eur J Immunol 35:2081–2088

    Article  PubMed  CAS  Google Scholar 

  310. Huard B, Gaulard P, Faure F, Hercend T, Triebel F (1994) Cellular expression and tissue distribution of the human LAG-3-encoded protein, an MHC class II ligand. Immunogenetics 39:213–217

    Article  PubMed  CAS  Google Scholar 

  311. Baixeras E et al (1992) Characterization of the lymphocyte activation gene 3-encoded protein. A new ligand for human leukocyte antigen class II antigens. J Exp Med 176:327–337

    Article  PubMed  CAS  Google Scholar 

  312. Huard B, Prigent P, Tournier M, Bruniquel D, Triebel F (1995) CD4/major histocompatibility complex class II interaction analyzed with CD4- and lymphocyte activation gene-3 (LAG-3)-Ig fusion proteins. Eur J Immunol 25:2718–2721

    Article  PubMed  CAS  Google Scholar 

  313. Huard B et al (1997) Characterization of the major histocompatibility complex class II binding site on LAG-3 protein. Proc Natl Acad Sci USA 94:5744–5749

    Article  PubMed  CAS  Google Scholar 

  314. Workman CJ, Vignali DA (2003) The CD4-related molecule, LAG-3 (CD223), regulates the expansion of activated T cells. Eur J Immunol 33:970–979

    Article  PubMed  CAS  Google Scholar 

  315. Macon-Lemaitre L, Triebel F (2005) The negative regulatory function of the lymphocyte-activation gene-3 co-receptor (CD223) on human T cells. Immunology 115:170–178

    Article  PubMed  CAS  Google Scholar 

  316. Hannier S, Tournier M, Bismuth G, Triebel F (1998) CD3/TCR complex-associated lymphocyte activation gene-3 molecules inhibit CD3/TCR signaling. J Immunol 161:4058–4065

    PubMed  CAS  Google Scholar 

  317. Miyazaki T, Dierich A, Benoist C, Mathis D (1996) Independent modes of natural killing distinguished in mice lacking Lag3. Science 272:405–408

    Article  PubMed  CAS  Google Scholar 

  318. Workman CJ, Vignali DA (2005) Negative regulation of T cell homeostasis by lymphocyte activation gene-3 (CD223). J Immunol 174:688–695

    PubMed  CAS  Google Scholar 

  319. Huang CT et al (2004) Role of LAG-3 in regulatory T cells. Immunity 21:503–513

    Article  PubMed  CAS  Google Scholar 

  320. Camisaschi C et al (2010) LAG-3 expression defines a subset of CD4(+)CD25(high)Foxp3(+) regulatory T cells that are expanded at tumor sites. J Immunol 184:6545–6551

    Article  PubMed  CAS  Google Scholar 

  321. Joosten SA et al (2007) Identification of a human CD8+ regulatory T cell subset that mediates suppression through the chemokine CC chemokine ligand 4. Proc Natl Acad Sci USA 104:8029–8034

    Article  PubMed  CAS  Google Scholar 

  322. Andreae S, Piras F, Burdin N, Triebel F (2002) Maturation and activation of dendritic cells induced by lymphocyte activation gene-3 (CD223). J Immunol 168:3874–3880

    PubMed  CAS  Google Scholar 

  323. Andreae S, Buisson S, Triebel F (2003) MHC class II signal transduction in human dendritic cells induced by a natural ligand, the LAG-3 protein (CD223). Blood 102:2130–2137

    Article  PubMed  CAS  Google Scholar 

  324. Liang B et al (2008) Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J Immunol 180:5916–5926

    PubMed  CAS  Google Scholar 

  325. Bayry J, Triebel F, Kaveri SV, Tough DF (2007) Human dendritic cells acquire a semimature phenotype and lymph node homing potential through interaction with CD4 + CD25+ regulatory T cells. J Immunol 178:4184–4193

    PubMed  CAS  Google Scholar 

  326. Grosso JF et al (2007) LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems. J Clin Invest 117:3383–3392

    Article  PubMed  CAS  Google Scholar 

  327. El Mir S, Triebel F (2000) A soluble lymphocyte activation gene-3 molecule used as a vaccine adjuvant elicits greater humoral and cellular immune responses to both particulate and soluble antigens. J Immunol 164:5583–5589

    PubMed  Google Scholar 

  328. Prigent P, El Mir S, Dreano M, Triebel F (1999) Lymphocyte activation gene-3 induces tumor regression and antitumor immune responses. Eur J Immunol 29:3867–3876

    Article  PubMed  CAS  Google Scholar 

  329. Cappello P et al (2003) LAG-3 enables DNA vaccination to persistently prevent mammary carcinogenesis in HER-2/neu transgenic BALB/c mice. Cancer Res 63:2518–2525

    PubMed  CAS  Google Scholar 

  330. Goldberg MV, Drake CG (2011) LAG-3 in cancer immunotherapy. Curr Top Microbiol Immunol 344:269–278

    Article  PubMed  CAS  Google Scholar 

  331. Brignone C, Grygar C, Marcu M, Schakel K, Triebel F (2007) A soluble form of lymphocyte activation gene-3 (IMP321) induces activation of a large range of human effector cytotoxic cells. J Immunol 179:4202–4211

    PubMed  CAS  Google Scholar 

  332. Brignone C, Grygar C, Marcu M, Perrin G, Triebel F (2007) IMP321 (sLAG-3) safety and T cell response potentiation using an influenza vaccine as a model antigen: a single-blind phase I study. Vaccine 25:4641–4650

    Article  PubMed  CAS  Google Scholar 

  333. Brignone C, Grygar C, Marcu M, Perrin G, Triebel F (2007) IMP321 (sLAG-3), an immunopotentiator for T cell responses against a HBsAg antigen in healthy adults: a single blind randomised controlled phase I study. J Immune Based Ther Vaccines 5:5

    Article  PubMed  CAS  Google Scholar 

  334. Brignone C, Escudier B, Grygar C, Marcu M, Triebel F (2009) A phase I pharmacokinetic and biological correlative study of IMP321, a novel MHC class II agonist, in patients with advanced renal cell carcinoma. Clin Cancer Res 15:6225–6231

    Article  PubMed  CAS  Google Scholar 

  335. Brignone C et al (2010) First-line chemoimmunotherapy in metastatic breast carcinoma: combination of paclitaxel and IMP321 (LAG-3Ig) enhances immune responses and antitumor activity. J Transl Med 8:71

    Article  PubMed  CAS  Google Scholar 

  336. Chapoval AI et al (2001) B7-H3: a co-stimulatory molecule for T cell activation and IFN-gamma production. Nat Immunol 2:269–274

    Article  PubMed  CAS  Google Scholar 

  337. Sun M et al (2002) Characterization of mouse and human B7-H3 genes. J Immunol 168:6294–6297

    PubMed  CAS  Google Scholar 

  338. Suh WK et al (2003) The B7 family member B7-H3 preferentially down-regulates T helper type 1-mediated immune responses. Nat Immunol 4:899–906

    Article  PubMed  CAS  Google Scholar 

  339. Steinberger P et al (2004) Molecular characterization of human 4Ig-B7-H3, a member of the B7 family with four Ig-like domains. J Immunol 172:2352–2359

    PubMed  CAS  Google Scholar 

  340. King RG, Herrin BR, Justement LB (2006) Trem-like transcript 2 is expressed on cells of the myeloid/granuloid and B lymphoid lineage and is up-regulated in response to inflammation. J Immunol 176:6012–6021

    PubMed  CAS  Google Scholar 

  341. Allcock RJ, Barrow AD, Forbes S, Beck S, Trowsdale J (2003) The human TREM gene cluster at 6p21.1 encodes both activating and inhibitory single IgV domain receptors and includes NKp44. Eur J Immunol 33:567–577

    Article  PubMed  CAS  Google Scholar 

  342. Tirapu I et al (2006) Low surface expression of B7-1 (CD80) is an immunoescape mechanism of colon carcinoma. Cancer Res 66:2442–2450

    Article  PubMed  CAS  Google Scholar 

  343. Prasad DV, Richards S, Mai XM, Dong C (2003) B7S1, a novel B7 family member that negatively regulates T cell activation. Immunity 18:863–873

    Article  PubMed  CAS  Google Scholar 

  344. Wang L et al (2005) B7-H3 promotes acute and chronic allograft rejection. Eur J Immunol 35:428–438

    Article  PubMed  CAS  Google Scholar 

  345. Sica GL et al (2003) B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity 18:849–861

    Article  PubMed  CAS  Google Scholar 

  346. Zang X et al (2003) B7x: a widely expressed B7 family member that inhibits T cell activation. Proc Natl Acad Sci USA 100:10388–10392

    Article  PubMed  CAS  Google Scholar 

  347. Choi IH et al (2003) Genomic organization and expression analysis of B7-H4, an immune inhibitory molecule of the B7 family. J Immunol 171:4650–4654

    PubMed  CAS  Google Scholar 

  348. Kryczek I et al (2007) Relationship between B7-H4, regulatory T cells, and patient outcome in human ovarian carcinoma. Cancer Res 67:8900–8905

    Article  PubMed  CAS  Google Scholar 

  349. Kryczek I et al (2006) Cutting edge: induction of B7-H4 on APCs through IL-10: novel suppressive mode for regulatory T cells. J Immunol 177:40–44

    PubMed  CAS  Google Scholar 

  350. Kryczek I et al (2006) B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J Exp Med 203:871–881

    Article  PubMed  CAS  Google Scholar 

  351. Suh WK et al (2006) Generation and characterization of B7-H4/B7S1/B7x-deficient mice. Mol Cell Biol 26:6403–6411

    Article  PubMed  CAS  Google Scholar 

  352. Sun Y et al (2006) B7-H3 and B7-H4 expression in non-small-cell lung cancer. Lung Cancer 53:143–151

    Article  PubMed  Google Scholar 

  353. Krambeck AE et al (2006) B7-H4 expression in renal cell carcinoma and tumor vasculature: associations with cancer progression and survival. Proc Natl Acad Sci USA 103:10391–10396

    Article  PubMed  CAS  Google Scholar 

  354. Crispen PL et al (2008) Tumor cell and tumor vasculature expression of B7-H3 predict survival in clear cell renal cell carcinoma. Clin Cancer Res 14:5150–5157

    Article  PubMed  CAS  Google Scholar 

  355. Thompson RH et al (2008) Serum-soluble B7x is elevated in renal cell carcinoma patients and is associated with advanced stage. Cancer Res 68:6054–6058

    Article  PubMed  CAS  Google Scholar 

  356. Roth TJ et al (2007) B7-H3 ligand expression by prostate cancer: a novel marker of prognosis and potential target for therapy. Cancer Res 67:7893–7900

    Article  PubMed  CAS  Google Scholar 

  357. Zang X et al (2007) B7-H3 and B7x are highly expressed in human prostate cancer and associated with disease spread and poor outcome. Proc Natl Acad Sci USA 104:19458–19463

    Article  PubMed  CAS  Google Scholar 

  358. Sun J et al (2010) Clinical significance and regulation of the co-stimulatory molecule B7-H3 in human colorectal carcinoma. Cancer Immunol Immunother 59:1163–1171

    Article  PubMed  CAS  Google Scholar 

  359. Miyatake T et al (2007) B7-H4 (DD-O110) is overexpressed in high risk uterine endometrioid adenocarcinomas and inversely correlated with tumor T-cell infiltration. Gynecol Oncol 106:119–127

    Article  PubMed  CAS  Google Scholar 

  360. Tringler B et al (2006) B7-H4 overexpression in ovarian tumors. Gynecol Oncol 100:44–52

    Article  PubMed  CAS  Google Scholar 

  361. Awadallah NS et al (2008) Detection of B7-H4 and p53 in pancreatic cancer: potential role as a cytological diagnostic adjunct. Pancreas 36:200–206

    Article  PubMed  CAS  Google Scholar 

  362. Tringler B et al (2005) B7-h4 is highly expressed in ductal and lobular breast cancer. Clin Cancer Res 11:1842–1848

    Article  PubMed  CAS  Google Scholar 

  363. Wu CP et al (2006) Relationship between co-stimulatory molecule B7-H3 expression and gastric carcinoma histology and prognosis. World J Gastroenterol 12:457–459

    PubMed  CAS  Google Scholar 

  364. Luo L et al (2004) B7-H3 enhances tumor immunity in vivo by costimulating rapid clonal expansion of antigen-specific CD8+ cytolytic T cells. J Immunol 173:5445–5450

    PubMed  CAS  Google Scholar 

  365. Luo L et al (2006) Arsenic trioxide synergizes with B7H3-mediated immunotherapy to eradicate hepatocellular carcinomas. Int J Cancer 118:1823–1830

    Article  PubMed  CAS  Google Scholar 

  366. Lupu CM et al (2006) An orthotopic colon cancer model for studying the B7-H3 antitumor effect in vivo. J Gastrointest Surg 10:635–645

    PubMed  Google Scholar 

  367. Sun X et al (2003) Mouse B7-H3 induces antitumor immunity. Gene Ther 10:1728–1734

    Article  PubMed  CAS  Google Scholar 

  368. Koho H et al (1984) Monoclonal antibodies to antigens associated with transitional cell carcinoma of the human urinary bladder. I. Determination of the selectivity of six antibodies by cell ELISA and immunofluorescence. Cancer Immunol Immunother 17:165–172

    Article  PubMed  CAS  Google Scholar 

  369. van Kooten C, Banchereau J (1997) Immune regulation by CD40-CD40-L interactions. Front Biosci 2:d1–d11

    PubMed  Google Scholar 

  370. van Kooten C, Banchereau J (1997) Functions of CD40 on B cells, dendritic cells and other cells. Curr Opin Immunol 9:330–337

    Article  PubMed  Google Scholar 

  371. Bourgeois C, Rocha B, Tanchot C (2002) A role for CD40 expression on CD8+ T cells in the generation of CD8+ T cell memory. Science 297:2060–2063

    Article  PubMed  CAS  Google Scholar 

  372. Alexandroff AB et al (2000) Role for CD40-CD40 ligand interactions in the immune response to solid tumours. Mol Immunol 37:515–526

    Article  PubMed  CAS  Google Scholar 

  373. Vonderheide RH (2007) Prospect of targeting the CD40 pathway for cancer therapy. Clin Cancer Res 13:1083–1088

    Article  PubMed  CAS  Google Scholar 

  374. Agathanggelou A et al (1995) Expression of immune regulatory molecules in Epstein-Barr virus-associated nasopharyngeal carcinomas with prominent lymphoid stroma. Evidence for a functional interaction between epithelial tumor cells and infiltrating lymphoid cells. Am J Pathol 147:1152–1160

    PubMed  CAS  Google Scholar 

  375. Altenburg A, Baldus SE, Smola H, Pfister H, Hess S (1999) CD40 ligand-CD40 interaction induces chemokines in cervical carcinoma cells in synergism with IFN-gamma. J Immunol 162:4140–4147

    PubMed  CAS  Google Scholar 

  376. Palmer DH et al (2004) CD40 expression in prostate cancer: a potential diagnostic and therapeutic molecule. Oncol Rep 12:679–682

    PubMed  CAS  Google Scholar 

  377. Georgopoulos NT et al (2007) CD40-mediated death and cytokine secretion in colorectal cancer: a potential target for inflammatory tumour cell killing. Int J Cancer 121:1373–1381

    Article  PubMed  CAS  Google Scholar 

  378. Ishikawa K et al (2008) Up-regulation of CD40 with juxtacrine activity in human nonsmall lung cancer cells correlates with poor prognosis. Cancer 113:530–541

    Article  PubMed  CAS  Google Scholar 

  379. Klaus GG, Choi MS, Lam EW, Johnson-Leger C, Cliff J (1997) CD40: a pivotal receptor in the determination of life/death decisions in B lymphocytes. Int Rev Immunol 15:5–31

    Article  PubMed  CAS  Google Scholar 

  380. Higuchi T et al (2002) Cutting Edge: ectopic expression of CD40 ligand on B cells induces lupus-like autoimmune disease. J Immunol 168:9–12

    PubMed  CAS  Google Scholar 

  381. Henn V et al (1998) CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391:591–594

    Article  PubMed  CAS  Google Scholar 

  382. Danese S et al (2003) Platelets trigger a CD40-dependent inflammatory response in the microvasculature of inflammatory bowel disease patients. Gastroenterology 124:1249–1264

    Article  PubMed  CAS  Google Scholar 

  383. Filion LG, Matusevicius D, Graziani-Bowering GM, Kumar A, Freedman MS (2003) Monocyte-derived IL12, CD86 (B7-2) and CD40L expression in relapsing and progressive multiple sclerosis. Clin Immunol 106:127–138

    Article  PubMed  CAS  Google Scholar 

  384. Katsiari CG et al (2002) CD40L overexpression on T cells and monocytes from patients with systemic lupus erythematosus is resistant to calcineurin inhibition. Lupus 11:370–378

    Article  PubMed  CAS  Google Scholar 

  385. Schonbeck U et al (2002) Oxidized low-density lipoprotein augments and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors limit CD40 and CD40L expression in human vascular cells. Circulation 106:2888–2893

    Article  PubMed  CAS  Google Scholar 

  386. Kalbasi A et al (2010) CD40 expression by human melanocytic lesions and melanoma cell lines and direct CD40 targeting with the therapeutic anti-CD40 antibody CP-870,893. J Immunother 33:810–816

    Article  PubMed  CAS  Google Scholar 

  387. Mackey MF, Wang Z, Eichelberg K, Germain RN (2003) Distinct contributions of different CD40 TRAF binding sites to CD154-induced dendritic cell maturation and IL-12 secretion. Eur J Immunol 33:779–789

    Article  PubMed  CAS  Google Scholar 

  388. Quezada SA, Jarvinen LZ, Lind EF, Noelle RJ (2004) CD40/CD154 interactions at the interface of tolerance and immunity. Annu Rev Immunol 22:307–328

    Article  PubMed  CAS  Google Scholar 

  389. Allen RC et al (1993) CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science 259:990–993

    Article  PubMed  CAS  Google Scholar 

  390. Ferrari S et al (2001) Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc Natl Acad Sci USA 98:12614–12619

    Article  PubMed  CAS  Google Scholar 

  391. Etzioni A, Ochs HD (2004) The hyper IgM syndrome—an evolving story. Pediatr Res 56:519–525

    Article  PubMed  CAS  Google Scholar 

  392. Uckun FM et al (1990) Temporal association of CD40 antigen expression with discrete stages of human B-cell ontogeny and the efficacy of anti-CD40 immunotoxins against clonogenic B-lineage acute lymphoblastic leukemia as well as B-lineage non-Hodgkin's lymphoma cells. Blood 76:2449–2456

    PubMed  CAS  Google Scholar 

  393. Pellat-Deceunynck C et al (1994) Expression of CD28 and CD40 in human myeloma cells: a comparative study with normal plasma cells. Blood 84:2597–2603

    PubMed  CAS  Google Scholar 

  394. Holub M et al (2003) Heterogeneous expression and regulation of CD40 in human hepatocellular carcinoma. Eur J Gastroenterol Hepatol 15:119–126

    Article  PubMed  CAS  Google Scholar 

  395. Jiang E et al (2008) Expression of CD40 in ovarian cancer and adenovirus-mediated CD40 ligand therapy on ovarian cancer in vitro. Tumori 94:356–361

    PubMed  Google Scholar 

  396. Eliopoulos AG et al (2000) CD40 induces apoptosis in carcinoma cells through activation of cytotoxic ligands of the tumor necrosis factor superfamily. Mol Cell Biol 20:5503–5515

    Article  PubMed  CAS  Google Scholar 

  397. Ghamande S et al (2001) Recombinant CD40 ligand therapy has significant antitumor effects on CD40-positive ovarian tumor xenografts grown in SCID mice and demonstrates an augmented effect with cisplatin. Cancer Res 61:7556–7562

    PubMed  CAS  Google Scholar 

  398. Tong AW et al (2001) Growth-inhibitory effects of CD40 ligand (CD154) and its endogenous expression in human breast cancer. Clin Cancer Res 7:691–703

    PubMed  CAS  Google Scholar 

  399. Hirano A et al (1999) Inhibition of human breast carcinoma growth by a soluble recombinant human CD40 ligand. Blood 93:2999–3007

    PubMed  CAS  Google Scholar 

  400. Grossmann ME, Brown MP, Brenner MK (1997) Antitumor responses induced by transgenic expression of CD40 ligand. Hum Gene Ther 8:1935–1943

    Article  PubMed  CAS  Google Scholar 

  401. Noguchi M et al (2001) Induction of antitumor immunity by transduction of CD40 ligand gene and interferon-gamma gene into lung cancer. Cancer Gene Ther 8:421–429

    Article  PubMed  CAS  Google Scholar 

  402. Grangeon C et al (2002) In vivo induction of antitumor immunity and protection against tumor growth by injection of CD154-expressing tumor cells. Cancer Gene Ther 9:282–288

    Article  PubMed  CAS  Google Scholar 

  403. Liu Y, Qureshi M, Xiang J (2002) Antitumor immune responses derived from transgenic expression of CD40 ligand in myeloma cells. Cancer Biother Radiopharm 17:11–18

    Article  PubMed  Google Scholar 

  404. Sun Y et al (2000) In vivo gene transfer of CD40 ligand into colon cancer cells induces local production of cytokines and chemokines, tumor eradication and protective antitumor immunity. Gene Ther 7:1467–1476

    Article  PubMed  CAS  Google Scholar 

  405. Murphy WJ et al (2003) Synergistic anti-tumor responses after administration of agonistic antibodies to CD40 and IL-2: coordination of dendritic and CD8+ cell responses. J Immunol 170:2727–2733

    PubMed  CAS  Google Scholar 

  406. Nowak AK, Robinson BW, Lake RA (2003) Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors. Cancer Res 63:4490–4496

    PubMed  CAS  Google Scholar 

  407. Sotomayor EM et al (1999) Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40. Nat Med 5:780–787

    Article  PubMed  CAS  Google Scholar 

  408. French RR, Chan HT, Tutt AL, Glennie MJ (1999) CD40 antibody evokes a cytotoxic T-cell response that eradicates lymphoma and bypasses T-cell help. Nat Med 5:548–553

    Article  PubMed  CAS  Google Scholar 

  409. Diehl L et al (1999) CD40 activation in vivo overcomes peptide-induced peripheral cytotoxic T-lymphocyte tolerance and augments anti-tumor vaccine efficacy. Nat Med 5:774–779

    Article  PubMed  CAS  Google Scholar 

  410. Honeychurch J, Glennie MJ, Johnson PW, Illidge TM (2003) Anti-CD40 monoclonal antibody therapy in combination with irradiation results in a CD8 T-cell-dependent immunity to B-cell lymphoma. Blood 102:1449–1457

    Article  PubMed  CAS  Google Scholar 

  411. Ito D, Ogasawara K, Iwabuchi K, Inuyama Y, Onoe K (2000) Induction of CTL responses by simultaneous administration of liposomal peptide vaccine with anti-CD40 and anti-CTLA-4 mAb. J Immunol 164:1230–1235

    PubMed  CAS  Google Scholar 

  412. Uno T et al (2006) Eradication of established tumors in mice by a combination antibody-based therapy. Nat Med 12:693–698

    Article  PubMed  CAS  Google Scholar 

  413. Ahonen CL et al (2004) Combined TLR and CD40 triggering induces potent CD8+ T cell expansion with variable dependence on type I IFN. J Exp Med 199:775–784

    Article  PubMed  CAS  Google Scholar 

  414. Beatty GL et al (2011) CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331:1612–1616

    Article  PubMed  CAS  Google Scholar 

  415. Khalil M, Vonderheide RH (2007) Anti-CD40 agonist antibodies: preclinical and clinical experience. Update Cancer Ther 2:61–65

    Article  PubMed  Google Scholar 

  416. Fonsatti E, Maio M, Altomonte M, Hersey P (2010) Biology and clinical applications of CD40 in cancer treatment. Semin Oncol 37:517–523

    Article  PubMed  CAS  Google Scholar 

  417. Vonderheide RH et al (2001) Phase I study of recombinant human CD40 ligand in cancer patients. J Clin Oncol 19:3280–3287

    PubMed  CAS  Google Scholar 

  418. Vonderheide RH et al (2007) Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J Clin Oncol 25:876–883

    Article  PubMed  CAS  Google Scholar 

  419. Ruter J, Antonia SJ, Burris HA 3rd, Huhn RD, Vonderheide RH (2010) Immune modulation with weekly dosing of an agonist CD40 antibody in a phase I study of patients with advanced solid tumors. Cancer Biol Ther 10:983–993

    Article  PubMed  CAS  Google Scholar 

  420. Advani R et al (2009) Phase I study of the humanized anti-CD40 monoclonal antibody dacetuzumab in refractory or recurrent non-Hodgkin's lymphoma. J Clin Oncol 27:4371–4377

    Article  PubMed  CAS  Google Scholar 

  421. Furman RR, Forero-Torres A, Shustov A, Drachman JG (2010) A phase I study of dacetuzumab (SGN-40, a humanized anti-CD40 monoclonal antibody) in patients with chronic lymphocytic leukemia. Leuk Lymphoma 51:228–235

    Article  PubMed  CAS  Google Scholar 

  422. Hussein M et al (2010) A phase I multidose study of dacetuzumab (SGN-40; humanized anti-CD40 monoclonal antibody) in patients with multiple myeloma. Haematologica 95:845–848

    Article  PubMed  CAS  Google Scholar 

  423. Nocentini G et al (1997) A new member of the tumor necrosis factor/nerve growth factor receptor family inhibits T cell receptor-induced apoptosis. Proc Natl Acad Sci USA 94:6216–6221

    Article  PubMed  CAS  Google Scholar 

  424. Gurney AL et al (1999) Identification of a new member of the tumor necrosis factor family and its receptor, a human ortholog of mouse GITR. Curr Biol 9:215–218

    Article  PubMed  CAS  Google Scholar 

  425. Ronchetti S et al (2004) GITR, a member of the TNF receptor superfamily, is co-stimulatory to mouse T lymphocyte subpopulations. Eur J Immunol 34:613–622

    Article  PubMed  CAS  Google Scholar 

  426. Tone M et al (2003) Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is co-stimulatory for T cells. Proc Natl Acad Sci USA 100:15059–15064

    Article  PubMed  CAS  Google Scholar 

  427. Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S (2002) Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 3:135–142

    Article  PubMed  CAS  Google Scholar 

  428. McHugh RS et al (2002) CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 16:311–323

    Article  PubMed  CAS  Google Scholar 

  429. Kim JD et al (2003) Cloning and characterization of GITR ligand. Genes Immun 4:564–569

    Article  PubMed  CAS  Google Scholar 

  430. Suvas S et al (2005) In vivo kinetics of GITR and GITR ligand expression and their functional significance in regulating viral immunopathology. J Virol 79:11935–11942

    Article  PubMed  CAS  Google Scholar 

  431. Yu KY et al (2003) Identification of a ligand for glucocorticoid-induced tumor necrosis factor receptor constitutively expressed in dendritic cells. Biochem Biophys Res Commun 310:433–438

    Article  PubMed  CAS  Google Scholar 

  432. Nocentini G, Riccardi C (2005) GITR: a multifaceted regulator of immunity belonging to the tumor necrosis factor receptor superfamily. Eur J Immunol 35:1016–1022

    Article  PubMed  CAS  Google Scholar 

  433. Avogadri F, Yuan J, Yang A, Schaer D, Wolchok JD (2011) Modulation of CTLA-4 and GITR for Cancer Immunotherapy. Curr Top Microbiol Immunol 344:211–244

    Article  PubMed  CAS  Google Scholar 

  434. Esparza EM, Arch RH (2005) Glucocorticoid-induced TNF receptor, a co-stimulatory receptor on naive and activated T cells, uses TNF receptor-associated factor 2 in a novel fashion as an inhibitor of NF-kappa B activation. J Immunol 174:7875–7882

    PubMed  CAS  Google Scholar 

  435. Spinicelli S et al (2002) GITR interacts with the pro-apoptotic protein Siva and induces apoptosis. Cell Death Differ 9:1382–1384

    Article  PubMed  CAS  Google Scholar 

  436. Kohm AP, Williams JS, Miller SD (2004) Cutting edge: ligation of the glucocorticoid-induced TNF receptor enhances autoreactive CD4+ T cell activation and experimental autoimmune encephalomyelitis. J Immunol 172:4686–4690

    PubMed  CAS  Google Scholar 

  437. Kanamaru F et al (2004) Costimulation via glucocorticoid-induced TNF receptor in both conventional and CD25+ regulatory CD4+ T cells. J Immunol 172:7306–7314

    PubMed  CAS  Google Scholar 

  438. Stephens GL et al (2004) Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4+ CD25+ T cells. J Immunol 173:5008–5020

    PubMed  CAS  Google Scholar 

  439. Ronchetti S, Nocentini G, Riccardi C, Pandolfi PP (2002) Role of GITR in activation response of T lymphocytes. Blood 100:350–352

    Article  PubMed  CAS  Google Scholar 

  440. Suri A et al (2004) Regulation of autoimmune diabetes by non-islet-specific T cells - a role for the glucocorticoid-induced TNF receptor. Eur J Immunol 34:447–454

    Article  PubMed  CAS  Google Scholar 

  441. Muriglan SJ et al (2004) GITR activation induces an opposite effect on alloreactive CD4(+) and CD8(+) T cells in graft-versus-host disease. J Exp Med 200:149–157

    Article  PubMed  CAS  Google Scholar 

  442. Uraushihara K et al (2003) Regulation of murine inflammatory bowel disease by CD25+ and CD25- CD4+ glucocorticoid-induced TNF receptor family-related gene + regulatory T cells. J Immunol 171:708–716

    PubMed  CAS  Google Scholar 

  443. Ko K et al (2005) Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3 + CD25 + CD4+ regulatory T cells. J Exp Med 202:885–891

    Article  PubMed  CAS  Google Scholar 

  444. Turk MJ et al (2004) Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells. J Exp Med 200:771–782

    Article  PubMed  CAS  Google Scholar 

  445. Ramirez-Montagut T et al (2006) Glucocorticoid-induced TNF receptor family related gene activation overcomes tolerance/ignorance to melanoma differentiation antigens and enhances antitumor immunity. J Immunol 176:6434–6442

    PubMed  CAS  Google Scholar 

  446. Cohen AD et al (2010) Agonist anti-GITR monoclonal antibody induces melanoma tumor immunity in mice by altering regulatory T cell stability and intra-tumor accumulation. PLoS One 5:e10436

    Article  PubMed  CAS  Google Scholar 

  447. Coe D et al (2010) Depletion of regulatory T cells by anti-GITR mAb as a novel mechanism for cancer immunotherapy. Cancer Immunol Immunother 59:1367–1377

    Article  PubMed  CAS  Google Scholar 

  448. Cohen AD et al (2006) Agonist anti-GITR antibody enhances vaccine-induced CD8(+) T-cell responses and tumor immunity. Cancer Res 66:4904–4912

    Article  PubMed  CAS  Google Scholar 

  449. Hoffmann C et al (2010) Combining T-cell vaccination and application of agonistic anti-GITR mAb (DTA-1) induces complete eradication of HPV oncogene expressing tumors in mice. J Immunother 33:136–145

    Article  PubMed  CAS  Google Scholar 

  450. Schaer DA, Cohen AD, Wolchok JD (2010) Anti-GITR antibodies - Potential clinical applications for tumor immunotherapy. Curr Opin Investig Drugs 11:1378–1386

    PubMed  CAS  Google Scholar 

  451. Kwon BS, Weissman SM (1989) cDNA sequences of two inducible T-cell genes. Proc Natl Acad Sci USA 86:1963–1967

    Article  PubMed  CAS  Google Scholar 

  452. Pollok KE et al (1993) Inducible T cell antigen 4-1BB. Analysis of expression and function. J Immunol 150:771–781

    PubMed  CAS  Google Scholar 

  453. Futagawa T et al (2002) Expression and function of 4-1BB and 4-1BB ligand on murine dendritic cells. Int Immunol 14:275–286

    Article  PubMed  CAS  Google Scholar 

  454. Broll K, Richter G, Pauly S, Hofstaedter F, Schwarz H (2001) CD137 expression in tumor vessel walls. High correlation with malignant tumors. Am J Clin Pathol 115:543–549

    Article  PubMed  CAS  Google Scholar 

  455. Melero I, Johnston JV, Shufford WW, Mittler RS, Chen L (1998) NK1.1 cells express 4-1BB (CDw137) co-stimulatory molecule and are required for tumor immunity elicited by anti-4-1BB monoclonal antibodies. Cell Immunol 190:167–172

    Article  PubMed  CAS  Google Scholar 

  456. Wen T, Bukczynski J, Watts TH (2002) 4-1BB ligand-mediated costimulation of human T cells induces CD4 and CD8 T cell expansion, cytokine production, and the development of cytolytic effector function. J Immunol 168:4897–4906

    PubMed  CAS  Google Scholar 

  457. Schwarz H, Valbracht J, Tuckwell J, von Kempis J, Lotz M (1995) ILA, the human 4-1BB homologue, is inducible in lymphoid and other cell lineages. Blood 85:1043–1052

    PubMed  CAS  Google Scholar 

  458. Takahashi C, Mittler RS, Vella AT (1999) Cutting edge: 4-1BB is a bona fide CD8 T cell survival signal. J Immunol 162:5037–5040

    PubMed  CAS  Google Scholar 

  459. Alderson MR et al (1994) Molecular and biological characterization of human 4-1BB and its ligand. Eur J Immunol 24:2219–2227

    Article  PubMed  CAS  Google Scholar 

  460. Hurtado JC, Kim YJ, Kwon BS (1997) Signals through 4-1BB are co-stimulatory to previously activated splenic T cells and inhibit activation-induced cell death. J Immunol 158:2600–2609

    PubMed  CAS  Google Scholar 

  461. Shuford WW et al (1997) 4-1BB co-stimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med 186:47–55

    Article  PubMed  CAS  Google Scholar 

  462. Jiang D, Chen Y, Schwarz H (2008) CD137 induces proliferation of murine hematopoietic progenitor cells and differentiation to macrophages. J Immunol 181:3923–3932

    PubMed  CAS  Google Scholar 

  463. Pollok KE et al (1994) 4-1BB T-cell antigen binds to mature B cells and macrophages, and costimulates anti-mu-primed splenic B cells. Eur J Immunol 24:367–374

    Article  PubMed  CAS  Google Scholar 

  464. Lee SW et al (2008) Identification of regulatory functions for 4-1BB and 4-1BBL in myelopoiesis and the development of dendritic cells. Nat Immunol 9:917–926

    Article  PubMed  CAS  Google Scholar 

  465. Lin GH et al (2009) Endogenous 4-1BB ligand plays a critical role in protection from influenza-induced disease. J Immunol 182:934–947

    PubMed  CAS  Google Scholar 

  466. Mack DG et al (2008) 4-1BB enhances proliferation of beryllium-specific T cells in the lung of subjects with chronic beryllium disease. J Immunol 181:4381–4388

    PubMed  CAS  Google Scholar 

  467. Tan JT et al (2000) Analysis of expression and function of the co-stimulatory molecule 4-1BB in alloimmune responses. Transplantation 70:175–183

    PubMed  CAS  Google Scholar 

  468. Wang C, Lin GH, McPherson AJ, Watts TH (2009) Immune regulation by 4-1BB and 4-1BBL: complexities and challenges. Immunol Rev 229:192–215

    Article  PubMed  CAS  Google Scholar 

  469. Lee HW et al (2002) 4-1BB promotes the survival of CD8+ T lymphocytes by increasing expression of Bcl-xL and Bfl-1. J Immunol 169:4882–4888

    PubMed  Google Scholar 

  470. Sabbagh L, Pulle G, Liu Y, Tsitsikov EN, Watts TH (2008) ERK-dependent Bim modulation downstream of the 4-1BB-TRAF1 signaling axis is a critical mediator of CD8 T cell survival in vivo. J Immunol 180:8093–8101

    PubMed  CAS  Google Scholar 

  471. Saoulli K et al (1998) CD28-independent, TRAF2-dependent costimulation of resting T cells by 4-1BB ligand. J Exp Med 187:1849–1862

    Article  PubMed  CAS  Google Scholar 

  472. Arch RH, Thompson CB (1998) 4-1BB and Ox40 are members of a tumor necrosis factor (TNF)-nerve growth factor receptor subfamily that bind TNF receptor-associated factors and activate nuclear factor kappaB. Mol Cell Biol 18:558–565

    PubMed  CAS  Google Scholar 

  473. Cannons JL, Choi Y, Watts TH (2000) Role of TNF receptor-associated factor 2 and p38 mitogen-activated protein kinase activation during 4-1BB-dependent immune response. J Immunol 165:6193–6204

    PubMed  CAS  Google Scholar 

  474. Jang IK, Lee ZH, Kim YJ, Kim SH, Kwon BS (1998) Human 4-1BB (CD137) signals are mediated by TRAF2 and activate nuclear factor-kappa B. Biochem Biophys Res Commun 242:613–620

    Article  PubMed  CAS  Google Scholar 

  475. Wang C et al (2007) 4-1BBL induces TNF receptor-associated factor 1-dependent Bim modulation in human T cells and is a critical component in the costimulation-dependent rescue of functionally impaired HIV-specific CD8 T cells. J Immunol 179:8252–8263

    PubMed  CAS  Google Scholar 

  476. Gramaglia I, Cooper D, Miner KT, Kwon BS, Croft M (2000) Co-stimulation of antigen-specific CD4 T cells by 4-1BB ligand. Eur J Immunol 30:392–402

    Article  PubMed  CAS  Google Scholar 

  477. Schwarz H, Blanco FJ, von Kempis J, Valbracht J, Lotz M (1996) ILA, a member of the human nerve growth factor/tumor necrosis factor receptor family, regulates T-lymphocyte proliferation and survival. Blood 87:2839–2845

    PubMed  CAS  Google Scholar 

  478. DeBenedette MA et al (1999) Analysis of 4-1BB ligand (4-1BBL)-deficient mice and of mice lacking both 4-1BBL and CD28 reveals a role for 4-1BBL in skin allograft rejection and in the cytotoxic T cell response to influenza virus. J Immunol 163:4833–4841

    PubMed  CAS  Google Scholar 

  479. Halstead ES, Mueller YM, Altman JD, Katsikis PD (2002) In vivo stimulation of CD137 broadens primary antiviral CD8+ T cell responses. Nat Immunol 3:536–541

    Article  PubMed  CAS  Google Scholar 

  480. Sun Y et al (2002) Administration of agonistic anti-4-1BB monoclonal antibody leads to the amelioration of experimental autoimmune encephalomyelitis. J Immunol 168:1457–1465

    PubMed  CAS  Google Scholar 

  481. Seo SK et al (2004) 4-1BB-mediated immunotherapy of rheumatoid arthritis. Nat Med 10:1088–1094

    Article  PubMed  CAS  Google Scholar 

  482. Vinay DS, Kwon BS (2006) Immunotherapy targeting 4-1BB and its ligand. Int J Hematol 83:23–28

    Article  PubMed  CAS  Google Scholar 

  483. Mittler RS, Bailey TS, Klussman K, Trailsmith MD, Hoffmann MK (1999) Anti-4-1BB monoclonal antibodies abrogate T cell-dependent humoral immune responses in vivo through the induction of helper T cell anergy. J Exp Med 190:1535–1540

    Article  PubMed  CAS  Google Scholar 

  484. Melero I et al (1997) Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat Med 3:682–685

    Article  PubMed  CAS  Google Scholar 

  485. Melero I et al (1998) Amplification of tumor immunity by gene transfer of the co-stimulatory 4-1BB ligand: synergy with the CD28 co-stimulatory pathway. Eur J Immunol 28:1116–1121

