Skip to main content

Dynamics of Transport, Accumulation, and Export of Plastics at Oceanic Fronts

  • Chapter
Chemical Oceanography of Frontal Zones

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 116))

Abstract

Every year, vast quantities of plastic debris arrive at the ocean surface. Nevertheless, our understanding of plastic movements is largely incomplete and many of the processes involved with the horizontal and vertical displacement of plastics in the ocean are still basically unknown. In this chapter we review the dynamics associated with the transport of plastics and other pollutants at oceanic fronts. Fronts had been historically defined as simple barriers to exchange, but here we show that the role of these structures in influencing the transport of plastics is more complex. The tools used to investigate the occurrence of frontal structures at various spatial scales are reviewed in detail, with a particular focus on their potential applications to the study of plastic pollution. Three selected case studies are presented to better describe the role of fronts in favoring or preventing plastic exchanges: the large-scale Antarctic Circumpolar Current, a Mediterranean mesoscale front, and the submesoscale fronts in the Gulf of Mexico. Lastly, some aspects related to the vertical subduction of plastic particles at oceanic fronts are discussed as one of the most promising frontiers for future research. The accumulation of floating debris at the sea surface is mainly affected by the horizontal components of frontal dynamics. At the same time, vertical components can be relevant for the export of neutrally buoyant particles from the surface into the deep sea. Based on these evidences, we propose that submesoscale processes can provide a fast and efficient route of plastic transport within the mixed layer, while mesoscale instabilities and associated vertical velocities might be the dominant mechanism to penetrate the deeper ocean on slower but broader scales. We conclude that given the ubiquitous presence of fronts in the world’s ocean, their contribution to the global plastic cycle is probably not negligible and the role of these processes in vertically displacing neutrally buoyant microplastics should be investigated in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782. https://doi.org/10.1126/sciadv.1700782

    Article  CAS  Google Scholar 

  2. Lebreton L, Andrady A (2019) Future scenarios of global plastic waste generation and disposal. Palgrave Commun 5:6. https://doi.org/10.1057/s41599-018-0212-7

    Article  Google Scholar 

  3. Jambeck JR, Geyer R, Wilcox C et al (2015) Plastic waste inputs from land into the ocean. Science 347:768–771. https://doi.org/10.1126/science.1260352

    Article  CAS  Google Scholar 

  4. Borrelle SB, Ringma J, Law KL et al (2020) Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369:1515–1518. https://doi.org/10.1126/science.aba3656

    Article  CAS  Google Scholar 

  5. Law KL (2017) Plastics in the marine environment. Annu Rev Mar Sci 9:205–229. https://doi.org/10.1146/annurev-marine-010816-060409

    Article  Google Scholar 

  6. Suaria G, Avio CG, Mineo A et al (2016) The Mediterranean plastic soup: synthetic polymers in Mediterranean surface waters. Sci Rep 6:37551. https://doi.org/10.1038/srep37551

    Article  CAS  Google Scholar 

  7. Tirelli V, Suaria G, Lusher AL (2020) Microplastics in polar samples. In: Rocha-Santos T, Costa M, Mouneyrac C (eds) Handbook of microplastics in the environment. Springer International Publishing, Cham, pp 1–42

    Google Scholar 

  8. Gong J, Xie P (2020) Research progress in sources, analytical methods, eco-environmental effects, and control measures of microplastics. Chemosphere 254:126790. https://doi.org/10.1016/j.chemosphere.2020.126790

    Article  CAS  Google Scholar 

  9. Cozar A, Echevarria F, Gonzalez-Gordillo JI et al (2014) Plastic debris in the open ocean. Proc Natl Acad Sci 111:10239–10244. https://doi.org/10.1073/pnas.1314705111

    Article  CAS  Google Scholar 

  10. Eriksen M, Lebreton LCM, Carson HS et al (2014) Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One 9:e111913. https://doi.org/10.1371/journal.pone.0111913

    Article  CAS  Google Scholar 

  11. van Sebille E, Wilcox C, Lebreton L et al (2015) A global inventory of small floating plastic debris. Environ Res Lett 10:124006. https://doi.org/10.1088/1748-9326/10/12/124006

    Article  Google Scholar 

  12. Weiss L, Ludwig W, Heussner S et al (2021) The missing ocean plastic sink: gone with the rivers. Science 373:107–111. https://doi.org/10.1126/science.abe0290

    Article  CAS  Google Scholar 

  13. Olivelli A, Hardesty BD, Wilcox C (2020) Coastal margins and backshores represent a major sink for marine debris: insights from a continental-scale analysis. Environ Res Lett 15:074037. https://doi.org/10.1088/1748-9326/ab7836

    Article  Google Scholar 

  14. Lebreton L, Egger M, Slat B (2019) A global mass budget for positively buoyant macroplastic debris in the ocean. Sci Rep 9:12922. https://doi.org/10.1038/s41598-019-49413-5

    Article  Google Scholar 

  15. Egger M, Sulu-Gambari F, Lebreton L (2020) First evidence of plastic fallout from the North Pacific garbage patch. Sci Rep 10:7495. https://doi.org/10.1038/s41598-020-64465-8

    Article  CAS  Google Scholar 

  16. Pabortsava K, Lampitt RS (2020) High concentrations of plastic hidden beneath the surface of the Atlantic Ocean. Nat Commun 11:4073. https://doi.org/10.1038/s41467-020-17932-9

    Article  CAS  Google Scholar 

  17. Woodall LC, Sanchez-Vidal A, Canals M et al (2014) The deep sea is a major sink for microplastic debris. R Soc Open Sci 1:140317. https://doi.org/10.1098/rsos.140317

    Article  Google Scholar 

  18. Barrett J, Chase Z, Zhang J, Holl MMB, Willis K, Williams A, Hardesty BD, Wilcox C (2020) Microplastic pollution in deep-sea sediments from the Great Australian Bight. Front Mar Sci 7:576170. https://doi.org/10.3389/fmars.2020.576170

    Article  Google Scholar 

  19. Thompson RC, Olsen Y, Mitchell RP et al (2004) Lost at sea: where is all the plastic? Science 304:838–838. https://doi.org/10.1126/science.1094559

    Article  CAS  Google Scholar 

  20. Goldstein MC, Titmus AJ, Ford M (2013) Scales of spatial heterogeneity of plastic marine debris in the Northeast Pacific Ocean. PLoS One 8:e80020. https://doi.org/10.1371/journal.pone.0080020

    Article  Google Scholar 

  21. van Sebille E, Aliani S, Law KL et al (2020) The physical oceanography of the transport of floating marine debris. Environ Res Lett 15:023003. https://doi.org/10.1088/1748-9326/ab6d7d

    Article  Google Scholar 

  22. Lebreton L, Slat B, Ferrari F et al (2018) Evidence that the great pacific garbage patch is rapidly accumulating plastic. Sci Rep 8:4666. https://doi.org/10.1038/s41598-018-22939-w

    Article  CAS  Google Scholar 

  23. Brach L, Deixonne P, Bernard M-F et al (2018) Anticyclonic eddies increase accumulation of microplastic in the North Atlantic subtropical gyre. Mar Pollut Bull 126:191–196. https://doi.org/10.1016/j.marpolbul.2017.10.077

    Article  CAS  Google Scholar 

  24. Onink V, Wichmann D, Delandmeter P, Sebille E (2019) The role of Ekman currents, geostrophy, and stokes drift in the accumulation of floating microplastic. J Geophys Res Oceans 124:1474–1490. https://doi.org/10.1029/2018JC014547

    Article  Google Scholar 

  25. Shanks AL (1987) The onshore transport of an oil spill by internal waves. Science 235:1198–1200. https://doi.org/10.1126/science.235.4793.1198

    Article  CAS  Google Scholar 

  26. Stanev EV, Ricker M (2019) The fate of marine litter in semi-enclosed seas: a case study of the Black Sea. Front Mar Sci 6:660. https://doi.org/10.3389/fmars.2019.00660

    Article  Google Scholar 

  27. Zhang Z, Wang W, Qiu B (2014) Oceanic mass transport by mesoscale eddies. Science 345:322–324. https://doi.org/10.1126/science.1252418

    Article  CAS  Google Scholar 

  28. Canals M, Pham CK, Bergmann M et al (2020) The quest for seafloor macrolitter: a critical review of background knowledge, current methods and future prospects. Environ Res Lett. https://doi.org/10.1088/1748-9326/abc6d4

  29. Lobelle D, Kooi M, Koelmans AA et al (2021) Global modeled sinking characteristics of biofouled microplastic. J Geophys Res Oceans. https://doi.org/10.1029/2020JC017098

  30. Pierdomenico M, Casalbore D, Chiocci FL (2019) Massive benthic litter funnelled to deep sea by flash-flood generated hyperpycnal flows. Sci Rep 9:5330. https://doi.org/10.1038/s41598-019-41816-8

    Article  CAS  Google Scholar 

  31. Gardner WD, Richardson MJ, Mishonov AV (2018) Global assessment of benthic nepheloid layers and linkage with Upper Ocean dynamics. Earth Planet Sci Lett 482:126–134. https://doi.org/10.1016/j.epsl.2017.11.008

    Article  CAS  Google Scholar 

  32. Gove JM, Whitney JL, McManus MA et al (2019) Prey-size plastics are invading larval fish nurseries. PNAS 116:24143–24149. https://doi.org/10.1073/pnas.1907496116

    Article  CAS  Google Scholar 

  33. González Carman V, Acha EM, Maxwell SM et al (2014) Young green turtles, Chelonia mydas, exposed to plastic in a frontal area of the SW Atlantic. Mar Pollut Bull 78:56–62. https://doi.org/10.1016/j.marpolbul.2013.11.012

    Article  Google Scholar 

  34. Josse E, Dagorn L, Bertrand A (2000) Typology and behaviour of tuna aggregations around fish aggregating devices from acoustic surveys in French Polynesia. Aquat Living Resour 13:183–192. https://doi.org/10.1016/S0990-7440(00)00051-6

    Article  Google Scholar 

  35. Fazey FMC, Ryan PG (2016) Biofouling on buoyant marine plastics: an experimental study into the effect of size on surface longevity. Environ Pollut 210:354–360. https://doi.org/10.1016/j.envpol.2016.01.026

    Article  CAS  Google Scholar 

  36. Kooi M, van Nes EH, Scheffer M, Koelmans AA (2017) Ups and downs in the ocean: effects of biofouling on vertical transport of microplastics. Environ Sci Technol 51:7963–7971. https://doi.org/10.1021/acs.est.6b04702

    Article  CAS  Google Scholar 

  37. Kowalski N, Reichardt AM, Waniek JJ (2016) Sinking rates of microplastics and potential implications of their alteration by physical, biological, and chemical factors. Mar Pollut Bull 109:310–319. https://doi.org/10.1016/j.marpolbul.2016.05.064

    Article  CAS  Google Scholar 

  38. Kaiser D, Kowalski N, Waniek JJ (2017) Effects of biofouling on the sinking behavior of microplastics. Environ Res Lett 12:124003. https://doi.org/10.1088/1748-9326/aa8e8b

    Article  CAS  Google Scholar 

  39. McWilliams JC (2021) Oceanic frontogenesis. Annu Rev Mar Sci 13:227–253. https://doi.org/10.1146/annurev-marine-032320-120725

    Article  Google Scholar 

  40. Lapeyre G, Klein P, Hua BL (2006) Oceanic restratification forced by surface frontogenesis. J Phys Oceanogr 36:1577–1590. https://doi.org/10.1175/JPO2923.1

    Article  Google Scholar 

  41. Acha EM, Piola A, Iribarne O, Mianzan H (2015) Ecological processes at marine fronts: oases in the ocean. Springer, Cham

    Book  Google Scholar 

  42. Belkin IM, Cornillon PC, Sherman K (2009) Fronts in large marine ecosystems. Prog Oceanogr 81:223–236. https://doi.org/10.1016/j.pocean.2009.04.015

    Article  Google Scholar 

  43. Mann KH, Lazier JRN (2006) Dynamics of marine ecosystems: biological-physical interactions in the oceans.3rd edn. Blackwell Pub, Malden

    Google Scholar 

  44. Klemas V, Polis DF (1977) A study of density fronts and their effects on coastal pollutants. Remote Sens Environ 6:95–126. https://doi.org/10.1016/0034-4257(77)90009-8

    Article  Google Scholar 

  45. Klemas V (1980) Remote sensing of coastal fronts and their effects on oil dispersion. Int J Remote Sens 1:11–28. https://doi.org/10.1080/01431168008948208

    Article  Google Scholar 

  46. Spall MA (1995) Frontogenesis, subduction, and cross-front exchange at upper ocean fronts. J Geophys Res 100:2543. https://doi.org/10.1029/94JC02860

    Article  Google Scholar 

  47. Arias M, Sumerot R, Delaney J et al (2021) Mapping windrows as proxies for marine litter monitoring from space (WASP). EGU general assembly 2021, online, 19–30 Apr 2021, EGU21-15275. https://doi.org/10.5194/egusphere-egu21-15275

  48. Martínez-Vicente V, Clark JR, Corradi P et al (2019) Measuring marine plastic debris from space: initial assessment of observation requirements. Remote Sens 11:2443. https://doi.org/10.3390/rs11202443

    Article  Google Scholar 

  49. Topouzelis K, Papageorgiou D, Suaria G, Aliani S (2021) Floating marine litter detection algorithms and techniques using optical remote sensing data: a review. Mar Pollut Bull 170:112675. https://doi.org/10.1016/j.marpolbul.2021.112675

    Article  CAS  Google Scholar 

  50. Biermann L, Clewley D, Martinez-Vicente V et al (2020) Finding plastic patches in coastal waters using optical satellite data. Sci Rep 10:5364. https://doi.org/10.1038/s41598-020-62298-z

    Article  CAS  Google Scholar 

  51. Cózar A, Aliani S, Basurko OC et al (2021) Marine litter windrows: a strategic target to understand and manage the ocean plastic pollution. Front Mar Sci 8:571796. https://doi.org/10.3389/fmars.2021.571796

    Article  Google Scholar 

  52. Gutow L, Ricker M, Holstein JM et al (2018) Distribution and trajectories of floating and benthic marine macrolitter in the south-eastern North Sea. Mar Pollut Bull 131:763–772. https://doi.org/10.1016/j.marpolbul.2018.05.003

    Article  CAS  Google Scholar 

  53. Ricker M, Stanev EV (2020) Circulation of the European northwest shelf: a Lagrangian perspective. Ocean Sci 16:637–655. https://doi.org/10.5194/os-16-637-2020

    Article  Google Scholar 

  54. Ruiz I, Basurko OC, Rubio A et al (2020) Litter windrows in the south-east coast of the Bay of Biscay: an ocean process enabling effective active fishing for litter. Front Mar Sci 7:308. https://doi.org/10.3389/fmars.2020.00308

    Article  Google Scholar 

  55. Shanks AL (2021) Observational evidence and open questions on the role of internal tidal waves on the concentration and transport of floating plastic debris. Front Mar Sci 8:621062. https://doi.org/10.3389/fmars.2021.621062

    Article  Google Scholar 

  56. Liu K, Courtene-Jones W, Wang X et al (2020) Elucidating the vertical transport of microplastics in the water column: a review of sampling methodologies and distributions. Water Res 186:116403. https://doi.org/10.1016/j.watres.2020.116403

    Article  CAS  Google Scholar 

  57. Mensa JA, Garraffo Z, Griffa A et al (2013) Seasonality of the submesoscale dynamics in the Gulf Stream region. Ocean Dyn 63:923–941. https://doi.org/10.1007/s10236-013-0633-1

    Article  Google Scholar 

  58. McWilliams JC (2019) A survey of submesoscale currents. Geosci Lett 6:3. https://doi.org/10.1186/s40562-019-0133-3

    Article  Google Scholar 

  59. The MODE Group (1978) The mid-ocean dynamics experiment. Deep-Sea Res 25:859–910. https://doi.org/10.1016/0146-6291(78)90632-X

    Article  Google Scholar 

  60. Holland W (1978) The role of mesoscale eddies in the general circulation of the ocean numerical experiments using a wind-driven quasi-geostrophic model. J Phys Oceanogr 8:363–392

    Article  Google Scholar 

  61. Fu L, Smith R (1996) Global ocean circulation from satellite altimetry and high-resolution computer simulation. Bull Am Meteorol Soc 77:2625–2636. https://doi.org/10.1175/1520-0477(1996)077%3C2625:GOCFSA%3E2.0.CO;2

    Article  Google Scholar 

  62. Ducet N, Le Traon PY, Reverdin G (2000) Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J Geophys Res 105:19477–19498. https://doi.org/10.1029/2000JC900063

    Article  Google Scholar 

  63. Le Traon PY, Klein P, Hua BL, Dibarboure G (2008) Do altimeter wavenumber spectra agree with the interior or surface quasigeostrophic theory? J Phys Oceanogr 38:1137–1142. https://doi.org/10.1175/2007JPO3806.1

    Article  Google Scholar 

  64. Langmuir I (1938) Surface motion of water induced by wind. Science 87:119–123. https://doi.org/10.1126/science.87.2250.119

    Article  CAS  Google Scholar 

  65. Stanev EV, Ricker M (2020) Interactions between barotropic tides and mesoscale processes in deep ocean and shelf regions. Ocean Dyn 70:713–728. https://doi.org/10.1007/s10236-020-01348-6

    Article  Google Scholar 

  66. Tchilibou M, Gourdeau L, Morrow R et al (2018) Spectral signatures of the tropical Pacific dynamics from model and altimetry: a focus on the meso−/submesoscale range. Ocean Sci 14:1283–1301. https://doi.org/10.5194/os-14-1283-2018

    Article  Google Scholar 

  67. McWilliams JC (2008) Fluid dynamics at the margin of rotational control. Environ Fluid Mech 8:441–449. https://doi.org/10.1007/s10652-008-9081-8

    Article  Google Scholar 

  68. Müller P, McWilliams J, Molemaker M (2005) Routes to dissipation in the ocean: the two-dimensional/three-dimensional turbulence conundrum. In: Baumert HZ, Simpson J, Sündermann J (eds) Marine turbulence: theories, observations, and models. Results of the CARTUM project. Cambridge University Press

    Google Scholar 

  69. Munk W, Armi L, Fischer K, Zachariasen F (2000) Spirals on the sea. Proc R Soc Lond A 456:1217–1280. https://doi.org/10.1098/rspa.2000.0560

    Article  Google Scholar 

  70. McWilliams JC (2016) Submesoscale currents in the ocean. Proc R Soc A 472:20160117. https://doi.org/10.1098/rspa.2016.0117

    Article  Google Scholar 

  71. Klein P, Lapeyre G, Siegelman L et al (2019) Ocean-scale interactions from space. Earth Space Sci 6:795–817. https://doi.org/10.1029/2018EA000492

    Article  Google Scholar 

  72. Lévy M, Ferrari R, Franks PJS et al (2012) Bringing physics to life at the submesoscale. Geophys Res Lett 39. https://doi.org/10.1029/2012GL052756

  73. Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M (2012) Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol 46:3060–3075. https://doi.org/10.1021/es2031505

    Article  CAS  Google Scholar 

  74. Mai L, Bao L-J, Shi L et al (2018) A review of methods for measuring microplastics in aquatic environments. Environ Sci Pollut Res 25:11319–11332. https://doi.org/10.1007/s11356-018-1692-0

    Article  CAS  Google Scholar 

  75. Mahadevan A, Pascual A, Rudnick DL et al (2020) Coherent pathways for vertical transport from the surface ocean to interior. Bull Am Meteorol Soc 101:E1996–E2004. https://doi.org/10.1175/BAMS-D-19-0305.1

    Article  Google Scholar 

  76. Thomas LN, Tandon A, Mahadevan A (2008) Submesoscale processes and dynamics. In: Hecht MW, Hasumi H (eds) Geophysical monograph series. American Geophysical Union, Washington, pp 17–38

    Google Scholar 

  77. Berta M, Bellomo L, Griffa A et al (2018) Wind-induced variability in the northern current (northwestern Mediterranean Sea) as depicted by a multi-platform observing system. Ocean Sci 14:689–710. https://doi.org/10.5194/os-14-689-2018

    Article  Google Scholar 

  78. Manso-Narvarte I, Fredj E, Jordà G et al (2020) 3D reconstruction of ocean velocity from high-frequency radar and acoustic Doppler current profiler: a model-based assessment study. Ocean Sci 16:575–591. https://doi.org/10.5194/os-16-575-2020

    Article  Google Scholar 

  79. Manso-Narvarte I, Rubio A, Jordà G et al (2021) Three-dimensional characterization of a coastal mode-water eddy from multiplatform observations and a data reconstruction method. Remote Sens 13:674. https://doi.org/10.3390/rs13040674

    Article  Google Scholar 

  80. Chiba S, Saito H, Fletcher R et al (2018) Human footprint in the abyss: 30 year records of deep-sea plastic debris. Mar Policy 96:204–212. https://doi.org/10.1016/j.marpol.2018.03.022

    Article  Google Scholar 

  81. Choy CA, Robison BH, Gagne TO et al (2019) The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Sci Rep 9:7843. https://doi.org/10.1038/s41598-019-44117-2

    Article  CAS  Google Scholar 

  82. Boufadel M, Liu R, Zhao L et al (2020) Transport of oil droplets in the upper ocean: impact of the eddy diffusivity. J Geophys Res Oceans 125. https://doi.org/10.1029/2019JC015727

  83. Fabregat Tomàs A, Poje AC, Özgökmen TM, Dewar WK (2016) Dynamics of multiphase turbulent plumes with hybrid buoyancy sources in stratified environments. Phys Fluids 28:095109. https://doi.org/10.1063/1.4963313

    Article  CAS  Google Scholar 

  84. Soloviev AV, Haus BK, McGauley MG et al (2016) Surface dynamics of crude and weathered oil in the presence of dispersants: laboratory experiment and numerical simulation. J Geophys Res Oceans 121:3502–3516. https://doi.org/10.1002/2015JC011533

    Article  Google Scholar 

  85. Röhrs J, Dagestad K-F, Asbjørnsen H et al (2018) The effect of vertical mixing on the horizontal drift of oil spills. Ocean Sci 14:1581–1601. https://doi.org/10.5194/os-14-1581-2018

    Article  Google Scholar 

  86. Davis RE (1985) Drifter observations of coastal surface currents during CODE: the method and descriptive view. J Geophys Res 90:4741. https://doi.org/10.1029/JC090iC03p04741

    Article  Google Scholar 

  87. Niiler PP, Sybrandy AS, Bi K et al (1995) Measurements of the water-following capability of holey-sock and TRISTAR drifters. Deep-Sea Res I Oceanogr Res Pap 42:1951–1964. https://doi.org/10.1016/0967-0637(95)00076-3

    Article  Google Scholar 

  88. Centurioni LR, Turton J, Lumpkin R et al (2019) Global in situ observations of essential climate and ocean variables at the air–sea interface. Front Mar Sci 6:419. https://doi.org/10.3389/fmars.2019.00419

    Article  Google Scholar 

  89. Novelli G, Guigand CM, Cousin C et al (2017) A biodegradable surface drifter for ocean sampling on a massive scale. J Atmos Ocean Technol 34:2509–2532. https://doi.org/10.1175/JTECH-D-17-0055.1

    Article  Google Scholar 

  90. D’Asaro EA, Carlson DF, Chamecki M et al (2020) Advances in observing and understanding small-scale open ocean circulation during the Gulf of Mexico research initiative era. Front Mar Sci 7:349. https://doi.org/10.3389/fmars.2020.00349

    Article  Google Scholar 

  91. van Sebille E, Griffies SM, Abernathey R et al (2018) Lagrangian Ocean analysis: fundamentals and practices. Ocean Model 121:49–75. https://doi.org/10.1016/j.ocemod.2017.11.008

    Article  Google Scholar 

  92. Alberto F, Raimondi PT, Reed DC et al (2011) Isolation by oceanographic distance explains genetic structure for Macrocystis pyrifera in the Santa Barbara Channel. Mol Ecol 20:2543–2554. https://doi.org/10.1111/j.1365-294X.2011.05117.x

    Article  Google Scholar 

  93. Berline L, Rammou A-M, Doglioli A et al (2014) A connectivity-based eco-regionalization method of the Mediterranean Sea. PLoS One 9:e111978. https://doi.org/10.1371/journal.pone.0111978

    Article  CAS  Google Scholar 

  94. Carlson DF, Griffa A, Zambianchi E et al (2016) Observed and modeled surface Lagrangian transport between coastal regions in the Adriatic Sea with implications for marine protected areas. Cont Shelf Res 118:23–48. https://doi.org/10.1016/j.csr.2016.02.012

    Article  Google Scholar 

  95. White C, Selkoe KA, Watson J et al (2010) Ocean currents help explain population genetic structure. Proc R Soc B 277:1685–1694. https://doi.org/10.1098/rspb.2009.2214

    Article  Google Scholar 

  96. Sciascia R, Berta M, Carlson DF et al (2018) Linking sardine recruitment in coastal areas to ocean currents using surface drifters and HF radar: a case study in the Gulf of Manfredonia, Adriatic Sea. In situ observations/current field/surface/Mediterranean Sea. Ocean Sci 14(6):1461–1482

    Article  Google Scholar 

  97. Celentano P, Falco P, Zambianchi E (2020) Surface connection between the Ionian Sea and different areas of the Mediterranean derived from drifter data. Deep-Sea Res I Oceanogr Res Pap 166:103431. https://doi.org/10.1016/j.dsr.2020.103431

    Article  Google Scholar 

  98. Jönsson BF, Watson JR (2016) The timescales of global surface-ocean connectivity. Nat Commun 7:11239. https://doi.org/10.1038/ncomms11239

    Article  CAS  Google Scholar 

  99. Maximenko N, Hafner J, Niiler P (2012) Pathways of marine debris derived from trajectories of Lagrangian drifters. Mar Pollut Bull 65:51–62. https://doi.org/10.1016/j.marpolbul.2011.04.016

    Article  CAS  Google Scholar 

  100. van Sebille E, England MH, Froyland G (2012) Origin, dynamics and evolution of ocean garbage patches from observed surface drifters. Environ Res Lett 7:044040. https://doi.org/10.1088/1748-9326/7/4/044040

    Article  Google Scholar 

  101. Zambianchi E, Trani M, Falco P (2017) Lagrangian transport of marine litter in the Mediterranean Sea. Front Environ Sci 5. https://doi.org/10.3389/fenvs.2017.00005

  102. D’Asaro EA, Shcherbina AY, Klymak JM et al (2018) Ocean convergence and the dispersion of flotsam. PNAS 115:1162–1167. https://doi.org/10.1073/pnas.1718453115

    Article  CAS  Google Scholar 

  103. Meyerjürgens J, Badewien TH, Garaba SP et al (2019) A state-of-the-art compact surface drifter reveals pathways of floating marine litter in the German bight. Front Mar Sci 6:58. https://doi.org/10.3389/fmars.2019.00058

    Article  Google Scholar 

  104. Schöneich-Argent RI, Freund H (2020) Trashing our own “backyard” – investigating dispersal and accumulation of floating litter from coastal, riverine, and offshore sources in the German Bight using a citizen science-based wooden drifter recapture approach. Mar Environ Res 162:105115. https://doi.org/10.1016/j.marenvres.2020.105115

    Article  CAS  Google Scholar 

  105. Taylor GI (1922) Diffusion by continuous movements. Proc Lond Math Soc s2-20:196–212. https://doi.org/10.1112/plms/s2-20.1.196

    Article  Google Scholar 

  106. Ottino JM (1989) The kinematics of mixing: stretching, chaos, and transport. Cambridge University Press, Cambridge

    Google Scholar 

  107. LaCasce JH (2008) Statistics from Lagrangian observations. Prog Oceanogr 77:1–29. https://doi.org/10.1016/j.pocean.2008.02.002

    Article  Google Scholar 

  108. Corrado R, Lacorata G, Palatella L et al (2017) General characteristics of relative dispersion in the ocean. Sci Rep 7:46291. https://doi.org/10.1038/srep46291

    Article  CAS  Google Scholar 

  109. Jacobs GA, D’Addezio JM, Bartels B, Spence PL (2021) Constrained scales in ocean forecasting. Adv Space Res 68:746–761. https://doi.org/10.1016/j.asr.2019.09.018

    Article  Google Scholar 

  110. Lebreton LC-M, Greer SD, Borrero JC (2012) Numerical modelling of floating debris in the world’s oceans. Mar Pollut Bull 64:653–661. https://doi.org/10.1016/j.marpolbul.2011.10.027

