Skip to main content

Residual Immune Activation and Latency

  • Chapter
  • First Online:
HIV-1 Latency

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 417))

Abstract

The introduction of combination antiretroviral therapy (cART) in the 1990s has dramatically changed the course of HIV infection, decreasing the risk for both AIDS- and non-AIDS-related events. Cancers, cardiovascular disease (CVD), liver and kidney disease, neurological disorders and frailty have become of great importance lately in the clinical management as they represent the principal cause of death in people living with HIV who receive cART (Kirk et al. in Clin Infect Dis 45(1):103–10, 2007; Strategies for Management of Antiretroviral Therapy Study et al. N Engl J Med 355(22):2283–2296, 2006; Ances et al. J Infect Dis 201(3):336–340, 2010; Desquilbet et al. J Gerontol A Biol Sci Med Sci 62(11):1279–1286, 2007; Lifson et al. HIV Clin Trials 9(3):177–185, 2008). Despite the undeniable achievements of cART, we are now faced with its limitations: a considerable proportion of individuals, referred as to immunological non-responders, fails to reconstitute the immune system despite optimal treatment and viral suppression (Kelley et al. Clin Infect Dis 48(6):787–794, 2009; Robbins et al. Clin Infect Dis 48(3):350–361, 2009) and remains at high risk for opportunistic infections and non-AIDS-related events (Strategies for Management of Antiretroviral Therapy Study et al. N Engl J Med 355(22):2283–2296, 2006). Moreover, the generalized state of immune activation and inflammation, linked to serious non-AIDS events, persists despite successful HIV suppression with cART. Finally, the current strategies have so far failed to eradicate the virus, and inflammation appears a driving force in viral persistence. In the light of all this, it is of fundamental importance to investigate the pathophysiological processes that link incomplete immune recovery, immune activation and HIV persistence to design targeted therapies that could impact on the three.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ances BM et al (2010) HIV infection and aging independently affect brain function as measured by functional magnetic resonance imaging. J Infect Dis 201(3):336–340

    Article  PubMed  Google Scholar 

  • Andrade BB et al (2014) Mycobacterial antigen driven activation of CD14 ++CD16− monocytes is a predictor of tuberculosis-associated immune reconstitution inflammatory syndrome. PLoS Pathog 10(10):e1004433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anton PA et al (2000) Enhanced levels of functional HIV-1 co-receptors on human mucosal T cells demonstrated using intestinal biopsy tissue. AIDS 14(12):1761–1765

    Article  CAS  PubMed  Google Scholar 

  • Baker JV et al (2012) Angiotensin converting enzyme inhibitor and HMG-CoA reductase inhibitor as adjunct treatment for persons with HIV infection: a feasibility randomized trial. PLoS ONE 7(10):e46894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker JV et al (2014) Immunologic predictors of coronary artery calcium progression in a contemporary HIV cohort. AIDS 28(6):831–840

    Article  CAS  PubMed  Google Scholar 

  • Bas S et al (2004) CD14 is an acute-phase protein. J Immunol 172(7):4470–4479

    Article  CAS  PubMed  Google Scholar 

  • Bastard JP et al (2015) Increased systemic immune activation and inflammatory profile of long-term HIV-infected ART-controlled patients is related to personal factors, but not to markers of HIV infection severity. J Antimicrob Chemother 70(6):1816–1824

    Article  CAS  PubMed  Google Scholar 

  • Benecke A, Gale M Jr, Katze MG (2012) Dynamics of innate immunity are key to chronic immune activation in AIDS. Curr Opin HIV AIDS 7(1):79–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berquist V, Hoy JF, Trevillyan JM (2017) Contribution of common infections to cardiovascular risk in HIV positive individuals. AIDS Rev 19(2)

    Google Scholar 

  • Boasso A et al (2008) HIV-induced type I interferon and tryptophan catabolism drive T cell dysfunction despite phenotypic activation. PLoS ONE 3(8):e2961

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bosinger SE et al (2012) Systems biology of natural simian immunodeficiency virus infections. Curr Opin HIV AIDS 7(1):71–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulassel MR et al (2012) CD4 T cell nadir independently predicts the magnitude of the HIV reservoir after prolonged suppressive antiretroviral therapy. J Clin Virol 53(1):29–32

    Article  CAS  PubMed  Google Scholar 

  • Boulware DR et al (2011) Higher levels of CRP, D-dimer, IL-6, and hyaluronic acid before initiation of antiretroviral therapy (ART) are associated with increased risk of AIDS or death. J Infect Dis 203(11):1637–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenchley JM et al (2004) CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med 200(6):749–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenchley JM et al (2006a) Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 12(12):1365–1371

    Article  CAS  PubMed  Google Scholar 

  • Brenchley JM, Price DA, Douek DC (2006b) HIV disease: fallout from a mucosal catastrophe? Nat Immunol 7(3):235–239

    Article  CAS  PubMed  Google Scholar 

  • Brown D, Mattapallil JJ (2014) Gastrointestinal tract and the mucosal macrophage reservoir in HIV infection. Clin Vaccine Immunol 21(11):1469–1473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bruner KM et al (2016) Defective proviruses rapidly accumulate during acute HIV-1 infection. Nat Med 22(9):1043–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burdo TH et al (2011) Soluble CD163 made by monocyte/macrophages is a novel marker of HIV activity in early and chronic infection prior to and after anti-retroviral therapy. J Infect Dis 204(1):154–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buzon MJ et al (2010) HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects. Nat Med 16(4):460–465

    Article  PubMed  CAS  Google Scholar 

  • Buzon MJ et al (2014a) Long-term antiretroviral treatment initiated at primary HIV-1 infection affects the size, composition, and decay kinetics of the reservoir of HIV-1-infected CD4 T cells. J Virol 88(17):10056–10065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buzon MJ et al (2014b) HIV-1 persistence in CD4+ T cells with stem cell-like properties. Nat Med 20(2):139–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron PU et al (2010) Establishment of HIV-1 latency in resting CD4+ T cells depends on chemokine-induced changes in the actin cytoskeleton. Proc Natl Acad Sci U S A 107(39):16934–16939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chahroudi A et al (2012) Natural SIV hosts: showing AIDS the door. Science 335(6073):1188–1193

    Article  CAS  PubMed  Google Scholar 

  • Chan MM et al (1990) Beta 2-microglobulin and neopterin: predictive markers for human immunodeficiency virus type 1 infection in children? J Clin Microbiol 28(10):2215–2219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan CN et al (2016) HIV-1 latency and virus production from unintegrated genomes following direct infection of resting CD4 T cells. Retrovirology 13:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chege D et al (2011) Sigmoid Th17 populations, the HIV latent reservoir, and microbial translocation in men on long-term antiretroviral therapy. AIDS 25(6):741–749

    Article  CAS  PubMed  Google Scholar 

  • Cheung AKL, Huang Y, Kwok HY, Chen M, Chen Z (2017) Latent human cytomegalovirus enhances HIV-1 infection in CD34+ progenitor cells. Blood Adv 1(5):306–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevalier MF, Weiss L (2013) The split personality of regulatory T cells in HIV infection. Blood 121(1):29–37

    Article  CAS  PubMed  Google Scholar 

  • Chew KW et al (2014) The effect of hepatitis C virologic clearance on cardiovascular disease biomarkers in human immunodeficiency virus/hepatitis C virus coinfection. Open Forum Infect Dis 1(3):ofu104

    Google Scholar 

  • Chomont N et al (2009) HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med 15(8):893–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary SK et al (2007) Low immune activation despite high levels of pathogenic human immunodeficiency virus type 1 results in long-term asymptomatic disease. J Virol 81(16):8838–8842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chun TW et al (1997) Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387(6629):183–188

    Article  CAS  PubMed  Google Scholar 

  • Chun TW et al (1998a) Early establishment of a pool of latently infected, resting CD4(+) T cells during primary HIV-1 infection. Proc Natl Acad Sci U S A 95(15):8869–8873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chun TW et al (1998b) Induction of HIV-1 replication in latently infected CD4+ T cells using a combination of cytokines. J Exp Med 188(1):83–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chun TW et al (2005) HIV-infected individuals receiving effective antiviral therapy for extended periods of time continually replenish their viral reservoir. J Clin Invest 115(11):3250–3255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung CY et al (2014) Progressive proximal-to-distal reduction in expression of the tight junction complex in colonic epithelium of virally-suppressed HIV+ individuals. PLoS Pathog 10(6):e1004198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Churchill MJ et al (2006) Use of laser capture microdissection to detect integrated HIV-1 DNA in macrophages and astrocytes from autopsy brain tissues. J Neurovirol 12(2):146–152

    Article  PubMed  CAS  Google Scholar 

  • Cockerham LR et al (2014) CD4+ and CD8+ T cell activation are associated with HIV DNA in resting CD4+ T cells. PLoS ONE 9(10):e110731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cohn LB et al (2015) HIV-1 integration landscape during latent and active infection. Cell 160(3):420–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman CM, Wu L (2009) HIV interactions with monocytes and dendritic cells: viral latency and reservoirs. Retrovirology 6:51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crowe S, Zhu T, Muller WA (2003) The contribution of monocyte infection and trafficking to viral persistence, and maintenance of the viral reservoir in HIV infection. J Leukoc Biol 74(5):635–641

    Article  CAS  PubMed  Google Scholar 

  • Dahl V et al (2014) An example of genetically distinct HIV type 1 variants in cerebrospinal fluid and plasma during suppressive therapy. J Infect Dis 209(10):1618–1622

    Article  PubMed  Google Scholar 

  • De Martinis M et al (2006) Inflammation markers predicting frailty and mortality in the elderly. Exp Mol Pathol 80(3):219–227

    Article  PubMed  CAS  Google Scholar 

  • Deeks SG (2011) HIV infection, inflammation, immunosenescence, and aging. Annu Rev Med 62:141–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deeks SG (2012) HIV: shock and kill. Nature 487(7408):439–440

    Article  CAS  PubMed  Google Scholar 

  • Deeks SG et al (2004) Immune activation set point during early HIV infection predicts subsequent CD4+ T-cell changes independent of viral load. Blood 104(4):942–947

    Article  CAS  PubMed  Google Scholar 

  • Descours B et al (2017) CD32a is a marker of a CD4 T-cell HIV reservoir harbouring replication-competent proviruses. Nature 543(7646):564–567

    Article  CAS  PubMed  Google Scholar 

  • Desquilbet L et al (2007) HIV-1 infection is associated with an earlier occurrence of a phenotype related to frailty. J Gerontol A Biol Sci Med Sci 62(11):1279–1286

    Article  PubMed  Google Scholar 

  • Dillon SM et al (2014) An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia. Mucosal Immunol 7(4):983–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dion ML et al (2004) HIV infection rapidly induces and maintains a substantial suppression of thymocyte proliferation. Immunity 21(6):757–768

    Article  CAS  PubMed  Google Scholar 

  • Doitsh G et al (2010) Abortive HIV infection mediates CD4 T cell depletion and inflammation in human lymphoid tissue. Cell 143(5):789–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doitsh G et al (2014) Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 505(7484):509–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dowd JB et al (2013) Cytomegalovirus is associated with reduced telomerase activity in the Whitehall II cohort. Exp Gerontol 48(4):385–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eden A et al (2010) HIV-1 viral escape in cerebrospinal fluid of subjects on suppressive antiretroviral treatment. J Infect Dis 202(12):1819–1825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Effros RB et al (1996) Shortened telomeres in the expanded CD28-CD8+ cell subset in HIV disease implicate replicative senescence in HIV pathogenesis. AIDS 10(8):F17–F22

    Article  CAS  PubMed  Google Scholar 

  • Eisele E, Siliciano RF (2012) Redefining the viral reservoirs that prevent HIV-1 eradication. Immunity 37(3):377–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ericsen AJ et al (2016) Microbial translocation and inflammation occur in hyperacute immunodeficiency virus infection and compromise host control of virus replication. PLoS Pathog 12(12):e1006048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Estes JD (2013) Pathobiology of HIV/SIV-associated changes in secondary lymphoid tissues. Immunol Rev 254(1):65–77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Estes JD, Haase AT, Schacker TW (2008) The role of collagen deposition in depleting CD4+ T cells and limiting reconstitution in HIV-1 and SIV infections through damage to the secondary lymphoid organ niche. Semin Immunol 20(3):181–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falk S, Stutte HJ (1990) The spleen in HIV infection–morphological evidence of HIV-associated macrophage dysfunction. Res Virol 141(2):161–169

    Article  CAS  PubMed  Google Scholar 

  • Folkvord JM, Armon C, Connick E (2005) Lymphoid follicles are sites of heightened human immunodeficiency virus type 1 (HIV-1) replication and reduced antiretroviral effector mechanisms. AIDS Res Hum Retroviruses 21(5):363–370

    Article  CAS  PubMed  Google Scholar 

  • Freeman ML et al (2016) CD8 T-Cell expansion and inflammation linked to CMV coinfection in ART-treated HIV infection. Clin Infect Dis 62(3):392–396

    Article  CAS  PubMed  Google Scholar 

  • Fuchs D et al (1984) Urinary neopterin in the diagnosis of acquired immune deficiency syndrome. Eur J Clin Microbiol 3(1):70–71

    Article  CAS  PubMed  Google Scholar 

  • Fulop T, Larbi A, Pawelec G (2013) Human T cell aging and the impact of persistent viral infections. Front Immunol 4:271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George VK et al (2015) HIV infection Worsens Age-Associated Defects in Antibody Responses to Influenza Vaccine. J Infect Dis 211(12):1959–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gianella S et al (2013) Cytomegalovirus DNA in semen and blood is associated with higher levels of proviral HIV DNA. J Infect Dis 207(6):898–902

    Article  CAS  PubMed  Google Scholar 

  • Gianella S et al (2014) Cytomegalovirus replication in semen is associated with higher levels of proviral HIV DNA and CD4+ T cell activation during antiretroviral treatment. J Virol 88(14):7818–7827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gianella S et al (2016) Replication of human herpesviruses is associated with higher HIV DNA levels during antiretroviral therapy started at early phases of HIV infection. J Virol 90(8):3944–3952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gioannini TL, Weiss JP (2007) Regulation of interactions of gram-negative bacterial endotoxins with mammalian cells. Immunol Res 39(1–3):249–260

    Article  CAS  PubMed  Google Scholar 

  • Giorgi JV et al (1993) Elevated levels of CD38+CD8+ T cells in HIV infection add to the prognostic value of low CD4+ T cell levels: results of 6 years of follow-up. The Los Angeles Center, Multicenter AIDS Cohort Study. J Acquir Immune Defic Syndr 6(8):904–912

    CAS  PubMed  Google Scholar 

  • Giorgi JV et al (1999) Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J Infect Dis 179(4):859–870

    Article  CAS  PubMed  Google Scholar 

  • Giron-Gonzalez JA et al (2007) Natural history of compensated and decompensated HCV-related cirrhosis in HIV-infected patients: a prospective multicentre study. Antivir Ther 12(6):899–907

    CAS  PubMed  Google Scholar 

  • Gonzalez VD et al (2009) High levels of chronic immune activation in the T-cell compartments of patients coinfected with hepatitis C virus and human immunodeficiency virus type 1 and on highly active antiretroviral therapy are reverted by alpha interferon and ribavirin treatment. J Virol 83(21):11407–11411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Hernandez LA et al (2012) Synbiotic therapy decreases microbial translocation and inflammation and improves immunological status in HIV-infected patients: a double-blind randomized controlled pilot trial. Nutr J 11:90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grieco MH et al (1984) Elevated beta 2-microglobulin and lysozyme levels in patients with acquired immune deficiency syndrome. Clin Immunol Immunopathol 32(2):174–184

    Article  CAS  PubMed  Google Scholar 

  • Guadalupe M et al (2003) Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J Virol 77(21):11708–11717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haase AT et al (1996) Quantitative image analysis of HIV-1 infection in lymphoid tissue. Science 274(5289):985–989

    Article  CAS  PubMed  Google Scholar 

  • Hadrup SR et al (2006) Longitudinal studies of clonally expanded CD8 T cells reveal a repertoire shrinkage predicting mortality and an increased number of dysfunctional cytomegalovirus-specific T cells in the very elderly. J Immunol 176(4):2645–2653

    Article  CAS  PubMed  Google Scholar 

  • Han Y et al (2008) Orientation-dependent regulation of integrated HIV-1 expression by host gene transcriptional readthrough. Cell Host Microbe 4(2):134–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haraguchi S et al (2006) LMP-420, a small-molecule inhibitor of TNF-alpha, reduces replication of HIV-1 and Mycobacterium tuberculosis in human cells. AIDS Res Ther 3:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hardy GA et al (2013) Interferon-alpha is the primary plasma type-I IFN in HIV-1 infection and correlates with immune activation and disease markers. PLoS ONE 8(2):e56527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatano H et al (2013a) Comparison of HIV DNA and RNA in gut-associated lymphoid tissue of HIV-infected controllers and noncontrollers. AIDS 27(14):2255–2260

    Article  PubMed  Google Scholar 

  • Hatano H et al (2013b) Cell-based measures of viral persistence are associated with immune activation and programmed cell death protein 1 (PD-1)-expressing CD4+ T cells. J Infect Dis 208(1):50–56

    Article  CAS  PubMed  Google Scholar 

  • Hatano H et al (2013c) Increase in 2-long terminal repeat circles and decrease in D-dimer after raltegravir intensification in patients with treated HIV infection: a randomized, placebo-controlled trial. J Infect Dis 208(9):1436–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazenberg MD et al (2003) Persistent immune activation in HIV-1 infection is associated with progression to AIDS. AIDS 17(13):1881–1888

    Article  PubMed  Google Scholar 

  • Ho DD et al (1995) Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373(6510):123–126

    Article  CAS  PubMed  Google Scholar 

  • Ho YC et al (2013) Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 155(3):540–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt PW et al (2008) Relationship between T cell activation and CD4+ T cell count in HIV-seropositive individuals with undetectable plasma HIV RNA levels in the absence of therapy. J Infect Dis 197(1):126–133

    Article  PubMed  Google Scholar 

  • Hunt PW et al (2011a) Impact of CD8+ T-cell activation on CD4+ T-cell recovery and mortality in HIV-infected Ugandans initiating antiretroviral therapy. AIDS 25(17):2123–2131

    Article  CAS  PubMed  Google Scholar 

  • Hunt PW et al (2011b) Valganciclovir reduces T cell activation in HIV-infected individuals with incomplete CD4+ T cell recovery on antiretroviral therapy. J Infect Dis 203(10):1474–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacquelin B et al (2009) Nonpathogenic SIV infection of African green monkeys induces a strong but rapidly controlled type I IFN response. J Clin Invest 119(12):3544–3555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jarvis MA, Nelson JA (2007) Human cytomegalovirus tropism for endothelial cells: not all endothelial cells are created equal. J Virol 81(5):2095–2101

    Article  CAS  PubMed  Google Scholar 

  • Jiang W et al (2009) Plasma levels of bacterial DNA correlate with immune activation and the magnitude of immune restoration in persons with antiretroviral-treated HIV infection. J Infect Dis 199(8):1177–1185

    Article  CAS  PubMed  Google Scholar 

  • Josefsson L et al (2012) Hematopoietic precursor cells isolated from patients on long-term suppressive HIV therapy did not contain HIV-1 DNA. J Infect Dis 206(1):28–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Josefsson L et al (2013) The HIV-1 reservoir in eight patients on long-term suppressive antiretroviral therapy is stable with few genetic changes over time. Proc Natl Acad Sci U S A 110(51):E4987–E4996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kearney MF et al (2014) Lack of detectable HIV-1 molecular evolution during suppressive antiretroviral therapy. PLoS Pathog 10(3):e1004010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kelley CF et al (2009) Incomplete peripheral CD4+ cell count restoration in HIV-infected patients receiving long-term antiretroviral treatment. Clin Infect Dis 48(6):787–794

    Article  PubMed  Google Scholar 

  • Kim SK et al (1997) Activation and migration of CD8 T cells in the intestinal mucosa. J Immunol 159(9):4295–4306

    CAS  PubMed  Google Scholar 

  • Kinter AL et al (2008) The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands. J Immunol 181(10):6738–6746

    Article  CAS  PubMed  Google Scholar 

  • Kirk GD et al (2007) HIV infection is associated with an increased risk for lung cancer, independent of smoking. Clin Infect Dis 45(1):103–110

    Article  PubMed  Google Scholar 

  • Klatt NR, Funderburg NT, Brenchley JM (2006) Microbial translocation, immune activation, and HIV disease. Trends Microbiol 21(1):6–13

    Google Scholar 

  • Klatt NR et al (2011) SIV infection of rhesus macaques results in dysfunctional T- and B-cell responses to neo and recall Leishmania major vaccination. Blood 118(22):5803–5812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klatt NR et al (2013) Probiotic/prebiotic supplementation of antiretrovirals improves gastrointestinal immunity in SIV-infected macaques. J Clin Invest 123(2):903–907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kolte L et al (2002) Association between larger thymic size and higher thymic output in human immunodeficiency virus-infected patients receiving highly active antiretroviral therapy. J Infect Dis 185(11):1578–1585

    Article  PubMed  Google Scholar 

  • Kovacs A et al (1999) Cytomegalovirus infection and HIV-1 disease progression in infants born to HIV-1-infected women. Pediatric pulmonary and cardiovascular complications of vertically transmitted HIV Infection Study Group. N Engl J Med 341(2):77–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuller LH et al (2008) Inflammatory and coagulation biomarkers and mortality in patients with HIV infection. PLoS Med 5(10):e203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kulpa DA et al (2013) The immunological synapse: the gateway to the HIV reservoir. Immunol Rev 254(1):305–325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kushner LE et al (2013) Immune biomarker differences and changes comparing HCV mono-infected, HIV/HCV co-infected, and HCV spontaneously cleared patients. PLoS ONE 8(4):e60387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafeuillade A et al (2001) Persistence of HIV-1 resistance in lymph node mononuclear cell RNA despite effective HAART. AIDS 15(15):1965–1969

    Article  CAS  PubMed  Google Scholar 

  • Lassen K et al (2004) The multifactorial nature of HIV-1 latency. Trends Mol Med 10(11):525–531

    Article  CAS  PubMed  Google Scholar 

  • Lee SA et al (2014) Low proportions of CD28- CD8+ T cells expressing CD57 can be reversed by early ART initiation and predict mortality in treated HIV infection. J Infect Dis 210(3):374–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lelievre JD et al (2012) Initiation of c-ART in HIV-1 infected patients is associated with a decrease of the metabolic activity of the thymus evaluated using FDG-PET/computed tomography. J Acquir Immune Defic Syndr 61(1):56–63

    Article  PubMed  Google Scholar 

  • Levy Y et al (2012) Effects of recombinant human interleukin 7 on T-cell recovery and thymic output in HIV-infected patients receiving antiretroviral therapy: results of a phase I/IIa randomized, placebo-controlled, multicenter study. Clin Infect Dis 55(2):291–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JZ et al (2015) Differential levels of soluble inflammatory markers by human immunodeficiency virus controller status and demographics. Open Forum Infect Dis 2(1):ofu117

    Google Scholar 

  • Lichtner M et al (2015) Cytomegalovirus coinfection is associated with an increased risk of severe non-AIDS-defining events in a large cohort of HIV-infected patients. J Infect Dis 211(2):178–186

    Article  CAS  PubMed  Google Scholar 

  • Lifson AR et al (2008) Determination of the underlying cause of death in three multicenter international HIV clinical trials. HIV Clin Trials 9(3):177–185

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindqvist M et al (2012) Expansion of HIV-specific T follicular helper cells in chronic HIV infection. J Clin Invest 122(9):3271–3280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long AT et al (2016) Contact system revisited: an interface between inflammation, coagulation, and innate immunity. J Thromb Haemost 14(3):427–437

    Article  CAS  PubMed  Google Scholar 

  • Longenecker CT et al (2014) Soluble CD14 is independently associated with coronary calcification and extent of subclinical vascular disease in treated HIV infection. AIDS 28(7):969–977

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo-Redondo R et al (2016) Persistent HIV-1 replication maintains the tissue reservoir during therapy. Nature 530(7588):51–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu W et al (2015) CD4:CD8 ratio as a frontier marker for clinical outcome, immune dysfunction and viral reservoir size in virologically suppressed HIV-positive patients. J Int AIDS Soc 18:20052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo R et al (2013) Modelling HIV-1 2-LTR dynamics following raltegravir intensification. J R Soc Interface 10(84):20130186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maidji E et al (2017) Replication of CMV in the gut of HIV-infected individuals and epithelial barrier dysfunction. PLoS Pathog 13(2):e1006202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maldarelli F et al (2014) HIV latency. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science 345(6193):179–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchetti G, Tincati C, Silvestri G (2013) Microbial translocation in the pathogenesis of HIV infection and AIDS. Clin Microbiol Rev 26(1):2–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcos V et al (2010) Expression, regulation and clinical significance of soluble and membrane CD14 receptors in pediatric inflammatory lung diseases. Respir Res 11:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marriott JB et al (1997) A double-blind placebo-controlled phase II trial of thalidomide in asymptomatic HIV-positive patients: clinical tolerance and effect on activation markers and cytokines. AIDS Res Hum Retroviruses 13(18):1625–1631

    Article  CAS  PubMed  Google Scholar 

  • Mehandru S et al (2004) Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. J Exp Med 200(6):761–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melnick JL, Adam E, Debakey ME (1993) Cytomegalovirus and atherosclerosis. Eur Heart J 14 Suppl K:30–38

    Google Scholar 

  • Micci L et al (2015) Interleukin-21 combined with ART reduces inflammation and viral reservoir in SIV-infected macaques. J Clin Invest 125(12):4497–4513

    Article  PubMed  PubMed Central  Google Scholar 

  • Miles B, Connick E (2016) TFH in HIV latency and as sources of replication-competent virus. Trends Microbiol 24(5):338–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moir S et al (2008) Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals. J Exp Med 205(8):1797–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mousseau G, Valente ST (2016) Didehydro-cortistatin a: a new player in HIV-therapy? Expert Rev Anti Infect Ther 14(2):145–148

    Article  CAS  PubMed  Google Scholar 

  • Munch J et al (2007) Nef-mediated enhancement of virion infectivity and stimulation of viral replication are fundamental properties of primate lentiviruses. J Virol 81(24):13852–13864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mutlu EA et al (2014) A compositional look at the human gastrointestinal microbiome and immune activation parameters in HIV infected subjects. PLoS Pathog 10(2):e1003829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nazli A et al (2010) Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing microbial translocation. PLoS Pathog 6(4):e1000852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neuhaus J et al (2010) Markers of inflammation, coagulation, and renal function are elevated in adults with HIV infection. J Infect Dis 201(12):1788–1795

    Article  CAS  PubMed  Google Scholar 

  • Nixon CC et al (2013) HIV-1 infection of hematopoietic progenitor cells in vivo in humanized mice. Blood 122(13):2195–2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien M et al (2011) Spatiotemporal trafficking of HIV in human plasmacytoid dendritic cells defines a persistently IFN-alpha-producing and partially matured phenotype. J Clin Invest 121(3):1088–1101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olesen R et al (2015) Innate Immune Activity Correlates with CD4 T Cell-Associated HIV-1 DNA decline during latency-reversing treatment with panobinostat. J Virol 89(20):10176–10189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer S et al (2003) New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol 41(10):4531–4536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandrea I et al (2016) Antibiotic and antiinflammatory therapy transiently reduces inflammation and hypercoagulation in acutely SIV-infected pigtailed Macaques. PLoS Pathog 12(1):e1005384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pantaleo G, Graziosi C, Fauci AS (1993) The role of lymphoid organs in the pathogenesis of HIV infection. Semin Immunol 5(3):157–163

    Article  CAS  PubMed  Google Scholar 

  • Pillai SK, Deeks SG (2017) Signature of the sleeper cell: a biomarker of HIV latency revealed. Trends Immunol

    Google Scholar 

  • Ploquin MJ, Silvestri G, Muller-Trutwin M (2016) Immune activation in HIV infection: what can the natural hosts of simian immunodeficiency virus teach us? Curr Opin HIV AIDS 11(2):201–208

    Article  CAS  PubMed  Google Scholar 

  • Reuse S et al (2009) Synergistic activation of HIV-1 expression by deacetylase inhibitors and prostratin: implications for treatment of latent infection. PLoS ONE 4(6):e6093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Revello MG, Gerna G (2010) Human cytomegalovirus tropism for endothelial/epithelial cells: scientific background and clinical implications. Rev Med Virol 20(3):136–155

    Article  CAS  PubMed  Google Scholar 

  • Robbins GK et al (2009) Incomplete reconstitution of T cell subsets on combination antiretroviral therapy in the AIDS Clinical Trials Group protocol 384. Clin Infect Dis 48(3):350–361

    Article  PubMed  Google Scholar 

  • Saez-Cirion A et al (2013) Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathog 9(3):e1003211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sajadi MM et al (2012) Chronic immune activation and decreased CD4 cell counts associated with hepatitis C infection in HIV-1 natural viral suppressors. AIDS 26(15):1879–1884

    Article  CAS  PubMed  Google Scholar 

  • Sandberg JK, Falconer K, Gonzalez VD (2010) Chronic immune activation in the T cell compartment of HCV/HIV-1 co-infected patients. Virulence 1(3):177–179

    Article  PubMed  Google Scholar 

  • Sandler NG et al (2011) Host response to translocated microbial products predicts outcomes of patients with HBV or HCV infection. Gastroenterology 141(4):1220–1230, 1230 e1-3

    Article  Google Scholar 

  • Sandler NG et al (2011) Plasma levels of soluble CD14 independently predict mortality in HIV infection. J Infect Dis 203(6):780–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauce D et al (2011) HIV disease progression despite suppression of viral replication is associated with exhaustion of lymphopoiesis. Blood 117(19):5142–5151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauter R et al (2016) CD4/CD8 ratio and CD8 counts predict CD4 response in HIV-1-infected drug naive and in patients on cART. Medicine (Baltimore) 95(42):e5094

    Article  CAS  Google Scholar 

  • Scaggiante R et al (2016) Epstein-Barr and cytomegalovirus DNA salivary shedding correlate with long-term plasma HIV RNA detection in HIV-infected men who have sex with men. J Med Virol 88(7):1211–1221

    Article  CAS  PubMed  Google Scholar 

  • Schacker TW et al (2005) Amount of lymphatic tissue fibrosis in HIV infection predicts magnitude of HAART-associated change in peripheral CD4 cell count. AIDS 19(18):2169–2171

    Article  PubMed  Google Scholar 

  • Schacker TW et al (2006) Lymphatic tissue fibrosis is associated with reduced numbers of naive CD4+ T cells in human immunodeficiency virus type 1 infection. Clin Vaccine Immunol 13(5):556–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuetz A et al (2014) Initiation of ART during early acute HIV infection preserves mucosal Th17 function and reverses HIV-related immune activation. PLoS Pathog 10(12):e1004543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sereti I, Rodger AJ, French MA (2010) Biomarkers in immune reconstitution inflammatory syndrome: signals from pathogenesis. Curr Opin HIV AIDS 5(6):504–510

    Article  PubMed  PubMed Central  Google Scholar 

  • Sereti I et al (2017) Persistent, albeit reduced, chronic inflammation in persons starting antiretroviral therapy in acute HIV infection. Clin Infect Dis 64(2):124–131

    Article  PubMed  CAS  Google Scholar 

  • Serrano-Villar S et al (2014) Increased risk of serious non-AIDS-related events in HIV-infected subjects on antiretroviral therapy associated with a low CD4/CD8 ratio. PLoS ONE 9(1):e85798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shan L et al (2011) Influence of host gene transcription level and orientation on HIV-1 latency in a primary-cell model. J Virol 85(11):5384–5393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan L et al (2012) Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation. Immunity 36(3):491–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siliciano RF, Greene WC (2011) HIV latency. Cold Spring Harb Perspect Med 1(1):a007096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siliciano JD et al (2003) Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med 9(6):727–728

    Article  CAS  PubMed  Google Scholar 

  • Simonetti FR et al (2016) Clonally expanded CD4+ T cells can produce infectious HIV-1 in vivo. Proc Natl Acad Sci U S A 113(7):1883–1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sousa AE et al (2002) CD4 T cell depletion is linked directly to immune activation in the pathogenesis of HIV-1 and HIV-2 but only indirectly to the viral load. J Immunol 169(6):3400–3406