    Article  PubMed  CAS  Google Scholar 

  486. Guinn BA, DeBenedette MA, Watts TH, Berinstein NL (1999) 4-1BBL cooperates with B7-1 and B7-2 in converting a B cell lymphoma cell line into a long-lasting antitumor vaccine. J Immunol 162:5003–5010

    PubMed  CAS  Google Scholar 

  487. Miller RE et al (2002) 4-1BB-specific monoclonal antibody promotes the generation of tumor-specific immune responses by direct activation of CD8 T cells in a CD40-dependent manner. J Immunol 169:1792–1800

    PubMed  CAS  Google Scholar 

  488. Xu DP et al (2005) The systemic administration of Ig-4-1BB ligand in combination with IL-12 gene transfer eradicates hepatic colon carcinoma. Gene Ther 12:1526–1533

    Article  PubMed  CAS  Google Scholar 

  489. Sica G, Chen L (1999) Biochemical and immunological characteristics of 4-1BB (CD137) receptor and ligand and potential applications in cancer therapy. Arch Immunol Ther Exp (Warsz) 47:275–279

    CAS  Google Scholar 

  490. Wilcox RA et al (2002) Provision of antigen and CD137 signaling breaks immunological ignorance, promoting regression of poorly immunogenic tumors. J Clin Invest 109:651–659

    PubMed  CAS  Google Scholar 

  491. Lin GH et al (2010) Evaluating the cellular targets of anti-4-1BB agonist antibody during immunotherapy of a pre-established tumor in mice. PLoS One 5:e11003

    Article  PubMed  CAS  Google Scholar 

  492. Murillo O et al (2009) In vivo depletion of DC impairs the anti-tumor effect of agonistic anti-CD137 mAb. Eur J Immunol 39:2424–2436

    Article  PubMed  CAS  Google Scholar 

  493. Houot R et al (2009) Therapeutic effect of CD137 immunomodulation in lymphoma and its enhancement by Treg depletion. Blood 114:3431–3438

    Article  PubMed  CAS  Google Scholar 

  494. Narazaki H, Zhu Y, Luo L, Zhu G, Chen L (2010) CD137 agonist antibody prevents cancer recurrence: contribution of CD137 on both hematopoietic and nonhematopoietic cells. Blood 115:1941–1948

    Article  PubMed  CAS  Google Scholar 

  495. Ito F et al (2004) Anti-CD137 monoclonal antibody administration augments the antitumor efficacy of dendritic cell-based vaccines. Cancer Res 64:8411–8419

    Article  PubMed  CAS  Google Scholar 

  496. May KF Jr, Chen L, Zheng P, Liu Y (2002) Anti-4-1BB monoclonal antibody enhances rejection of large tumor burden by promoting survival but not clonal expansion of tumor-specific CD8+ T cells. Cancer Res 62:3459–3465

    PubMed  CAS  Google Scholar 

  497. Kim YH, Choi BK, Kim KH, Kang SW, Kwon BS (2008) Combination therapy with cisplatin and anti-4-1BB: synergistic anticancer effects and amelioration of cisplatin-induced nephrotoxicity. Cancer Res 68:7264–7269

    Article  PubMed  CAS  Google Scholar 

  498. Kocak E et al (2006) Combination therapy with anti-CTL antigen-4 and anti-4-1BB antibodies enhances cancer immunity and reduces autoimmunity. Cancer Res 66:7276–7284

    Article  PubMed  CAS  Google Scholar 

  499. Xiao H et al (2007) Soluble PD-1 facilitates 4-1BBL-triggered antitumor immunity against murine H22 hepatocarcinoma in vivo. Clin Cancer Res 13:1823–1830

    Article  PubMed  CAS  Google Scholar 

  500. Niu L et al (2007) Cytokine-mediated disruption of lymphocyte trafficking, hemopoiesis, and induction of lymphopenia, anemia, and thrombocytopenia in anti-CD137-treated mice. J Immunol 178:4194–4213

    PubMed  CAS  Google Scholar 

  501. Ascierto PA, Simeone E, Sznol M, Fu YX, Melero I (2010) Clinical experiences with anti-CD137 and anti-PD1 therapeutic antibodies. Semin Oncol 37:508–516

    Article  PubMed  CAS  Google Scholar 

  502. Melero I, Hervas-Stubbs S, Glennie M, Pardoll DM, Chen L (2007) Immunostimulatory monoclonal antibodies for cancer therapy. Nat Rev Cancer 7:95–106

    Article  PubMed  CAS  Google Scholar 

  503. Sznol M et al (2008) Phase I study of BMS-663513, a fully human anti-CD137 agonist monoclonal antibody, in patients (pts) with advanced cancer (CA). J Clin Oncol 26:133s (May 20 suppl; abstr 3007)

    Google Scholar 

  504. Hwu, W.J. Targeted therapy for metastatic melanoma: from bench to bedside. HemeOnc today (http://www.hemonctoday.com/article.aspx?rid=65856)

  505. Paterson DJ et al (1987) Antigens of activated rat T lymphocytes including a molecule of 50,000 Mr detected only on CD4 positive T blasts. Mol Immunol 24:1281–1290

    Article  PubMed  CAS  Google Scholar 

  506. Durkop H, Latza U, Himmelreich P, Stein H (1995) Expression of the human OX40 (hOX40) antigen in normal and neoplastic tissues. Br J Haematol 91:927–931

    Article  PubMed  CAS  Google Scholar 

  507. al-Shamkhani A et al (1996) OX40 is differentially expressed on activated rat and mouse T cells and is the sole receptor for the OX40 ligand. Eur J Immunol 26:1695–1699

    Article  PubMed  CAS  Google Scholar 

  508. Soroosh P, Ine S, Sugamura K, Ishii N (2007) Differential requirements for OX40 signals on generation of effector and central memory CD4+ T cells. J Immunol 179:5014–5023

    PubMed  CAS  Google Scholar 

  509. Bansal-Pakala P, Halteman BS, Cheng MH, Croft M (2004) Costimulation of CD8 T cell responses by OX40. J Immunol 172:4821–4825

    PubMed  CAS  Google Scholar 

  510. Gramaglia I, Weinberg AD, Lemon M, Croft M (1998) Ox-40 ligand: a potent co-stimulatory molecule for sustaining primary CD4 T cell responses. J Immunol 161:6510–6517

    PubMed  CAS  Google Scholar 

  511. Takeda I et al (2004) Distinct roles for the OX40-OX40 ligand interaction in regulatory and nonregulatory T cells. J Immunol 172:3580–3589

    PubMed  CAS  Google Scholar 

  512. Ndhlovu LC, Takeda I, Sugamura K, Ishii N (2004) Expanding role of T-cell costimulators in regulatory T-cell function: recent advances in accessory molecules expressed on both regulatory and nonregulatory T cells. Crit Rev Immunol 24:251–266

    Article  PubMed  CAS  Google Scholar 

  513. Baumann R et al (2004) Functional expression of CD134 by neutrophils. Eur J Immunol 34:2268–2275

    Article  PubMed  CAS  Google Scholar 

  514. Zaini J et al (2007) OX40 ligand expressed by DCs costimulates NKT and CD4+ Th cell antitumor immunity in mice. J Clin Invest 117:3330–3338

    Article  PubMed  CAS  Google Scholar 

  515. Tanaka Y, Inoi T, Tozawa H, Yamamoto N, Hinuma Y (1985) A glycoprotein antigen detected with new monoclonal antibodies on the surface of human lymphocytes infected with human T-cell leukemia virus type-I (HTLV-I). Int J Cancer 36:549–555

    Article  PubMed  CAS  Google Scholar 

  516. Miura S et al (1991) Molecular cloning and characterization of a novel glycoprotein, gp34, that is specifically induced by the human T-cell leukemia virus type I transactivator p40tax. Mol Cell Biol 11:1313–1325

    PubMed  CAS  Google Scholar 

  517. Gruss HJ (1996) Molecular, structural, and biological characteristics of the tumor necrosis factor ligand superfamily. Int J Clin Lab Res 26:143–159

