Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The B7 family member B7-H3 preferentially down-regulates T helper type 1–mediated immune responses

Abstract

We investigated the in vivo function of the B7 family member B7-H3 (also known as B7RP-2) by gene targeting. B7-H3 inhibited T cell proliferation mediated by antibody to T cell receptor or allogeneic antigen-presenting cells. B7-H3-deficient mice developed more severe airway inflammation than did wild-type mice in conditions in which T helper cells differentiated toward type 1 (TH1) rather than type 2 (TH2). B7-H3 expression was consistently enhanced by interferon-γ but suppressed by interleukin 4 in dendritic cells. B7-H3-deficient mice developed experimental autoimmune encephalomyelitis several days earlier than their wild-type littermates, and accumulated higher concentrations of autoantibodies to DNA. Thus, B7-H3 is a negative regulator that preferentially affects TH1 responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of B7-H3-deficient mice.
Figure 2: Negative regulation of T cell function by B7-H3.
Figure 3: Augmented TH1-mediated lung inflammation in B7-H3-deficient mice.
Figure 4: Regulation of B7-H3 expression by IFN-γ and IL-4 in dendritic cells.
Figure 5: Earlier onset of EAE in B7-H3-deficient mice.
Figure 6: Accumulation of autoantibodies in B7-H3-deficient mice over time.
Figure 7: Normal antiviral CTL responses in the absence of B7-H3.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Lenschow, D.J., Walunas, T.L. & Bluestone, J.A. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol. 14, 233–258 (1996).

    Article  CAS  Google Scholar 

  2. Watts, T.H. & DeBenedette, M.A. T cell co-stimulation molecules other that CD28. Curr. Opin. Immunol. 11, 286–293 (1999).

    Article  CAS  Google Scholar 

  3. Carreno, B. & Collins, M. The B7 family of ligands and its receptors: New pathways for costimulation and inhibition of immune responses. Annu. Rev. Immunol. 20, 29–53 (2002).

    Article  CAS  Google Scholar 

  4. Sharpe, A.H. & Freeman, G.J. The B7-CD28 superfamily. Nat. Rev. Immunol. 2, 116–126 (2002).

    Article  CAS  Google Scholar 

  5. Coyle, A.J. & Gutierrez-Ramos, J.-C. The expanding B7 superfamily: Increasing complexity in costimulatory signals regulating T cell function. Nat. Immunol. 2, 203–209 (2001).

    Article  CAS  Google Scholar 

  6. Liang, L. & Sha, W.C. The right place at the right time: novel B7 family members regulate effector T cell responses. Curr. Opin. Immunol. 14, 384–390 (2002).

    Article  CAS  Google Scholar 

  7. Lanzavecchia, A., Lezzi, G. & Viola, A. From TCR engagement to T cell activation: a kinetic view of T cell behavior. Cell 96, 1–4 (1999).

    Article  CAS  Google Scholar 

  8. Murphy, K.M. & Reiner, S.L. Decision making in the immune system: The lineage decisions of helper T cells. Nat. Rev. Immunol. 2, 933–944 (2002).

    Article  CAS  Google Scholar 

  9. Brunner, M., Chambers, C. & Allison, J. CTLA-4 mediates inhibition of early events of T cell proliferation. J. Immunol. 162, 5813–5820 (1999).

    CAS  PubMed  Google Scholar 

  10. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science 270, 985–988 (1995).

    Article  CAS  Google Scholar 

  11. Tivol, E. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 (1995).

    Article  CAS  Google Scholar 

  12. Mandelbrot, D.A., McAdam, A.J. & Sharpe, A.H. B7-1 or B7-2 is required to produce the lymphoproliferative phenotype in mice lacking cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). J. Exp. Med. 189, 435–440 (1999).

    Article  CAS  Google Scholar 

  13. Freeman, G.J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).

    Article  CAS  Google Scholar 

  14. Dong, H., Zhu, G., Tamada, K. & Chen, L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med. 5, 1365–1369 (1999).

    Article  CAS  Google Scholar 

  15. Latchman, Y. et al. PD-L2, a novel B7 homologue, is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2, 261–268 (2001).

    Article  CAS  Google Scholar 

  16. Tseng, S.Y. et al. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J. Exp. Med. 193, 839–846 (2001).

    Article  CAS  Google Scholar 

  17. Carter, L.L. et al. PD-1:PD-L inhibitory pathway affects both CD4+ and CD8+ T cells and is overcome by IL-2. Eur. J. Immunol. 32, 634–643 (2002).

    Article  CAS  Google Scholar 

  18. Mazanet, M.M. & Hughes, C.C.W. B7-H1 is expressed by human endothelial cells and suppresses T cell cytokine synthesis. J. Immunol. 169, 3581–3588 (2002).

    Article  CAS  Google Scholar 

  19. Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11, 141–151 (1999).

    Article  CAS  Google Scholar 

  20. Nishimura, H. et al. Autoimmune dilated cardiomyopathy in PD-1 receptor deficient mice. Science 291, 319–322 (2001).

    Article  CAS  Google Scholar 

  21. Yoshinaga, S.K. et al. T-cell co-stimulation through B7RP-1 and ICOS. Nature 402, 827–832 (1999).

    Article  CAS  Google Scholar 

  22. Swallow, M.M., Wallin, J.J. & Sha, W.C. B7h, a novel costimultory homolog of B7.1 and B7.2, is induced by TNF-α. Immunity 11, 423–432 (1999).