    Article  CAS  Google Scholar 

  111. Paduan JD, Washburn L (2013) High-frequency radar observations of ocean surface currents. Annu Rev Mar Sci 5:115–136. https://doi.org/10.1146/annurev-marine-121211-172315

    Article  Google Scholar 

  112. Roarty H, Cook T, Hazard L et al (2019) The global high frequency radar network. Front Mar Sci 6:164. https://doi.org/10.3389/fmars.2019.00164

    Article  Google Scholar 

  113. Rubio A, Mader J, Corgnati L et al (2017) HF radar activity in European coastal seas: next steps toward a pan-European HF radar network. Front Mar Sci 4. https://doi.org/10.3389/fmars.2017.00008

  114. Lund B, Haus BK, Horstmann J et al (2018) Near-surface current mapping by shipboard marine X-band radar: a validation. J Atmos Ocean Technol 35:1077–1090. https://doi.org/10.1175/JTECH-D-17-0154.1

    Article  Google Scholar 

  115. Serafino F, Bianco A (2021) Use of X-band radars to monitor small garbage islands. Remote Sens 13:3558. https://doi.org/10.3390/rs13183558

    Article  Google Scholar 

  116. Holt J, Umlauf L (2008) Modelling the tidal mixing fronts and seasonal stratification of the northwest European continental shelf. Cont Shelf Res 28:887–903. https://doi.org/10.1016/j.csr.2008.01.012

    Article  Google Scholar 

  117. Mahadevan A (2006) Modeling vertical motion at ocean fronts: are nonhydrostatic effects relevant at submesoscales? Ocean Model 14:222–240. https://doi.org/10.1016/j.ocemod.2006.05.005

    Article  Google Scholar 

  118. Martinez E, Maamaatuaiahutapu K, Taillandier V (2009) Floating marine debris surface drift: convergence and accumulation toward the South Pacific subtropical gyre. Mar Pollut Bull 58:1347–1355. https://doi.org/10.1016/j.marpolbul.2009.04.022

    Article  CAS  Google Scholar 

  119. Carlson DF, Suaria G, Aliani S et al (2017) Combining litter observations with a regional ocean model to identify sources and sinks of floating debris in a semi-Enclosed Basin: the Adriatic Sea. Front Mar Sci 4. https://doi.org/10.3389/fmars.2017.00078

  120. Liubartseva S, Coppini G, Lecci R, Clementi E (2018) Tracking plastics in the Mediterranean: 2D Lagrangian model. Mar Pollut Bull 129:151–162. https://doi.org/10.1016/j.marpolbul.2018.02.019

    Article  CAS  Google Scholar 

  121. Mansui J, Darmon G, Ballerini T et al (2020) Predicting marine litter accumulation patterns in the Mediterranean basin: Spatio-temporal variability and comparison with empirical data. Prog Oceanogr 182:102268. https://doi.org/10.1016/j.pocean.2020.102268

    Article  Google Scholar 

  122. Heron M, Prytz A, Kalangi P (1998) Monitoring dispersion of buoyant pollutants using HF ocean surface radar. J Adv Mar Sci Technol Soc 4:231–241

    Google Scholar 

  123. Uttieri M, Cianelli D, Nardelli BB et al (2011) Multiplatform observation of the surface circulation in the Gulf of Naples (southern Tyrrhenian Sea). Ocean Dyn 61:779–796. https://doi.org/10.1007/s10236-011-0401-z

    Article  Google Scholar 

  124. Mantovanelli A, Heron M (2012) Radar-based tracking of pollutants/larvae in the Coral Sea. In: Proceedings of the 12th international coral reef symposium, Cairns, Australia

    Google Scholar 

  125. Bellomo L, Griffa A, Cosoli S et al (2015) Toward an integrated HF radar network in the Mediterranean Sea to improve search and rescue and oil spill response: the TOSCA project experience. J Oper Oceanogr 8:95–107. https://doi.org/10.1080/1755876X.2015.1087184

    Article  Google Scholar 

  126. Berta M, Bellomo L, Magaldi MG et al (2014) Estimating Lagrangian transport blending drifters with HF radar data and models: results from the TOSCA experiment in the Ligurian Current (North Western Mediterranean Sea). Prog Oceanogr 128:15–29. https://doi.org/10.1016/j.pocean.2014.08.004

    Article  Google Scholar 

  127. Cianelli D, D’Alelio D, Uttieri M et al (2017) Disentangling physical and biological drivers of phytoplankton dynamics in a coastal system. Sci Rep 7:15868. https://doi.org/10.1038/s41598-017-15880-x

    Article  CAS  Google Scholar 

  128. Boffetta G, Lacorata G, Redaelli G, Vulpiani A (2001) Detecting barriers to transport: a review of different techniques. Phys D Nonlinear Phenom 159:58–70. https://doi.org/10.1016/S0167-2789(01)00330-X

    Article  Google Scholar 

  129. Haller G, Yuan G (2000) Lagrangian coherent structures and mixing in two-dimensional turbulence. Phys D Nonlinear Phenom 147:352–370. https://doi.org/10.1016/S0167-2789(00)00142-1

    Article  Google Scholar 

  130. Haller G (2015) Lagrangian coherent structures. Annu Rev Fluid Mech 47:137–162. https://doi.org/10.1146/annurev-fluid-010313-141322

    Article  Google Scholar 

  131. Nencioli F, d’Ovidio F, Doglioli AM, Petrenko AA (2011) Surface coastal circulation patterns by in-situ detection of Lagrangian coherent structures. Geophys Res Lett 38. https://doi.org/10.1029/2011GL048815

  132. Olascoaga MJ, Haller G (2012) Forecasting sudden changes in environmental pollution patterns. Proc Natl Acad Sci 109:4738–4743. https://doi.org/10.1073/pnas.1118574109

    Article  Google Scholar 

  133. Haza AC, Özgökmen TM, Griffa A et al (2010) Transport properties in small-scale coastal flows: relative dispersion from VHF radar measurements in the Gulf of La Spezia. Ocean Dyn 60:861–882. https://doi.org/10.1007/s10236-010-0301-7

    Article  Google Scholar 

  134. Schroeder K, Chiggiato J, Haza AC et al (2012) Targeted Lagrangian sampling of submesoscale dispersion at a coastal frontal zone: LIDEX10-REP10. Geophys Res Lett 39. https://doi.org/10.1029/2012GL051879

  135. d’Ovidio F, Pascual A, Wang J et al (2019) Frontiers in fine-scale in situ studies: opportunities during the SWOT fast sampling phase. Front Mar Sci 6:168. https://doi.org/10.3389/fmars.2019.00168

    Article  Google Scholar 

  136. Ghosh A, Suara K, McCue SW et al (2021) Persistency of debris accumulation in tidal estuaries using Lagrangian coherent structures. Sci Total Environ 781:146808. https://doi.org/10.1016/j.scitotenv.2021.146808

    Article  CAS  Google Scholar 

  137. Suara K, Khanarmuei M, Ghosh A et al (2020) Material and debris transport patterns in Moreton Bay, Australia: the influence of Lagrangian coherent structures. Sci Total Environ 721:137715. https://doi.org/10.1016/j.scitotenv.2020.137715

    Article  CAS  Google Scholar 

  138. Hernández-Carrasco I, Alou-Font E, Dumont PA, Cabornero A, Allen J, Orfila A (2020) Lagrangian flow effects on phytoplankton abundance and composition along filament-like structures. Prog Oceanogr 189. https://doi.org/10.1016/j.pocean.2020.102469

  139. Hernández-Carrasco I, Orfila A, Rossi V et al (2018) Effect of small scale transport processes on phytoplankton distribution in coastal seas. Sci Rep 8:8613. https://doi.org/10.1038/s41598-018-26857-9

    Article  CAS  Google Scholar 

  140. Fu L-L, Chelton D, Le Traon P-Y, Morrow R (2010) Eddy dynamics from satellite altimetry. Oceanography 23:14–25. https://doi.org/10.5670/oceanog.2010.02

    Article  Google Scholar 

  141. Lee T, Hakkinen S, Kelly K et al (2010) Satellite observations of ocean circulation changes associated with climate variability. Oceanography 23:70–81. https://doi.org/10.5670/oceanog.2010.06

    Article  Google Scholar 

  142. Lee Z, Shang S, Hu C et al (2010) Time series of bio-optical properties in a subtropical gyre: implications for the evaluation of interannual trends of biogeochemical properties. J Geophys Res 115:C09012. https://doi.org/10.1029/2009JC005865

    Article  Google Scholar 

  143. Chelton DB, Schlax MG, Samelson RM (2011) Global observations of nonlinear mesoscale eddies. Prog Oceanogr 91:167–216. https://doi.org/10.1016/j.pocean.2011.01.002

    Article  Google Scholar 

  144. Chelton DB, Schlax MG, Samelson RM et al (2019) Prospects for future satellite estimation of small-scale variability of ocean surface velocity and vorticity. Prog Oceanogr 173:256–350. https://doi.org/10.1016/j.pocean.2018.10.012

    Article  Google Scholar 

  145. Capet X, McWilliams JC, Molemaker MJ, Shchepetkin AF (2008) Mesoscale to submesoscale transition in the California current system. Part I: flow structure, Eddy flux, and observational tests. J Phys Oceanogr 38:29–43. https://doi.org/10.1175/2007JPO3671.1

    Article  Google Scholar 

  146. Klein P, Lapeyre G (2009) The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu Rev Mar Sci 1:351–375. https://doi.org/10.1146/annurev.marine.010908.163704

    Article  Google Scholar 

  147. Lévy M, Klein P, Treguier A-M (2001) Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime. J Mar Res 59:535–565. https://doi.org/10.1357/002224001762842181