    Article  PubMed  CAS  Google Scholar 

  518. Godfrey WR, Fagnoni FF, Harara MA, Buck D, Engleman EG (1994) Identification of a human OX-40 ligand, a costimulator of CD4+ T cells with homology to tumor necrosis factor. J Exp Med 180:757–762

    Article  PubMed  CAS  Google Scholar 

  519. Baum PR et al (1994) Molecular characterization of murine and human OX40/OX40 ligand systems: identification of a human OX40 ligand as the HTLV-1-regulated protein gp34. EMBO J 13:3992–4001

    PubMed  CAS  Google Scholar 

  520. Flynn S, Toellner KM, Raykundalia C, Goodall M, Lane P (1998) CD4 T cell cytokine differentiation: the B cell activation molecule, OX40 ligand, instructs CD4 T cells to express interleukin 4 and upregulates expression of the chemokine receptor, Blr-1. J Exp Med 188:297–304

    Article  PubMed  CAS  Google Scholar 

  521. Ohshima Y et al (1997) Expression and function of OX40 ligand on human dendritic cells. J Immunol 159:3838–3848

    PubMed  CAS  Google Scholar 

  522. Mendel I, Shevach EM (2006) Activated T cells express the OX40 ligand: requirements for induction and co-stimulatory function. Immunology 117:196–204

    Article  PubMed  CAS  Google Scholar 

  523. Imura A et al (1996) The human OX40/gp34 system directly mediates adhesion of activated T cells to vascular endothelial cells. J Exp Med 183:2185–2195

    Article  PubMed  CAS  Google Scholar 

  524. Burgess JK et al (2004) Detection and characterization of OX40 ligand expression in human airway smooth muscle cells: a possible role in asthma? J Allergy Clin Immunol 113:683–689

    Article  PubMed  CAS  Google Scholar 

  525. Kopf M et al (1999) OX40-deficient mice are defective in Th cell proliferation but are competent in generating B cell and CTL Responses after virus infection. Immunity 11:699–708

    Article  PubMed  CAS  Google Scholar 

  526. Pippig SD et al (1999) Robust B cell immunity but impaired T cell proliferation in the absence of CD134 (OX40). J Immunol 163:6520–6529

    PubMed  CAS  Google Scholar 

  527. Gramaglia I et al (2000) The OX40 co-stimulatory receptor determines the development of CD4 memory by regulating primary clonal expansion. J Immunol 165:3043–3050

    PubMed  CAS  Google Scholar 

  528. Murata K et al (2000) Impairment of antigen-presenting cell function in mice lacking expression of OX40 ligand. J Exp Med 191:365–374

    Article  PubMed  CAS  Google Scholar 

  529. Vu MD et al (2007) OX40 costimulation turns off Foxp3+ Tregs. Blood 110:2501–2510

    Article  PubMed  CAS  Google Scholar 

  530. Valzasina B et al (2005) Triggering of OX40 (CD134) on CD4(+)CD25+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR. Blood 105:2845–2851

    Article  PubMed  CAS  Google Scholar 

  531. So T, Croft M (2007) Cutting edge: OX40 inhibits TGF-beta- and antigen-driven conversion of naive CD4 T cells into CD25 + Foxp3+ T cells. J Immunol 179:1427–1430

    PubMed  CAS  Google Scholar 

  532. Croft M, So T, Duan W, Soroosh P (2009) The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol Rev 229:173–191

    Article  PubMed  CAS  Google Scholar 

  533. Griseri T, Asquith M, Thompson C, Powrie F (2010) OX40 is required for regulatory T cell-mediated control of colitis. J Exp Med 207:699–709

    Article  PubMed  CAS  Google Scholar 

  534. Ruby CE et al (2009) Cutting Edge: OX40 agonists can drive regulatory T cell expansion if the cytokine milieu is right. J Immunol 183:4853–4857

    Article  PubMed  CAS  Google Scholar 

  535. Weinberg AD et al (2000) Engagement of the OX-40 receptor in vivo enhances antitumor immunity. J Immunol 164:2160–2169

    PubMed  CAS  Google Scholar 

  536. Kjaergaard J et al (2000) Therapeutic efficacy of OX-40 receptor antibody depends on tumor immunogenicity and anatomic site of tumor growth. Cancer Res 60:5514–5521

    PubMed  CAS  Google Scholar 

  537. Kjaergaard J et al (2001) Augmentation versus inhibition: effects of conjunctional OX-40 receptor monoclonal antibody and IL-2 treatment on adoptive immunotherapy of advanced tumor. J Immunol 167:6669–6677

    PubMed  CAS  Google Scholar 

  538. Pan PY, Zang Y, Weber K, Meseck ML, Chen SH (2002) OX40 ligation enhances primary and memory cytotoxic T lymphocyte responses in an immunotherapy for hepatic colon metastases. Mol Ther 6:528–536

    Article  PubMed  CAS  Google Scholar 

  539. Morris A et al (2001) Induction of anti-mammary cancer immunity by engaging the OX-40 receptor in vivo. Breast Cancer Res Treat 67:71–80

    Article  PubMed  CAS  Google Scholar 

  540. Ali SA et al (2004) Anti-tumour therapeutic efficacy of OX40L in murine tumour model. Vaccine 22:3585–3594

    Article  PubMed  CAS  Google Scholar 

  541. Sadun RE et al (2008) Fc-mOX40L fusion protein produces complete remission and enhanced survival in 2 murine tumor models. J Immunother 31:235–245

    Article  PubMed  CAS  Google Scholar 

  542. Redmond WL, Gough MJ, Weinberg AD (2009) Ligation of the OX40 co-stimulatory receptor reverses self-Ag and tumor-induced CD8 T-cell anergy in vivo. Eur J Immunol 39:2184–2194

    PubMed  CAS  Google Scholar 

  543. Song A, Song J, Tang X, Croft M (2007) Cooperation between CD4 and CD8 T cells for anti-tumor activity is enhanced by OX40 signals. Eur J Immunol 37:1224–1232

    Article  PubMed  CAS  Google Scholar 

  544. Piconese S, Valzasina B, Colombo MP (2008) OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection. J Exp Med 205:825–839

    Article  PubMed  CAS  Google Scholar 

  545. Gri G, Gallo E, Di Carlo E, Musiani P, Colombo MP (2003) OX40 ligand-transduced tumor cell vaccine synergizes with GM-CSF and requires CD40-Apc signaling to boost the host T cell antitumor response. J Immunol 170:99–106

    PubMed  CAS  Google Scholar 

  546. Hirschhorn-Cymerman D et al (2009) OX40 engagement and chemotherapy combination provides potent antitumor immunity with concomitant regulatory T cell apoptosis. J Exp Med 206:1103–1116

    Article  PubMed  CAS  Google Scholar 

  547. Gough MJ et al (2010) Adjuvant therapy with agonistic antibodies to CD134 (OX40) increases local control after surgical or radiation therapy of cancer in mice. J Immunother 33:798–809

    Article  PubMed  CAS  Google Scholar 

  548. Yokouchi H et al (2008) Anti-OX40 monoclonal antibody therapy in combination with radiotherapy results in therapeutic antitumor immunity to murine lung cancer. Cancer Sci 99:361–367

    Article  PubMed  CAS  Google Scholar 

  549. Weinberg AD et al (2006) Anti-OX40 (CD134) administration to nonhuman primates: immunostimulatory effects and toxicokinetic study. J Immunother 29:575–585

    Article  PubMed  CAS  Google Scholar 

  550. Jensen SM et al (2010) Signaling through OX40 enhances antitumor immunity. Semin Oncol 37:524–532

    Article  PubMed  CAS  Google Scholar 

  551. Morris NP et al (2007) Development and characterization of recombinant human Fc:OX40L fusion protein linked via a coiled-coil trimerization domain. Mol Immunol 44:3112–3121

    Article  PubMed  CAS  Google Scholar 

  552. Hutloff A et al (1999) ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397:263–266

    Article  PubMed  CAS  Google Scholar 

  553. McAdam AJ et al (2000) Mouse inducible co-stimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. J Immunol 165:5035–5040

    PubMed  CAS  Google Scholar 

  554. Burmeister Y et al (2008) ICOS controls the pool size of effector-memory and regulatory T cells. J Immunol 180:774–782