    Article  CAS  Google Scholar 

  23. Wang, S. et al. Costimulation of T cells by B7-H2, a B7-like molecule that binds ICOS. Blood 96, 2808–2813 (2000).

    CAS  PubMed  Google Scholar 

  24. Ling, V. et al. Cutting edge: identification of GL50, a novel B7-like protein that functionally binds to ICOS receptor. J. Immunol. 164, 1653–1657 (2000).

    Article  CAS  Google Scholar 

  25. Brodie, D. et al. LICOS, a primordial costimulatory ligand? Curr. Biol. 10, 333–336 (2000).

    Article  CAS  Google Scholar 

  26. Hutloff, A. et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397, 263–266 (1999).

    Article  CAS  Google Scholar 

  27. Coyle, A.J. et al. The CD28-related molecule ICOS is required for effective T cell-dependent immune responses. Immunity 13, 95–105 (2000).

    Article  CAS  Google Scholar 

  28. Tafuri, A. et al. ICOS is essential for effective T helper cell responses. Nature 409, 105–109 (2001).

    Article  CAS  Google Scholar 

  29. McAdam, A. et al. ICOS is critical for CD40 mediated antibody class switching. Nature 409, 102–105 (2001).

    Article  CAS  Google Scholar 

  30. Dong, C. et al. ICOS co-stimulatory receptor is essential for T cell activation and function. Nature 409, 97–101 (2001).

    Article  CAS  Google Scholar 

  31. Watanabe, N. et al. BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat. Immunol. 4, 670–679 (2003).

    Article  CAS  Google Scholar 

  32. Sica, G.L. et al. B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity 18, 849–861 (2003).

    Article  CAS  Google Scholar 

  33. Prasad, D.V.R., Richards, S., Mai, X.M., & Dong, C. B7S1, a novel B7 family member that negatively regulates T cell activation. Immunity 18, 863–873 (2003).

    Article  CAS  Google Scholar 

  34. Chapoval, A.I. et al. B7-H3: A costimulatory molecule for T cell activation and IFN-γ production. Nat. Immunol. 2, 269–274 (2001).

    Article  CAS  Google Scholar 

  35. Sun, M. et al. Characterization of mouse and human B7-H3 genes. J. Immunol. 168, 6294–6297 (2002).

    Article  CAS  Google Scholar 

  36. Stämpfli, M.R. et al. Regulation of allergic mucosal sensitization by interleukin-12 gene transfer to the airway. Am. J. Respir. Cell Mol. Biol. 21, 317–326 (1999).

    Article  Google Scholar 

  37. Stämpfli, M.R. et al. GM-CSF transgene expression in the airway allows aerosolized ovalbumin to induce allergic sensitization in mice. J. Clin. Invest. 102, 1704–1714 (1998).

    Article  Google Scholar 

  38. Wiley, R.E. et al. Expression of the TH1 chemokine IFN-γ-inducible protein 10 in the airway alters mucosal allergic sensitization in mice. J. Immunol. 166, 2750–2759 (2001).

    Article  CAS  Google Scholar 

  39. Fung-Leung, W.-P., Kundig, T.M., Zinkernagel, R.M. & Mak, T.W. Immune response against lymphocytic choriomeningitis virus infection in mice without CD8 expression. J. Exp. Med. 174, 1425–1429 (1991).

    Article  CAS  Google Scholar 

  40. Segal, B.M., Dwyer, B.K. & Shevach, E.M. An interleukin (IL)-10/IL-12 immunoregulatory circuit controls susceptibility to autoimmune disease. J. Exp. Med. 187, 537–546 (1998).

    Article  CAS  Google Scholar 

  41. Suen, W.E., Bergman, C.M., Hjelmstrom, P. & Ruddle, N.H. A critical role for lymphotoxin in experimental allergic encephalomyelitis. J. Exp. Med. 186, 1233–1240 (1997).

    Article  CAS  Google Scholar 

  42. Shahinian, A. et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science 261, 609–612 (1993).

    Article  CAS  Google Scholar 

  43. Kündig, T.M. et al. Duration of TCR stimulation determines costimulatory requirements. Immunity 5, 41–52 (1996).

    Article  Google Scholar 

  44. Bertram, E.M., Lau, P. & Watts, T.H. Temporal segregation of 4-1BB versus CD28 mediated costimulation: 4-1BBL influences T cell numbers late in the primary response and regulates the size of the T cell memory response following influenza infection. J. Immunol. 168, 3777–3785 (2002).

    Article  CAS  Google Scholar 

  45. Dong, H. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat. Med. 8, 793–800 (2002).

    Article  CAS  Google Scholar 

  46. Inaba, K. et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176, 1693–1702 (1992).

    Article  CAS  Google Scholar 

  47. Raptis, L. et al. Cellular ras gene activity is required for full neoplastic transformation by the large tumor antigen of SV40. Cell Growth Differ. 8, 891–901 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Tafuri and A. Shahinian for their preliminary data; T. Walker and S. Goncharova for technical assistance with airway inflammation experiments; A. Ho for help with EAE experiments; Z. Hao for advice on autoantibody analysis; D. Bouchard for cell sorting and preparation of the manuscript; and M. Saunders for scientific editing. This work was supported by the Canadian Network for Vaccines and Immunotherapeutics of Cancer and Chronic Viral Diseases. W.-K.S. is the recipient of a postdoctoral fellowship from the Cancer Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Woong-Kyung Suh or Tak W Mak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suh, WK., Gajewska, B., Okada, H. et al. The B7 family member B7-H3 preferentially down-regulates T helper type 1–mediated immune responses. Nat Immunol 4, 899–906 (2003). https://doi.org/10.1038/ni967

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni967

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing