Skip to main content

Introduction to the Chemical Oceanography of Frontal Zones

  • Chapter
Chemical Oceanography of Frontal Zones

Abstract

This chapter provides a concise overview of the entire monograph by assembling summaries of 10 individual chapters starting with a global review of large-scale, persistent nutrient fronts of the World Ocean followed by regional chapters on the Arctic Ocean, North Atlantic, Baltic Sea, Kuroshio Current, and the Yellow Sea, a global review of CDOM dynamics at fronts, a chapter on persistent organic pollutants and marine organisms in the Kuroshio-Oyashio frontal zone, and two chapters on marine litter and its dynamics in frontal zones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palter JB, Marinov I, Sarmiento JL, Gruber N (2021; online-first in 2013) Large-scale, persistent nutrient fronts of the World Ocean: impacts on biogeochemistry. In: Belkin IM (ed) Chemical oceanography of frontal zones. Handbook of environmental chemistry series, this volume, Springer-Verlag GmbH Germany, Berlin. https://doi.org/10.1007/698_2013_241

  2. Alkire MB, Rember R, Polyakov I (2021) The Pacific-Atlantic front in the East Siberian Sea of the Arctic Ocean. In: Belkin IM (ed) Chemical oceanography of frontal zones. Handbook of environmental chemistry series, this volume. Springer-Verlag GmbH Germany, Berlin. https://doi.org/10.1007/698_2021_795

    Chapter  Google Scholar 

  3. Hátún H, Larsen KMH, Eliasen SK, Mathis M (2021) Major nutrient fronts in the northeastern Atlantic: from the subpolar gyre to adjacent shelves. In: Belkin IM (ed) Chemical oceanography of frontal zones. Handbook of environmental chemistry series, this volume. Springer-Verlag GmbH Germany, Berlin. https://doi.org/10.1007/698_2021_794

    Chapter  Google Scholar 

  4. Suursaar Ü, Elken J, Belkin IM (2021) Fronts in the Baltic Sea: a review with a focus on its north-eastern part. In: Belkin IM (ed) Chemical oceanography of frontal zones. Handbook of environmental chemistry series, this volume. Springer-Verlag GmbH Germany, Berlin. https://doi.org/10.1007/698_2021_813

    Chapter  Google Scholar 

  5. Nagai T, Durán Gómez GS (2021) The Kuroshio nutrient stream: where diapycnal mixing matters. In: Belkin IM (ed) Chemical oceanography of frontal zones. Handbook of environmental chemistry series, this volume. Springer-Verlag GmbH Germany, Berlin. https://doi.org/10.1007/698_2021_833

    Chapter  Google Scholar 

  6. Wei QS, Fu MZ, Li XS, Sun JC, Wang BD, Yu ZG (2021) Front-driven physical-biogeochemical-ecological interactions in the southwestern Yellow Sea large marine ecosystem. In: Belkin IM (ed) Chemical oceanography of frontal zones. Handbook of environmental chemistry series, this volume. Springer-Verlag GmbH Germany, Berlin. https://doi.org/10.1007/698_2021_832

    Chapter  Google Scholar 

  7. Guéguen C, Kowalczuk P (2021; online first in 2013) Colored dissolved organic matter in frontal zones. In: Belkin IM (ed) Chemical oceanography of frontal zones, Handbook of environmental chemistry series, this volume, Springer-Verlag GmbH Germany, Berlin. https://doi.org/10.1007/698_2013_244

  8. Takahashi S, Ramu K, Tanabe S (2021; online-first in 2014) Contamination by persistent organic pollutants and related compounds in deep-sea ecosystems along frontal zones around Japan. In: Belkin IM (ed) Chemical oceanography of frontal zones, Handbook of environmental chemistry series, this volume, Springer-Verlag GmbH Germany, Berlin. https://doi.org/10.1007/698_2013_252

  9. Suaria G, Berta M, Griffa A, Molcard A, Özgökmen TM, Zambianchi E, Aliani S (2021) Dynamics of transport, accumulation, and export of plastics at oceanic fronts. In: Belkin IM (ed) Chemical oceanography of frontal zones. Handbook of environmental chemistry series, this volume. Springer-Verlag GmbH Germany, Berlin. https://doi.org/10.1007/698_2021_814

    Chapter  Google Scholar 

  10. Ricker M, Meyerjürgens J, Badewien TH, Stanev EV (2021) Lagrangian methods for visualizing and assessing frontal dynamics of floating marine litter with a focus on tidal basins. In: Belkin IM (ed) Chemical oceanography of frontal zones. Handbook of environmental chemistry series, this volume. Springer-Verlag GmbH Germany, Berlin. https://doi.org/10.1007/698_2021_812

    Chapter  Google Scholar 

  11. Sarmiento JL, Gruber N, Brzezinski MA, Dunne JP (2004) High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427(6969):56–60. https://doi.org/10.1038/nature02127

    Article  CAS  Google Scholar 

  12. Weber TS, Deutsch C (2010) Ocean nutrient ratios governed by plankton biogeography. Nature 467(7315):550–554. https://doi.org/10.1038/nature09403

    Article  CAS  Google Scholar 

  13. Lévy M, Resplandy L, Palter JB, Couespel D, Lachkar Z (2021) The crucial contribution of mixing to present and future ocean oxygen distribution. In: Meredith M, Garabato AN (eds) Ocean mixing: drivers, mechanisms and impacts, Chapter 13. Elsevier, Amsterdam, pp 329–344. https://doi.org/10.1016/B978-0-12-821512-8.00020-7

    Chapter  Google Scholar 

  14. Letscher RT, Primeau F, Moore JK (2016) Nutrient budgets in the subtropical ocean gyres dominated by lateral transport. Nat Geosci 9(11):815–819. https://doi.org/10.1038/ngeo2812

    Article  CAS  Google Scholar 

  15. Palter JB, Ames EJ, Benavides M, Gonçalves Neto A, Granger J, Moisander PH, Watkins-Brandt KS, White AE (2020) High N2 fixation in and near the Gulf Stream consistent with a circulation control on diazotrophy. Geophys Res Lett 47(16):e2020GL089103. https://doi.org/10.1029/2020GL089103

    Article  CAS  Google Scholar 

  16. Yamamoto A, Palter JB, Dufour CO, Griffies SM, Bianchi D, Claret M, Dunne JP, Frenger I, Galbraith ED (2018) Roles of the ocean mesoscale in the lateral supply of mass, heat, carbon and nutrients to the northern hemisphere subtropical gyres. J Geophys Res Oceans 123(10):7016–7036. https://doi.org/10.1029/2018JC013969

    Article  Google Scholar 

  17. Brambilla E, Talley LD (2008) Subpolar Mode Water in the northeastern Atlantic: 1. Averaged properties and mean circulation. J Geophys Res Oceans 113(4):C04025. https://doi.org/10.1029/2006JC00406

    Article  Google Scholar 

  18. Bersch M, Meincke J, Sy A (1999) Interannual thermohaline changes in the northern North Atlantic 1991-1996. Deep-Sea Res II 46(1–2):55–75. https://doi.org/10.1016/S0967-0645(98)00114-3

    Article  Google Scholar 

  19. Pelegri JL, Csanady GT (1991) Nutrient transport and mixing in the Gulf stream. J Geophys Res Oceans 96(C2):2577–2583. https://doi.org/10.1029/90JC02535

    Article  Google Scholar 

  20. Chen CTA, Liu CT, Pai SC (1995) Variations in oxygen, nutrient and carbonate fluxes of the Kuroshio current. La Mer 33(3):161–176

    CAS  Google Scholar 

  21. Chen CTA (1996) The Kuroshio intermediate water is the major source of nutrients on the East China Sea continental shelf. Oceanol Acta 19(5):523–527

    CAS  Google Scholar 

  22. Guo XY, Zhu XH, Wu QS, Huang DJ (2012) The Kuroshio nutrient stream and its temporal variation in the East China Sea. Global Biogeochem Cycles 117(1):C01026. https://doi.org/10.1029/2011JC007292

    Article  CAS  Google Scholar 

  23. Guo XY, Zhu XH, Long Y, Huang DJ (2013) Spatial variations in the Kuroshio nutrient transport from the East China Sea to south of Japan. Biogeosciences 10(10):6403–6417. https://doi.org/10.5194/bg-10-6403-2013

    Article  Google Scholar 

  24. Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA, Chipman DW, Hales B, Friederich G, Chavez F, Sabine C, Watson A, Bakker DCE, Schuster U, Metzl N, Yoshikawa-Inoue H, Ishii M, Midorikawa T, Nojiri Y, Körtzinger A, Steinhoff T, Hoppema M, Olafsson J, Arnarson TS, Tilbrook B, Johannessen T, Olsen A, Bellerby R, Wong CS, Delille B, Bates NR, de Baar HJW (2009) Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Res II 56(8–10):554–577. https://doi.org/10.1016/j.dsr2.2008.12.009

    Article  CAS  Google Scholar 

  25. Palter JB, Lozier MS (2008) On the source of Gulf Stream nutrients. J Geophys Res Oceans 113(C6):C06018. https://doi.org/10.1029/2007JC004611

    Article  Google Scholar 

  26. Whitt DB (2019) On the role of the Gulf stream in the changing Atlantic nutrient circulation during the 21st century. In: Nagai T, Saito H, Suzuki K, Takahashi M (eds) Kuroshio current: physical, biogeochemical, and ecosystem dynamics, Chapter 4. American Geophysical Union, Wiley, Washington, Hoboken, pp 51–82. https://doi.org/10.1002/9781119428428.ch4

    Chapter  Google Scholar 

  27. Hansell DA, Carlson CA, Repeta DJ, Schlitzer R (2009) Dissolved organic matter in the ocean: a controversy stimulates new insights. Oceanography 22(4):52–61. https://doi.org/10.5670/oceanog.2009.109

    Article  Google Scholar 

  28. Opsahl S, Benner R (1997) Distribution and cycling of terrigenous dissolved organic matter in the ocean. Nature 386(6624):480–482. https://doi.org/10.1038/386480a0

    Article  CAS  Google Scholar 

  29. Granskog MA, Stedmon CA, Dodd PA, Amon RMW, Pavlov AK, de Steur L, Hansen E (2012) Characteristics of colored dissolved organic matter (CDOM) in the Arctic outflow in the Fram Strait: assessing the changes and fate of terrigenous CDOM in the Arctic Ocean. J Geophys Res Oceans 117(12):C12021. https://doi.org/10.1029/2012JC008075

    Article  Google Scholar 

  30. Granskog MA, Pavlov AK, Sagan S, Kowalczuk P, Raczkowska A, Stedmon CA (2015) Effect of sea-ice melt on inherent optical properties and vertical distribution of solar radiant heating in Arctic surface waters. J Geophys Res Oceans 120(10):7028–7039. https://doi.org/10.1002/2015JC011087

    Article  Google Scholar 

  31. Pavlov AK, Granskog MA, Stedmon CA, Ivanov BV, Hudson SR, Falk-Petersen S (2015) Contrasting optical properties of surface waters across the Fram Strait and its potential biological implications. J Mar Syst 143:62–72. https://doi.org/10.1016/j.jmarsys.2014.11.001

    Article  Google Scholar 

  32. Makarewicz A, Kowalczuk P, Sagan S, Granskog MA, Pavlov AK, Zdun A, Borzycka K, Zabłocka M (2018) Characteristics of chromophoric and fluorescent dissolved organic matter in the Nordic seas. Ocean Sci 14(3):543–562. https://doi.org/10.5194/os-14-543-2018

    Article  CAS  Google Scholar 

  33. Lohmann R, Jurado E, Pilson MEQ, Dachs J (2006) Oceanic deep water formation as a sink of persistent organic pollutants. Geophys Res Lett 33(12):L12607. https://doi.org/10.1029/2006GL025953

    Article  CAS  Google Scholar 

  34. Palm A, Cousins I, Gustafsson O, Axelman J, Grunder K, Broman D, Brorström-Lundén E (2004) Evaluation of sequentially-coupled POP fluxes estimated from simultaneous measurements in multiple compartments of an air-water-sediment system. Environ Pollut 128(1–2):85–97. https://doi.org/10.1016/j.envpol.2003.08.023

    Article  CAS  Google Scholar 

  35. Lohmann R, Belkin IM (2014) Organic pollutants and ocean fronts across the Atlantic Ocean: a review. Prog Oceanogr 128:172–184. https://doi.org/10.1016/j.pocean.2014.08.013

    Article  Google Scholar 

  36. Jamieson AJ, Malkocs T, Piertney SB, Fujii T, Zhang Z (2017) Bioaccumulation of persistent organic pollutants in the deepest ocean fauna. Nat Ecol Evol 1(3):0051. https://doi.org/10.1038/s41559-016-0051

    Article  Google Scholar 

  37. Dasgupta S, Peng X, Chen S, Li J, Du M, Zhou YH, Zhong G, Xu H, Ta K (2018) Toxic anthropogenic pollutants reach the deepest ocean on earth. Geochem Perspectives Lett 7:22–26. https://doi.org/10.7185/geochemlet.1814

    Article  Google Scholar 

  38. Kawai T, Handoh IC, Takahashi S (2009) The rise of the finely-advanced transboundary environmental model (FATE): a state-of-the-art model prediction of the global sink of persistent organic pollutants. Organohalogen Compd 71(1610):e1615

    Google Scholar 

  39. Handoh IC, Kawai T (2014) Modelling exposure of oceanic higher trophic-level consumers to polychlorinated biphenyls: pollution ‘hotspots’ in relation to mass mortality events of marine mammals. Mar Pollut Bull 85(2):824–830. https://doi.org/10.1016/j.marpolbul.2014.06.031

    Article  CAS  Google Scholar 

  40. Ueno D, Takahashi S, Tanaka H, Subramanian A, Fillmann G, Nakata H, Lam PKS, Zheng J, Muchtar M, Prudente M, Chung KH, Tanabe S (2003) Global pollution monitoring of PCBs and organochlorine pesticides using skipjack tuna as a bioindicator. Arch Environ Contam Toxicol 45(3):378–389. https://doi.org/10.1007/s00244-002-0131-9

    Article  CAS  Google Scholar 

  41. Ueno D, Kajiwara N, Tanaka H, Subramanian A, Fillmann G, Lam PKS, Zheng GJ, Muchtar M, Razak H, Prudente M, Chung KH, Tanabe S (2004) Global pollution monitoring of polybrominated diphenyl ethers using skipjack tuna as a bioindicator. Environ Sci Technol 38(8):2312–2316. https://doi.org/10.1021/es035323k

    Article  CAS  Google Scholar 

  42. Ueno D, Alaee M, Marvin C, Muir DCG, Macinnis G, Reiner E, Crozier P, Furdui VI, Subramanian A, Fillmann G, Lam PKS, Zheng GJ, Muchtar M, Razak H, Prudente M, Chung KH, Tanabe S (2006) Distribution and transportability of hexabromocyclododecane (HBCD) in the Asia-Pacific region using skipjack tuna as a bioindicator. Environ Pollut 144(1):238–247. https://doi.org/10.1016/j.envpol.2005.12.024

    Article  CAS  Google Scholar 

  43. Nicklisch SCT, Bonito LT, Sandin S, Hamdoun A (2017) Mercury levels of yellowfin tuna (Thunnus albacares) are associated with capture location. Environ Pollut 229:89–93. https://doi.org/10.1016/j.envpol.2017.05.070

    Article  CAS  Google Scholar 

  44. Carpenter EJ, Smith KL (1972) Plastics on the Sargasso Sea surface. Science 175(4027):1240–1241. https://doi.org/10.1126/science.175.4027.1240

    Article  CAS  Google Scholar 

  45. Ryan PG (2015) A brief history of marine litter research. In: Bergmann M, Gutow L, Klages M (eds) Marine anthropogenic litter, Chapter 1. Springer International Publishing, Cham, pp 1–25. https://doi.org/10.1007/978-3-319-16510-3_1

    Chapter  Google Scholar 

  46. D’Asaro EA, Shcherbina AY, Klymak JM, Molemaker J, Novelli G, Guigand CM, Haza AC, Haus BK, Ryan EH, Jacobs GA, Huntley HS, Laxague NJM, Chen SY, Just F, McWilliams JC, Barkan R, Kirwan Jr AD, Poje AC, Özgökmen TM (2018) Ocean convergence and the dispersion of flotsam. Proc Natl Acad Sci U S A 115(6):1162–1167. https://doi.org/10.1073/pnas.1718453115

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors of individual chapters express their acknowledgments at the end of their respective chapters. While working on this chapter, Igor Belkin was supported by the Zhejiang Ocean University. The entire chapter was reviewed by all authors. All figures have been either created anew by respective authors of individual chapters or modified after original figures. This chapter was meticulously edited by Daphne Johnson, whose dedication and attention to detail are truly and greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor M. Belkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Cite this chapter

Belkin, I.M. et al. (2022). Introduction to the Chemical Oceanography of Frontal Zones. In: Belkin, I.M. (eds) Chemical Oceanography of Frontal Zones. The Handbook of Environmental Chemistry, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2022_894

Download citation

Publish with us

Policies and ethics