    PubMed  CAS  Google Scholar 

  555. Yoshinaga SK et al (1999) T-cell co-stimulation through B7RP-1 and ICOS. Nature 402:827–832

    Article  PubMed  CAS  Google Scholar 

  556. Swallow MM, Wallin JJ, Sha WC (1999) B7h, a novel co-stimulatory homolog of B7.1 and B7.2, is induced by TNFalpha. Immunity 11:423–432

    Article  PubMed  CAS  Google Scholar 

  557. Nurieva RI, Mai XM, Forbush K, Bevan MJ, Dong C (2003) B7h is required for T cell activation, differentiation, and effector function. Proc Natl Acad Sci USA 100:14163–14168

    Article  PubMed  CAS  Google Scholar 

  558. Arimura Y et al (2002) A co-stimulatory molecule on activated T cells, H4/ICOS, delivers specific signals in T(h) cells and regulates their responses. Int Immunol 14:555–566

    Article  PubMed  CAS  Google Scholar 

  559. Feito MJ et al (2003) Mechanisms of H4/ICOS costimulation: effects on proximal TCR signals and MAP kinase pathways. Eur J Immunol 33:204–214

    Article  PubMed  CAS  Google Scholar 

  560. Parry RV, Rumbley CA, Vandenberghe LH, June CH, Riley JL (2003) CD28 and inducible co-stimulatory protein Src homology 2 binding domains show distinct regulation of phosphatidylinositol 3-kinase, Bcl-xL, and IL-2 expression in primary human CD4 T lymphocytes. J Immunol 171:166–174

    PubMed  CAS  Google Scholar 

  561. Gigoux M et al (2009) Inducible costimulator promotes helper T-cell differentiation through phosphoinositide 3-kinase. Proc Natl Acad Sci USA 106:20371–20376

    Article  PubMed  CAS  Google Scholar 

  562. Fos C et al (2008) ICOS ligation recruits the p50alpha PI3K regulatory subunit to the immunological synapse. J Immunol 181:1969–1977

    PubMed  CAS  Google Scholar 

  563. Simpson TR, Quezada SA, Allison JP (2010) Regulation of CD4 T cell activation and effector function by inducible costimulator (ICOS). Curr Opin Immunol 22:326–332

    Article  PubMed  CAS  Google Scholar 

  564. Dong C et al (2001) ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409:97–101

    Article  PubMed  CAS  Google Scholar 

  565. Tafuri A et al (2001) ICOS is essential for effective T-helper-cell responses. Nature 409:105–109

    Article  PubMed  CAS  Google Scholar 

  566. Akiba H et al (2005) The role of ICOS in the CXCR5+ follicular B helper T cell maintenance in vivo. J Immunol 175:2340–2348

    PubMed  CAS  Google Scholar 

  567. Tuettenberg A et al (2009) The role of ICOS in directing T cell responses: ICOS-dependent induction of T cell anergy by tolerogenic dendritic cells. J Immunol 182:3349–3356

    Article  PubMed  CAS  Google Scholar 

  568. Grimbacher B et al (2003) Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat Immunol 4:261–268

    Article  PubMed  CAS  Google Scholar 

  569. Mak TW et al (2003) Costimulation through the inducible costimulator ligand is essential for both T helper and B cell functions in T cell-dependent B cell responses. Nat Immunol 4:765–772

    Article  PubMed  CAS  Google Scholar 

  570. Bossaller L et al (2006) ICOS deficiency is associated with a severe reduction of CXCR5 + CD4 germinal center Th cells. J Immunol 177:4927–4932

    PubMed  CAS  Google Scholar 

  571. Bauquet AT et al (2009) The co-stimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nat Immunol 10:167–175

    Article  PubMed  CAS  Google Scholar 

  572. Kopf M et al (2000) Inducible costimulator protein (ICOS) controls T helper cell subset polarization after virus and parasite infection. J Exp Med 192:53–61

    Article  PubMed  CAS  Google Scholar 

  573. Clay BS et al (2009) Inducible costimulator expression regulates the magnitude of Th2-mediated airway inflammation by regulating the number of Th2 cells. PLoS One 4:e7525

    Article  PubMed  CAS  Google Scholar 

  574. Shilling RA et al (2009) CD28 and ICOS play complementary non-overlapping roles in the development of Th2 immunity in vivo. Cell Immunol 259:177–184

    Article  PubMed  CAS  Google Scholar 

  575. Nurieva RI et al (2003) Transcriptional regulation of th2 differentiation by inducible costimulator. Immunity 18:801–811

    Article  PubMed  CAS  Google Scholar 

  576. Takahashi N et al (2009) Impaired CD4 and CD8 effector function and decreased memory T cell populations in ICOS-deficient patients. J Immunol 182:5515–5527

    Article  PubMed  CAS  Google Scholar 

  577. Ito T et al (2008) Two functional subsets of FOXP3+ regulatory T cells in human thymus and periphery. Immunity 28:870–880

    Article  PubMed  CAS  Google Scholar 

  578. Lohning M et al (2003) Expression of ICOS in vivo defines CD4+ effector T cells with high inflammatory potential and a strong bias for secretion of interleukin 10. J Exp Med 197:181–193

    Article  PubMed  CAS  Google Scholar 

  579. Akbari O et al (2002) Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nat Med 8:1024–1032

    Article  PubMed  CAS  Google Scholar 

  580. Strauss L et al (2008) Expression of ICOS on human melanoma-infiltrating CD4 + CD25highFoxp3+ T regulatory cells: implications and impact on tumor-mediated immune suppression. J Immunol 180:2967–2980

    PubMed  CAS  Google Scholar 

  581. Bogunovic D et al (2009) Immune profile and mitotic index of metastatic melanoma lesions enhance clinical staging in predicting patient survival. Proc Natl Acad Sci USA 106:20429–20434

    Article  PubMed  CAS  Google Scholar 

  582. Paulos CM et al (2010) The inducible costimulator (ICOS) is critical for the development of human T(H)17 cells. Sci Transl Med 2:55ra78

    Article  PubMed  CAS  Google Scholar 

  583. Pedersen AE, Buus S, Claesson MH (2006) Treatment of transplanted CT26 tumour with dendritic cell vaccine in combination with blockade of vascular endothelial growth factor receptor 2 and CTLA-4. Cancer Lett 235:229–238

    Google Scholar 

  584. Sutmuller RP, van Duivenvoorde LM, van Elsas A et al (2001) Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreative cytotxic T lymphocyte responses. J Exp Med 194:823–832

    Google Scholar 

  585. Espenshied J, Lamont J, Longmate J et al (2003) CTLA-4 blockadeenhances the therapeutic effect of an attenuated poxvirus vaccine targeting p53 in an established murine tumor model. J Immunol 170:3401–3401

    Google Scholar 

  586. Weber et al (2009) A randomized, double-blide, placebo controlled, phase II study comparing the tolerability and efficacy of ipilimumab administered with or without prophylactic budesonide in patients with unresectable stage III or IV melanoma. Clin Cancer Res 15:5591–5598

    Google Scholar 

  587. Menard C et al (2008) CTLA4 bloackade confers lymphocyte resistance to regulatory T-cells in advanced melanoma: surrogate marker of efficacy of tremelimumba? Clinical Cancer Res. 14:5242–9

    Google Scholar 

  588. Hamid et al (2011) A prospective phase II trial expoloring the association between tumor microenvironment biomakers and clinical activity of ipilimumab in advanced melanoma. J of Translational Medicine 9:204

    Google Scholar 

  589. Topalian S et al (2012) Safety, Activity, and Immune Correlates of Anti-PD-1 Antibody in Cancer. NEJM 366(26):2443–2454

    Google Scholar 

  590. Fisher T et al (2012) Targeting of 4-1BB by monoclonal antibody PD_05082566 enhances T cell function and promotes anti-tumor activity Cancer Immunol Immunother

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padmanee Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Callahan, M.K., Wolchok, J.D., Allison, J.P., Sharma, P. (2013). Immune Co-signaling to Treat Cancer. In: Curiel, T. (eds) Cancer Immunotherapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4732-0_8

Download citation

Publish with us

Policies and ethics