    Article  CAS  PubMed  Google Scholar 

  • Stacey AR et al (2009) Induction of a striking systemic cytokine cascade prior to peak viremia in acute human immunodeficiency virus type 1 infection, in contrast to more modest and delayed responses in acute hepatitis B and C virus infections. J Virol 83(8):3719–3733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steininger C, Puchhammer-Stockl E, Popow-Kraupp T (2006) Cytomegalovirus disease in the era of highly active antiretroviral therapy (HAART). J Clin Virol 37(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Stock PG et al (2010) Outcomes of kidney transplantation in HIV-infected recipients. N Engl J Med 363(21):2004–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strategic Timing of Antiretroviral Therapy (START) (2006) CD4+ count-guided interruption of antiretroviral treatment. N Engl J Med 355(22):2283–2296

    Google Scholar 

  • Sullivan ZA et al (2015) Latent and active tuberculosis infection increase immune activation in individuals co-infected with HIV. EBioMedicine 2(4):334–340

    Article  PubMed  PubMed Central  Google Scholar 

  • Sundaravaradan V et al (2013) Multifunctional double-negative T cells in sooty mangabeys mediate T-helper functions irrespective of SIV infection. PLoS Pathog 9(6):e1003441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabb B et al (2013) Reduced inflammation and lymphoid tissue immunopathology in rhesus macaques receiving anti-tumor necrosis factor treatment during primary simian immunodeficiency virus infection. J Infect Dis 207(6):880–892

    Article  CAS  PubMed  Google Scholar 

  • Tenorio AR et al (2014) Soluble markers of inflammation and coagulation but not T-cell activation predict non-AIDS-defining morbid events during suppressive antiretroviral treatment. J Infect Dis 210(8):1248–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thierry S et al (2015) Integrase inhibitor reversal dynamics indicate unintegrated HIV-1 dna initiate de novo integration. Retrovirology 12:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thompson KA et al (2011) Brain cell reservoirs of latent virus in presymptomatic HIV-infected individuals. Am J Pathol 179(4):1623–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran TA et al (2008) Resting regulatory CD4 T cells: a site of HIV persistence in patients on long-term effective antiretroviral therapy. PLoS ONE 3(10):e3305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valantine HA et al (1999) Impact of prophylactic immediate posttransplant ganciclovir on development of transplant atherosclerosis: a post hoc analysis of a randomized, placebo-controlled study. Circulation 100(1):61–66

    Article  CAS  PubMed  Google Scholar 

  • Vallejo A et al (2012) The effect of intensification with raltegravir on the HIV-1 reservoir of latently infected memory CD4 T cells in suppressed patients. AIDS 26(15):1885–1894

    Article  CAS  PubMed  Google Scholar 

  • Vandergeeten C, Fromentin R, Chomont N (2012) The role of cytokines in the establishment, persistence and eradication of the HIV reservoir. Cytokine Growth Factor Rev 23(4–5):143–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandergeeten C et al (2013) Interleukin-7 promotes HIV persistence during antiretroviral therapy. Blood 121(21):4321–4329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veazey RS et al (2000) Dynamics of CCR5 expression by CD4(+) T cells in lymphoid tissues during simian immunodeficiency virus infection. J Virol 74(23):11001–11007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinton C et al (2011) CD4-like immunological function by CD4-T cells in multiple natural hosts of simian immunodeficiency virus. J Virol 85(17):8702–8708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Sydow M et al (1991) Interferon-alpha and tumor necrosis factor-alpha in serum of patients in various stages of HIV-1 infection. AIDS Res Hum Retroviruses 7(4):375–380

    Article  Google Scholar 

  • Wagner TA et al (2013) An increasing proportion of monotypic HIV-1 DNA sequences during antiretroviral treatment suggests proliferation of HIV-infected cells. J Virol 87(3):1770–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallet MA et al (2015) Increased inflammation but similar physical composition and function in older-aged, HIV-1 infected subjects. BMC Immunol 16:43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whitney JB et al (2014) Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys. Nature 512(7512):74–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu HJ, Reuter MA, McDonald D (2008) HIV traffics through a specialized, surface-accessible intracellular compartment during trans-infection of T cells by mature dendritic cells. PLoS Pathog 4(8):e1000134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yukl SA et al (2010) Effect of raltegravir-containing intensification on HIV burden and T-cell activation in multiple gut sites of HIV-positive adults on suppressive antiretroviral therapy. AIDS 24(16):2451–2460

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Perelson AS (2013) Contribution of follicular dendritic cells to persistent HIV viremia. J Virol 87(14):7893–7901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of the authors was supported by the Intramural Research Program of NIAID/NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irini Sereti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bruzzesi, E., Sereti, I. (2018). Residual Immune Activation and Latency. In: Silvestri, G., Lichterfeld, M. (eds) HIV-1 Latency. Current Topics in Microbiology and Immunology, vol 417. Springer, Cham. https://doi.org/10.1007/82_2018_118

Download citation

Publish with us

Policies and ethics