    Article  Google Scholar 

  148. Mahadevan A, Thomas LN, Tandon A (2008) Comment on “Eddy/wind interactions stimulate extraordinary Mid-Ocean plankton blooms”. Science 320:448b. https://doi.org/10.1126/science.1152111

    Article  CAS  Google Scholar 

  149. Li Q, Zhong G, Xie C, Hedjam R (2021) Weak edge identification network for ocean front detection. IEEE Geosci Remote Sens Lett. https://doi.org/10.1109/LGRS.2021.3051203

  150. Lima E, Sun X, Yang Y, Dong J (2017) Application of deep convolutional neural networks for ocean front recognition. J Appl Remote Sens 11:1. https://doi.org/10.1117/1.JRS.11.042610

    Article  Google Scholar 

  151. Maximenko N, Corradi P, Law KL et al (2019) Toward the integrated marine debris observing system. Front Mar Sci 6:447. https://doi.org/10.3389/fmars.2019.00447

    Article  Google Scholar 

  152. Fingas M, Brown C (2017) A review of oil spill remote sensing. Sensors 18:91. https://doi.org/10.3390/s18010091

    Article  CAS  Google Scholar 

  153. Leifer I, Lehr WJ, Simecek-Beatty D et al (2012) State of the art satellite and airborne marine oil spill remote sensing: application to the BP deepwater horizon oil spill. Remote Sens Environ 124:185–209. https://doi.org/10.1016/j.rse.2012.03.024

    Article  Google Scholar 

  154. Zielinski O, Hengstermann T, Robbe N (2006) Detection of oil spills by airborne sensors. In: Gade M, Hühnerfuss H, Korenowski GM (eds) Marine surface films. Springer, Berlin, pp 255–271

    Chapter  Google Scholar 

  155. Garaba SP, Aitken J, Slat B et al (2018) Sensing ocean plastics with an airborne hyperspectral shortwave infrared imager. Environ Sci Technol 52:11699–11707. https://doi.org/10.1021/acs.est.8b02855

    Article  CAS  Google Scholar 

  156. Lambert C, Authier M, Dorémus G et al (2020) Setting the scene for Mediterranean litterscape management: the first basin-scale quantification and mapping of floating marine debris. Environ Pollut 263:114430. https://doi.org/10.1016/j.envpol.2020.114430

    Article  CAS  Google Scholar 

  157. Unger B, Herr H, Viquerat S et al (2021) Opportunistically collected data from aerial surveys reveal spatio-temporal distribution patterns of marine debris in German waters. Environ Sci Pollut Res 28:2893–2903. https://doi.org/10.1007/s11356-020-10610-9

    Article  Google Scholar 

  158. Rascle N, Molemaker J, Marié L et al (2017) Intense deformation field at oceanic front inferred from directional sea surface roughness observations. Geophys Res Lett 44:5599–5608. https://doi.org/10.1002/2017GL073473

    Article  Google Scholar 

  159. Rascle N, Chapron B, Molemaker J et al (2020) Monitoring intense oceanic fronts using sea surface roughness: satellite, airplane, and in situ comparison. J Geophys Res Oceans 125. https://doi.org/10.1029/2019JC015704

  160. Solodoch A, Molemaker JM, Srinivasan K et al (2020) Observations of shoaling density current regime changes in internal wave interactions. J Phys Oceanogr 50:1733–1751. https://doi.org/10.1175/JPO-D-19-0176.1

    Article  Google Scholar 

  161. Carlson DF, Özgökmen T, Novelli G et al (2018) Surface ocean dispersion observations from the ship-tethered aerostat remote sensing system. Front Mar Sci 5:479. https://doi.org/10.3389/fmars.2018.00479

    Article  Google Scholar 

  162. Chang H, Huntley HS, Kirwan AD et al (2019) Small-scale dispersion in the presence of Langmuir circulation. J Phys Oceanogr 49:3069–3085. https://doi.org/10.1175/JPO-D-19-0107.1

    Article  Google Scholar 

  163. Johnston DW (2019) Unoccupied aircraft systems in marine science and conservation. Annu Rev Mar Sci 11:439–463. https://doi.org/10.1146/annurev-marine-010318-095323

    Article  Google Scholar 

  164. Garcia-Garin O, Borrell A, Aguilar A et al (2020) Floating marine macro-litter in the north western Mediterranean Sea: results from a combined monitoring approach. Mar Pollut Bull 159:111467. https://doi.org/10.1016/j.marpolbul.2020.111467

    Article  CAS  Google Scholar 

  165. Streßer M, Carrasco R, Horstmann J (2017) Video-based estimation of surface currents using a low-cost quadcopter. IEEE Geosci Remote Sens Lett 14:2027–2031. https://doi.org/10.1109/LGRS.2017.2749120

    Article  Google Scholar 

  166. Topouzelis K, Papakonstantinou A, Garaba SP (2019) Detection of floating plastics from satellite and unmanned aerial systems (plastic litter project 2018). Int J Appl Earth Obs Geoinf 79:175–183. https://doi.org/10.1016/j.jag.2019.03.011

    Article  Google Scholar 

  167. Bower AS, Rossby HT, Lillibridge JL (1985) The Gulf Stream - barrier or blender? J Phys Oceanogr 15:24–32. https://doi.org/10.1175/1520-0485(1985)015%3C0024:TGSOB%3E2.0.CO;2

    Article  Google Scholar 

  168. Wenegrat JO, Thomas LN, Sundermeyer MA et al (2020) Enhanced mixing across the gyre boundary at the Gulf Stream front. Proc Natl Acad Sci U S A 117:17607–17614. https://doi.org/10.1073/pnas.2005558117

    Article  CAS  Google Scholar 

  169. Deacon G (1937) The hydrology of the Southern Ocean. Discov Rep 15:3–122

    Google Scholar 

  170. Orsi AH, Whitworth T, Nowlin WD (1995) On the meridional extent and fronts of the Antarctic circumpolar current. Deep-Sea Res I Oceanogr Res Pap 42:641–673. https://doi.org/10.1016/0967-0637(95)00021-W

    Article  Google Scholar 

  171. Park Y-H, Park T, Kim TW, Lee SH, Hong CS, Lee JH, Rio M-H, Pujol MI, Ballarotta M, Durand I, Provost C (2019) Observations of the Antarctic circumpolar current over the Udintsev fracture zone, the narrowest choke point in the Southern Ocean. J Geophys Res Oceans 124(7):4511–4528

    Article  Google Scholar 

  172. Falco P, Zambianchi E (2011) Near-surface structure of the Antarctic circumpolar current derived from world ocean circulation experiment drifter data. J Geophys Res 116:C05003. https://doi.org/10.1029/2010JC006349

    Article  Google Scholar 

  173. Sokolov S, Rintoul SR (2009) Circumpolar structure and distribution of the Antarctic circumpolar current fronts: 1. Mean circumpolar paths. J Geophys Res 114:C11018. https://doi.org/10.1029/2008JC005108

    Article  Google Scholar 

  174. Sokolov S, Rintoul SR (2009) Circumpolar structure and distribution of the Antarctic circumpolar current fronts: 2. Variability and relationship to sea surface height. J Geophys Res 114:C11019. https://doi.org/10.1029/2008JC005248

    Article  Google Scholar 

  175. Whitworth T (1980) Zonation and geostrophic flow of the Antarctic circumpolar current at Drake Passage. Deep Sea Res Part A Oceanogr Res Pap 27:497–507. https://doi.org/10.1016/0198-0149(80)90036-9

    Article  Google Scholar 

  176. Belkin IM, Gordon AL (1996) Southern Ocean fronts from the Greenwich meridian to Tasmania. J Geophys Res 101:3675–3696. https://doi.org/10.1029/95JC02750

    Article  Google Scholar 

  177. Wyrtki K (1960) The Antarctic circumpolar current and the Antarctic polar front. Dtsch Hydrogr Z 13:153–174. https://doi.org/10.1007/BF02226197

    Article  Google Scholar 

  178. Talley LD, Pickard GL, Emery WJ (eds) (2011) Descriptive physical oceanography: an introduction.6th edn. Academic Press, Amsterdam

    Google Scholar 

  179. Barber HN, Dadswell HE, Ingle HD (1959) Transport of driftwood from South America to Tasmania and Macquarie Island. Nature 184:203–204. https://doi.org/10.1038/184203a0

    Article  Google Scholar 

  180. Coombs DS, Landis CA (1966) Pumice from the south sandwich eruption of march 1962 reaches New Zealand. Nature 209:289–290. https://doi.org/10.1038/209289b0

    Article  Google Scholar 

  181. Ryan PG (1987) The origin and fate of artefacts stranded on islands in the African sector of the Southern Ocean. Envir Conserv 14:341–346. https://doi.org/10.1017/S0376892900016854

    Article  Google Scholar 

  182. van Franeker JA, Bell PJ (1988) Plastic ingestion by petrels breeding in Antarctica. Mar Pollut Bull 19:672–674. https://doi.org/10.1016/0025-326X(88)90388-8

    Article  Google Scholar 

  183. Convey P, Barnes D, Morton A (2002) Debris accumulation on oceanic island shores of the Scotia Arc, Antarctica. Polar Biol 25:612–617. https://doi.org/10.1007/s00300-002-0391-x

    Article  Google Scholar 

  184. Eriksson C, Burton H, Fitch S et al (2013) Daily accumulation rates of marine debris on sub-Antarctic island beaches. Mar Pollut Bull 66:199–208. https://doi.org/10.1016/j.marpolbul.2012.08.026

    Article  CAS  Google Scholar 

  185. Gregory M, Kirk R, Mabin M (1984) Pelagic tar, oil, plastics and other litter in surface waters of the NZ sector of the Southern Ocean, and on Ross dependency shores. N Z Antarct Rec 6:12–28

    Google Scholar 

  186. Ryan PG (1987) The incidence and characteristics of plastic particles ingested by seabirds. Mar Environ Res 23:175–206. https://doi.org/10.1016/0141-1136(87)90028-6

    Article  Google Scholar 

  187. Slip DJ, Burton HR (1991) Accumulation of fishing debris, plastic litter, and other artefacts, on heard and Macquarie Islands in the Southern Ocean. Environ Conserv 18:249–254. https://doi.org/10.1017/S0376892900022177

    Article  Google Scholar 

  188. Walker TR, Reid K, Arnould JPY, Croxall JP (1997) Marine debris surveys at Bird Island, South Georgia 1990–1995. Mar Pollut Bull 34:61–65. https://doi.org/10.1016/S0025-326X(96)00053-7

    Article  CAS  Google Scholar 

  189. Fraser CI, Kay GM, du Plessis M, Ryan PG (2017) Breaking down the barrier: dispersal across the Antarctic polar front. Ecography 40:235–237. https://doi.org/10.1111/ecog.02449

    Article  Google Scholar 

  190. Fraser CI, Morrison AK, Hogg AM et al (2018) Antarctica’s ecological isolation will be broken by storm-driven dispersal and warming. Nat Clim Change 8:704–708. https://doi.org/10.1038/s41558-018-0209-7

    Article  Google Scholar 

  191. Ivar do Sul JA, Barnes DKA, Costa MF et al (2011) Plastics in the Antarctic environment: are we looking only at the tip of the iceberg? Oecol Austr 15:150–170. https://doi.org/10.4257/oeco.2011.1501.11

    Article  Google Scholar 

  192. Suaria G, Perold V, Lee JR et al (2020) Floating macro- and microplastics around the Southern Ocean: results from the Antarctic circumnavigation expedition. Environ Int 136:105494. https://doi.org/10.1016/j.envint.2020.105494

    Article  Google Scholar 

  193. Waller CL, Griffiths H, Waluda CM et al (2018) Microplastics in the Southern Ocean. Antarct Environ Portal. https://doi.org/10.18124/D4JK8V

  194. Anilkumar N, George JV, Chacko R et al (2015) Variability of fronts, fresh water input and chlorophyll in the Indian Ocean sector of the Southern Ocean. N Z J Mar Freshw Res 49:20–40. https://doi.org/10.1080/00288330.2014.924972

    Article  CAS  Google Scholar 

  195. Billany W, Swart S, Hermes J, Reason CJC (2010) Variability of the Southern Ocean fronts at the Greenwich Meridian. J Mar Syst 82:304–310. https://doi.org/10.1016/j.jmarsys.2010.06.005

    Article  Google Scholar 

  196. Kim YS, Orsi AH (2014) On the variability of Antarctic circumpolar current fronts inferred from 1992–2011 altimetry. J Phys Oceanogr 44:3054–3071. https://doi.org/10.1175/JPO-D-13-0217.1

    Article  Google Scholar 

  197. Park Y-H, Lee J-H, Durand I, Hong C-S (2014) Validation of Thorpe-scale-derived vertical diffusivities against microstructure measurements in the Kerguelen region. Biogeosciences 11:6927–6937. https://doi.org/10.5194/bg-11-6927-2014

    Article  Google Scholar 

  198. Sparrow MD, Heywood KJ, Brown J, Stevens DP (1996) Current structure of the south Indian Ocean. J Geophys Res 101:6377–6391. https://doi.org/10.1029/95JC03750

    Article  CAS  Google Scholar 

  199. Hughes CW, Ash ER (2001) Eddy forcing of the mean flow in the Southern Ocean. J Geophys Res 106:2713–2722. https://doi.org/10.1029/2000JC900332

    Article  Google Scholar 

  200. Morrow R, Coleman R, Church J, Chelton D (1994) Surface eddy momentum flux and velocity variances in the Southern Ocean from Geosat altimetry. J Phys Oceanogr 24:2050–2071. https://doi.org/10.1175/1520-0485(1994)024%3C2050:SEMFAV%3E2.0.CO;2

    Article  Google Scholar 

  201. Hogg AMC, Meredith MP, Blundell JR, Wilson C (2008) Eddy heat flux in the Southern Ocean: response to variable wind forcing. J Clim 21:608–620. https://doi.org/10.1175/2007JCLI1925.1

    Article  Google Scholar 

  202. Menna M, Cotroneo Y, Falco P et al (2020) Response of the Pacific sector of the Southern Ocean to wind stress variability from 1995 to 2017. J Geophys Res Oceans 125. https://doi.org/10.1029/2019JC015696

  203. Thompson AF, Naveira Garabato AC (2014) Equilibration of the Antarctic circumpolar current by standing meanders. J Phys Oceanogr 44:1811–1828. https://doi.org/10.1175/JPO-D-13-0163.1

    Article  Google Scholar 

  204. Rintoul SR (2018) The global influence of localized dynamics in the Southern Ocean. Nature 558:209–218. https://doi.org/10.1038/s41586-018-0182-3

    Article  CAS  Google Scholar 

  205. Naveira Garabato AC, Ferrari R, Polzin KL (2011) Eddy stirring in the Southern Ocean. J Geophys Res 116:C09019. https://doi.org/10.1029/2010JC006818

    Article  Google Scholar 

  206. Thompson AF, Sallée J-B (2012) Jets and topography: jet transitions and the impact on transport in the Antarctic circumpolar current. J Phys Oceanogr 42:956–972. https://doi.org/10.1175/JPO-D-11-0135.1

    Article  Google Scholar 

  207. Dufour CO, Griffies SM, de Souza GF et al (2015) Role of mesoscale eddies in cross-frontal transport of heat and biogeochemical tracers in the Southern Ocean. J Phys Oceanogr 45:3057–3081. https://doi.org/10.1175/JPO-D-14-0240.1

    Article  Google Scholar 

  208. Patel RS, Phillips HE, Strutton PG et al (2019) Meridional heat and salt transport across the subantarctic front by cold-core eddies. J Geophys Res Oceans 124:981–1004. https://doi.org/10.1029/2018JC014655

    Article  Google Scholar 

  209. Bachman SD, Taylor JR, Adams KA, Hosegood PJ (2017) Mesoscale and submesoscale effects on mixed layer depth in the Southern Ocean. J Phys Oceanogr 47:2173–2188. https://doi.org/10.1175/JPO-D-17-0034.1

    Article  Google Scholar 

  210. Taylor JR (2018) Accumulation and subduction of buoyant material at submesoscale fronts. J Phys Oceanogr 48:1233–1241. https://doi.org/10.1175/JPO-D-17-0269.1

    Article  Google Scholar 

  211. Rosso I, Hogg AMC, Kiss AE, Gayen B (2015) Topographic influence on submesoscale dynamics in the Southern Ocean. Geophys Res Lett 42:1139–1147. https://doi.org/10.1002/2014GL062720

    Article  Google Scholar 

  212. Rosso I, Hogg AMC, Matear R, Strutton PG (2016) Quantifying the influence of sub-mesoscale dynamics on the supply of iron to Southern Ocean phytoplankton blooms. Deep-Sea Res I Oceanogr Res Pap 115:199–209. https://doi.org/10.1016/j.dsr.2016.06.009

    Article  CAS  Google Scholar 

  213. Rosso I, Hogg AMC, Strutton PG et al (2014) Vertical transport in the ocean due to sub-mesoscale structures: impacts in the Kerguelen region. Ocean Model 80:10–23. https://doi.org/10.1016/j.ocemod.2014.05.001

    Article  Google Scholar 

  214. Siegelman L, Klein P, Rivière P et al (2020) Enhanced upward heat transport at deep submesoscale ocean fronts. Nat Geosci 13:50–55. https://doi.org/10.1038/s41561-019-0489-1

    Article  CAS  Google Scholar 

  215. Wichmann D, Delandmeter P, van Sebille E (2019) Influence of near-surface currents on the global dispersal of marine microplastic. J Geophys Res Oceans 124:6086–6096. https://doi.org/10.1029/2019JC015328

    Article  Google Scholar 

  216. Brunner K, Kukulka T, Proskurowski G, Law KL (2015) Passive buoyant tracers in the ocean surface boundary layer: 2. Observations and simulations of microplastic marine debris. J Geophys Res Oceans 120:7559–7573. https://doi.org/10.1002/2015JC010840

    Article  Google Scholar 

  217. Kukulka T, Proskurowski G, Morét-Ferguson S et al (2012) The effect of wind mixing on the vertical distribution of buoyant plastic debris. Geophys Res Lett 39:L07601. https://doi.org/10.1029/2012GL051116

    Article  Google Scholar 

  218. Lacerda ALDF, Rodrigues LDS, Van Sebille E et al (2019) Plastics in sea surface waters around the Antarctic peninsula. Sci Rep 9:3977. https://doi.org/10.1038/s41598-019-40311-4

    Article  CAS  Google Scholar 

  219. Kundu PK (1990) Fluid mechanics. Academic, San Diego

    Google Scholar 

  220. Everaert G, De Rijcke M, Lonneville B et al (2020) Risks of floating microplastic in the global ocean. Environ Pollut 267:115499. https://doi.org/10.1016/j.envpol.2020.115499

    Article  CAS  Google Scholar 

  221. Cózar A, Sanz-Martín M, Martí E et al (2015) Plastic accumulation in the Mediterranean Sea. PLoS One 10:e0121762. https://doi.org/10.1371/journal.pone.0121762

    Article  CAS  Google Scholar 

  222. Zambianchi E, Iermano I, Suaria G, Aliani S (2014) Marine litter in the Mediterranean Sea: an oceanographic perspective. In: Briand F (ed) Marine litter in the Mediterranean and black seas. CIESM workshop monograph n° 46. CIESM Publisher, Monaco, 180 pp

    Google Scholar 

  223. de Haan WP, Sanchez-Vidal A, Canals M (2019) Floating microplastics and aggregate formation in the Western Mediterranean Sea. Mar Pollut Bull 140:523–535. https://doi.org/10.1016/j.marpolbul.2019.01.053

    Article  CAS  Google Scholar 

  224. Suaria G, Aliani S (2014) Floating debris in the Mediterranean Sea. Mar Pollut Bull 86:494–504. https://doi.org/10.1016/j.marpolbul.2014.06.025

    Article  CAS  Google Scholar 

  225. Aliani S, Griffa A, Molcard A (2003) Floating debris in the Ligurian Sea, North-Western Mediterranean. Mar Pollut Bull 46:1142–1149. https://doi.org/10.1016/S0025-326X(03)00192-9

    Article  CAS  Google Scholar 

  226. Aliani S, Molcard A (2003) Hitch-hiking on floating marine debris: macrobenthic species in the Western Mediterranean Sea. Hydrobiologia 503:59–67. https://doi.org/10.1023/B:HYDR.0000008480.95045.26

    Article  Google Scholar 

  227. Millot C (1999) Circulation in the western Mediterranean Sea. J Mar Syst 20:423–442. https://doi.org/10.1016/S0924-7963(98)00078-5

    Article  Google Scholar 

  228. Stemmann L, Prieur L, Legendre L et al (2008) Effects of frontal processes on marine aggregate dynamics and fluxes: an interannual study in a permanent geostrophic front (NW Mediterranean). J Mar Syst 70:1–20. https://doi.org/10.1016/j.jmarsys.2007.02.014

    Article  Google Scholar 

  229. Alberola C, Millot C, Font J (1995) On the seasonal and mesoscale variabilities of the northern current during the PRIMO-0 experiment in the western Mediterranean-Sea. Oceanol Acta 18:163–192

    Google Scholar 

  230. Astraldi M, Gasparini GP (1992) The seasonal characteristics of the circulation in the North Mediterranean basin and their relationship with the atmospheric-climatic conditions. J Geophys Res 97:9531. https://doi.org/10.1029/92JC00114

    Article  Google Scholar 

  231. Ourmières Y, Zakardjian B, Béranger K, Langlais C (2011) Assessment of a NEMO-based downscaling experiment for the north-western Mediterranean region: impacts on the northern current and comparison with ADCP data and altimetry products. Ocean Model 39:386–404. https://doi.org/10.1016/j.ocemod.2011.06.002

    Article  Google Scholar 

  232. Taupier-Letage I, Millot C (1986) General hydrodynamical features in the Ligurian Sea inferred from the dyome experiment. Oceanol Acta 9:119–131

    Google Scholar 

  233. Barrier N, Petrenko AA, Ourmières Y (2016) Strong intrusions of the northern Mediterranean current on the eastern Gulf of Lion: insights from in-situ observations and high resolution numerical modelling. Ocean Dyn 66:313–327. https://doi.org/10.1007/s10236-016-0921-7

    Article  Google Scholar 

  234. Berline L, Zakardjian B, Molcard A et al (2013) Modeling jellyfish Pelagia noctiluca transport and stranding in the Ligurian Sea. Mar Pollut Bull 70:90–99. https://doi.org/10.1016/j.marpolbul.2013.02.016

    Article  CAS  Google Scholar 

  235. Sammari C, Millot C, Prieur L (1995) Aspects of the seasonal and mesoscale variabilities of the northern current in the western Mediterranean Sea inferred from the PROLIG-2 and PROS-6 experiments. Deep-Sea Res I Oceanogr Res Pap 42:893–917. https://doi.org/10.1016/0967-0637(95)00031-Z

    Article  Google Scholar 

  236. Allen JT, Brown L, Sanders R et al (2005) Diatom carbon export enhanced by silicate upwelling in the northeast Atlantic. Nature 437:728–732. https://doi.org/10.1038/nature03948

    Article  CAS  Google Scholar 

  237. Niewiadomska K, Claustre H, Prieur L, d’Ortenzio F (2008) Submesoscale physical-biogeochemical coupling across the Ligurian current (northwestern Mediterranean) using a bio-optical glider. Limnol Oceanogr 53:2210–2225. https://doi.org/10.4319/lo.2008.53.5_part_2.2210

    Article  CAS  Google Scholar 

  238. Boucher J, Ibanez F, Prieur L (1987) Daily and seasonal variations in the spatial distribution of zooplankton populations in relation to the physical structure in the Ligurian Sea Front. J Mar Res 45:133–173. https://doi.org/10.1357/002224087788400891

    Article  Google Scholar 

  239. Goffart A, Hecq J, Prieur L (1995) Control of the phytoplankton of the Ligurian Basin by the Liguro-Provencal Front (Corsican sector). Oceanol Acta 18:329–342

    Google Scholar 

  240. Sournia A, Brylinski J, Dallot S et al (1990) Fronts hydrologiques au large des côtes françaises : Les sites-ateliers de programme Frontal. Oceanol Acta 13:413–438

    CAS  Google Scholar 

  241. de Lucia GA, Caliani I, Marra S et al (2014) Amount and distribution of neustonic micro-plastic off the western Sardinian coast (Central-Western Mediterranean Sea). Mar Environ Res 100:10–16. https://doi.org/10.1016/j.marenvres.2014.03.017

    Article  CAS  Google Scholar 

  242. Pedrotti ML, Petit S, Elineau A et al (2016) Changes in the floating plastic pollution of the Mediterranean Sea in relation to the distance to land. PLoS One 11:e0161581. https://doi.org/10.1371/journal.pone.0161581

    Article  CAS  Google Scholar 

  243. Ourmières Y, Mansui J, Molcard A et al (2018) The boundary current role on the transport and stranding of floating marine litter: the French Riviera case. Cont Shelf Res 155:11–20. https://doi.org/10.1016/j.csr.2018.01.010

    Article  Google Scholar 

  244. Di-Méglio N, Campana I (2017) Floating macro-litter along the Mediterranean French coast: composition, density, distribution and overlap with cetacean range. Mar Pollut Bull 118:155–166. https://doi.org/10.1016/j.marpolbul.2017.02.026

    Article  CAS  Google Scholar 

  245. Gerigny O, Henry M, Tomasino C, Galgani F (2011) Déchets en mer et sur le fond. in rapport de l’évalution initiale, Plan d’action pour le milieu marin - Mediterranée Occidentale

    Google Scholar 

  246. Berta M, Griffa A, Corgnati L et al (2020) Submesoscales variability from surface drifter and HF radar measurements: scale and wind dependence of kinematic properties. In: EGU General Assembly 2020, 4–8 May 2020. EGU2020-18620, Online

    Google Scholar 

  247. Sklar FH, Browder JA (1998) Coastal environmental impacts brought about by alterations to freshwater flow in the Gulf of Mexico. Environ Manag 22:547–562. https://doi.org/10.1007/s002679900127

    Article  CAS  Google Scholar 

  248. Buskey EJ, White HK, Esbaugh AJ (2016) Impact of oil spills on marine life in the Gulf of Mexico: effects on plankton, nekton and deep-sea benthos. Oceanography 29:174–181

    Article  Google Scholar 

  249. Di Mauro R, Kupchik MJ, Benfield MC (2017) Abundant plankton-sized microplastic particles in shelf waters of the northern Gulf of Mexico. Environ Pollut 230:798–809. https://doi.org/10.1016/j.envpol.2017.07.030

    Article  CAS  Google Scholar 

  250. Lecke-Mitchell KM, Mullin K (1992) Distribution and abundance of large floating plastic in the north-central Gulf of Mexico. Mar Pollut Bull 24:598–601. https://doi.org/10.1016/0025-326X(92)90279-F

    Article  Google Scholar 

  251. Oey L-Y, Ezer T, Lee H-C (2005) Loop current, rings and related circulation in the Gulf of Mexico: a review of numerical models and future challenges. In: Sturges W, Lugo-Fernandez A (eds) Geophysical monograph series. American Geophysical Union, Washington, pp 31–56

    Google Scholar 

  252. Poje AC, Ozgokmen TM, Lipphardt BL et al (2014) Submesoscale dispersion in the vicinity of the deepwater horizon spill. Proc Natl Acad Sci 111:12693–12698. https://doi.org/10.1073/pnas.1402452111

    Article  CAS  Google Scholar 

  253. Lodise J, Özgökmen T, Gonçalves R et al (2020) Investigating the formation of submesoscale structures along mesoscale fronts and estimating kinematic quantities using Lagrangian drifters. Fluids 5(3):159

    Article  Google Scholar 

  254. Özgökmen TM, Poje AC, Fischer PF et al (2012) On multi-scale dispersion under the influence of surface mixed layer instabilities and deep flows. Ocean Model 56:16–30. https://doi.org/10.1016/j.ocemod.2012.07.004

    Article  Google Scholar 

  255. Haza AC, Özgökmen TM, Griffa A et al (2012) Parameterization of particle transport at submesoscales in the Gulf Stream region using Lagrangian subgridscale models. Ocean Model 42:31–49. https://doi.org/10.1016/j.ocemod.2011.11.005

    Article  Google Scholar 

  256. Pearson J, Fox-Kemper B, Barkan R et al (2019) Impacts of convergence on structure functions from surface drifters in the Gulf of Mexico. J Phys Oceanogr 49:675–690. https://doi.org/10.1175/JPO-D-18-0029.1

    Article  Google Scholar 

  257. Haza AC, Özgökmen TM, Hogan P (2016) Impact of submesoscales on surface material distribution in a gulf of Mexico mesoscale eddy. Ocean Model 107:28–47. https://doi.org/10.1016/j.ocemod.2016.10.002

    Article  Google Scholar 

  258. Huguenard KD, Bogucki DJ, Ortiz-Suslow DG et al (2016) On the nature of the frontal zone of the Choctawhatchee Bay plume in the Gulf of Mexico. J Geophys Res Oceans 121:1322–1345. https://doi.org/10.1002/2015JC010988

    Article  Google Scholar 

  259. Roth MK, MacMahan J, Reniers A et al (2017) Observations of inner shelf cross-shore surface material transport adjacent to a coastal inlet in the northern Gulf of Mexico. Cont Shelf Res 137:142–153. https://doi.org/10.1016/j.csr.2016.12.017

    Article  Google Scholar 

  260. Androulidakis Y, Kourafalou V, Özgökmen T et al (2018) Influence of river-induced fronts on hydrocarbon transport: a multiplatform observational study. J Geophys Res Oceans 123:3259–3285. https://doi.org/10.1029/2017JC013514

    Article  Google Scholar 

  261. Wang P, Özgökmen TM (2015) How do hydrodynamic instabilities affect 3D transport in geophysical vortices? Ocean Model 87:48–66. https://doi.org/10.1016/j.ocemod.2015.01.002

    Article  Google Scholar 

  262. Koelmans AA, Kooi M, Law KL, van Sebille E (2017) All is not lost: deriving a top-down mass budget of plastic at sea. Environ Res Lett 12:114028. https://doi.org/10.1088/1748-9326/aa9500

    Article  CAS  Google Scholar 

  263. Kaandorp MLA, Dijkstra HA, van Sebille E (2020) Closing the Mediterranean marine floating plastic mass budget: inverse modeling of sources and sinks. Environ Sci Technol 54:11980–11989. https://doi.org/10.1021/acs.est.0c01984

    Article  CAS  Google Scholar 

  264. Jamieson AJ, Brooks LSR, Reid WDK et al (2019) Microplastics and synthetic particles ingested by deep-sea amphipods in six of the deepest marine ecosystems on earth. R Soc Open Sci 6:180667. https://doi.org/10.1098/rsos.180667

    Article  CAS  Google Scholar 

  265. López-Martínez S, Morales-Caselles C, Kadar J, Rivas ML (2021) Overview of global status of plastic presence in marine vertebrates. Glob Change Biol 27:728–737. https://doi.org/10.1111/gcb.15416

    Article  CAS  Google Scholar 

  266. Hale RC, Seeley ME, La Guardia MJ et al (2020) A global perspective on microplastics. J Geophys Res Oceans 125. https://doi.org/10.1029/2018JC014719

  267. de la Fuente R, Drótos G, Hernández-García E et al (2021) Sinking microplastics in the water column: simulations in the Mediterranean Sea. Ocean Sci 17:431–453. https://doi.org/10.5194/os-17-431-2021

    Article  CAS  Google Scholar 

  268. Loughlin C, Marques Mendes AR, Morrison L, Morley A (2021) The role of oceanographic processes and sedimentological settings on the deposition of microplastics in marine sediment: Icelandic waters. Mar Pollut Bull 164:111976. https://doi.org/10.1016/j.marpolbul.2021.111976

    Article  CAS  Google Scholar 

  269. Mountford AS, Morales Maqueda MA (2019) Eulerian modeling of the three-dimensional distribution of seven popular microplastic types in the global ocean. J Geophys Res Oceans 124:8558–8573. https://doi.org/10.1029/2019JC015050

    Article  Google Scholar 

  270. Gündoğdu S, Çevik C, Ayat B et al (2018) How microplastics quantities increase with flood events? An example from Mersin Bay NE Levantine coast of Turkey. Environ Pollut 239:342–350. https://doi.org/10.1016/j.envpol.2018.04.042

    Article  CAS  Google Scholar 

  271. Lo H-S, Lee Y-K, Po BH-K et al (2020) Impacts of Typhoon Mangkhut in 2018 on the deposition of marine debris and microplastics on beaches in Hong Kong. Sci Total Environ 716:137172. https://doi.org/10.1016/j.scitotenv.2020.137172

    Article  CAS  Google Scholar 

  272. Murray CC, Maximenko N, Lippiatt S (2018) The influx of marine debris from the Great Japan Tsunami of 2011 to North American shorelines. Mar Pollut Bull 132:26–32. https://doi.org/10.1016/j.marpolbul.2018.01.004

    Article  CAS  Google Scholar 

  273. Sulistiawati D, Safir M, Putra AE et al (2021) The amount and type of plastics in the Baiya Beach after the Palu Bay tsunami. J Phys Conf Ser 1763:012072. https://doi.org/10.1088/1742-6596/1763/1/012072

    Article  Google Scholar 

  274. Kukulka T, Brunner K (2015) Passive buoyant tracers in the ocean surface boundary layer: 1. Influence of equilibrium wind-waves on vertical distributions. J Geophys Res Oceans 120:3837–3858. https://doi.org/10.1002/2014JC010487

    Article  Google Scholar 

  275. Jacketti M, Beegle-Krause CJ, Englehardt JD (2020) A review on the sinking mechanisms for oil and successful response technologies. Mar Pollut Bull 160:111626. https://doi.org/10.1016/j.marpolbul.2020.111626

    Article  CAS  Google Scholar 

  276. Bagaev A, Mizyuk A, Khatmullina L et al (2017) Anthropogenic fibres in the Baltic Sea water column: field data, laboratory and numerical testing of their motion. Sci Total Environ 599–600:560–571. https://doi.org/10.1016/j.scitotenv.2017.04.185

    Article  CAS  Google Scholar 

  277. Khatmullina L, Isachenko I (2017) Settling velocity of microplastic particles of regular shapes. Mar Pollut Bull 114:871–880. https://doi.org/10.1016/j.marpolbul.2016.11.024

    Article  CAS  Google Scholar 

  278. Wang Z, Dou M, Ren P, et al (2021) Sedimentation of irregular shaped microplastics under steady and dynamic flow conditions (in Review)

    Google Scholar 

  279. Iwasaki S, Isobe A, Kako S et al (2017) Fate of microplastics and mesoplastics carried by surface currents and wind waves: a numerical model approach in the Sea of Japan. Mar Pollut Bull 121:85–96. https://doi.org/10.1016/j.marpolbul.2017.05.057

    Article  CAS  Google Scholar 

  280. Vélez-Belchí P, Tintoré J (2001) Vertical velocities at an ocean front. Sci Mar 65:291–300. https://doi.org/10.3989/scimar.2001.65s1291

    Article  Google Scholar 

  281. Esposito G, Berta M, Centurioni L et al (2021) Submesoscale vorticity and divergence in the Alboran Sea: scale and depth dependence. Front Mar Sci. https://doi.org/10.3389/fmars.2021.678304

  282. Stukel MR, Aluwihare LI, Barbeau KA et al (2017) Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction. Proc Natl Acad Sci U S A 114:1252–1257. https://doi.org/10.1073/pnas.1609435114

    Article  CAS  Google Scholar 

  283. Lapeyre G, Klein P (2006) Impact of the small-scale elongated filaments on the oceanic vertical pump. J Mar Res 64:835–851. https://doi.org/10.1357/002224006779698369

    Article  Google Scholar 

  284. Ye S, Andrady AL (1991) Fouling of floating plastic debris under Biscayne Bay exposure conditions. Mar Pollut Bull 22:608–613. https://doi.org/10.1016/0025-326X(91)90249-R

    Article  Google Scholar 

  285. Lacour L, Briggs N, Claustre H et al (2019) The intraseasonal dynamics of the mixed layer pump in the subpolar North Atlantic Ocean: a biogeochemical-Argo float approach. Global Biogeochem Cycles 33:266–281. https://doi.org/10.1029/2018GB005997

    Article  CAS  Google Scholar 

  286. Hoellein TJ, Rochman CM (2021) The “plastic cycle”: a watershed-scale model of plastic pools and fluxes. Front Ecol Environ. https://doi.org/10.1002/fee.2294

  287. Elhacham E, Ben-Uri L, Grozovski J et al (2020) Global human-made mass exceeds all living biomass. Nature 588:442–444. https://doi.org/10.1038/s41586-020-3010-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors of this chapter received funding through the following research projects: Gulf of Mexico Research Initiative (GoMRI); IPSODES “Investigating the predictability of the Southern Ocean dynamics through ensemble simulation hindcasts” (PNRA18_00199-C); PRIN EMME “Exploring the fate of Mediterranean microplastics: from distribution pathways to biological effects” (2017WERYZP); JPI-Oceans FACTS “Fluxes and Fate of Microplastics in Northern European Waters”; ONR award N00014-18-1-2782 within the CALYPSO DRI; JERICO-S3 (grant agreement No. 871153) and NAUTILOS “New Approach To Underwater Technologies For Innovative, Low-Cost Ocean Observation (grant agreement No. 101000825) projects that received funding from the European Union’s Horizon 2020 research and innovation programme; and by the Discovery Element of the European Space Agency’s Basic Activities project WASP “Mapping Windrows as Proxy for Marine Litter Monitoring from Space” (ESA Contract. 4000130627/20/NL/GLC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Suaria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Cite this chapter

Suaria, G. et al. (2021). Dynamics of Transport, Accumulation, and Export of Plastics at Oceanic Fronts. In: Belkin, I.M. (eds) Chemical Oceanography of Frontal Zones. The Handbook of Environmental Chemistry, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2021_814

Download citation

Publish with us

Policies and ethics