Skip to main content

Low Temperature Scanning Probe Microscopy

  • Chapter
Nanotribology and Nanomechanics

Summary

This chapter is dedicated to scanning probe microscopy, one of the most important techniques in nanotechnology. In general, scanning probe techniques allow the measurement of physical properties down to the nanometer scale. Some techniques, such as the scanning tunneling microscope and the scanning force microscope even go down to the atomic scale. The properties that are accessible are various. Most importantly, one can image the arrangement of atoms on conducting surfaces by scanning tunneling microscopy and on insulating substrates by scanning force microscopy. But also the arrangement of electrons (scanning tunneling spectroscopy), the force interaction between different atoms (scanning force spectroscopy), magnetic domains (magnetic force microscopy), the local capacitance (scanning capacitance microscopy), the local temperature (scanning thermo microscopy), and local light-induced excitations (scanning near-field microscopy) can be measured with high spatial resolution. In addition, some techniques even allow the manipulation of atomic configurations.

Probably the most important advantage of the low-temperature operation of scanning probe techniques is that they lead to a significantly better signal-to-noise ratio than measuring at room temperature. This is why many researchers work below 100 K. However, there are also physical reasons to use low-temperature equipment. For example, the manipulation of atoms or scanning tunneling spectroscopy with high energy resolution can only be realized at low temperatures. Moreover, some physical effects such as superconductivity or the Kondo effect are restricted to low temperatures. Here, we describe the design criteria of low-temperature scanning probe equipment and summarize some of the most spectacular results achieved since the invention of the method about 20 years ago. We first focus on the scanning tunneling microscope, giving examples of atomic manipulation and the analysis of electronic properties in different material arrangements. Afterwards, we describeresults obtained by scanning force microscopy, showing atomic-scale imaging on insulators, as well as force spectroscopy analysis. Finally, the magnetic force microscope, which images domain patterns in ferromagnets and vortex patterns in superconductors, is discussed. Although this list is far from complete, we feel that it gives an adequate impression of the fascinating possibilities of low-temperature scanning probe instruments.

In this chapter low temperatures are defined as lower than about 100K and are normally achieved by cooling with liquid nitrogen or liquid helium. Applications in which SPMs are operated close to 0 °C are not covered in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett., 49:57–61, 1982.

    Google Scholar 

  2. R. Wiesendanger. Scanning Probe Microscopy and Spectroscopy. Cambridge Univ. Press, 1994.

    Google Scholar 

  3. M. Tinkham. Introduction to Superconductivity. McGraw-Hill, 1996.

    Google Scholar 

  4. J. Kondo. Theory of dilute magnetic alloys. Solid State Phys., 23:183–281, 1969.

    Article  Google Scholar 

  5. T. R. Albrecht, P. Grütter, H. K. Horne, and D. Rugar. Frequency modulation detection using high-q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys., 69:668–673, 1991.

    Google Scholar 

  6. F. J. Giessibl, H. Bielefeld, S. Hembacher, and J. Mannhart. Calculation of the optimal imaging parameters for frequency modulation atomic force microscopy. Appl. Surf. Sci., 140:352–357, 1999.

    CAS  Google Scholar 

  7. W. Allers, A. Schwarz, U. D. Schwarz, and R. Wiesendanger. Dynamic scanning force microscopy at low temperatures on a van der waals surface: graphite(0001). Appl. Surf. Sci., 140:247–252, 1999.

    CAS  Google Scholar 

  8. W. Allers, A. Schwarz, U. D. Schwarz, and R. Wiesendanger. Dynamic scanning force microscopy at low temperatures on a noble-gas crystal: atomic resolution on the xenon(111) surface. Europhys. Lett., 48:276–279, 1999.

    CAS  Google Scholar 

  9. M. Morgenstern, D. Haude, V. Gudmundsson, C. Wittneven, R. Dombrowski, and R. Wiesendanger. Origin of landau oscillations observed in scanning tunneling spectroscopy on n-InAs(110). Phys. Rev. B, 62:7257–7263, 2000.

    CAS  Google Scholar 

  10. D. M. Eigler, P. S. Weiss, E. K. Schweizer, and N. D. Lang. Imaging Xe with a low-temperature scanning tunneling microscope. Phys. Rev. Lett., 66:1189–1192, 1991.

    CAS  Google Scholar 

  11. P. S. Weiss and D. M. Eigler. Site dependence of the apparent shape of a molecule in scanning tunneling micoscope images: Benzene on Pt{111}. Phys. Rev. Lett., 71:3139–3142, 1992.

    Google Scholar 

  12. D. M. Eigler and E. K. Schweizer. Positioning single atoms with a scanning tunneling microscope. Nature, 344:524–526, 1990.

    CAS  Google Scholar 

  13. H. Hug, B. Stiefel, P. J. A. van Schendel, A. Moser, S. Martin, and H.-J. Güntherodt. A low temperature ultrahigh vacuum scanning force microscope. Rev. Sci. Instrum., 70:3627–3640, 1999.

    Google Scholar 

  14. S. Behler, M. K. Rose, D. F. Ogletree, and F. Salmeron. Method to characterize the vibrational response of a beetle type scanning tunneling microscope. Rev. Sci. Instrum., 68:124–128, 1997.

    CAS  Google Scholar 

  15. C. Wittneven, R. Dombrowski, S. H. Pan, and R. Wiesendanger. A low-temperature ultrahigh-vacuum scanning tunneling microscope with rotatable magnetic field. Rev. Sci. Instrum., 68:3806–3810, 1997.

    CAS  Google Scholar 

  16. W. Allers, A. Schwarz, U. D. Schwarz, and R. Wiesendanger. A scanning force microscope with atomic resolution in ultrahigh vacuum and at low temperatures. Rev. Sci. Instrum., 69:221–225, 1998.

    CAS  Google Scholar 

  17. G. Dujardin, R. E. Walkup, and Ph. Avouris. Dissociation of individual molecules with electrons from the tip of a scanning tunneling microscope. Science, 255:1232–1235, 1992.

    CAS  Google Scholar 

  18. H. J. Lee and W. Ho. Single-bond formation and characterization with a scanning tunneling microscope. Science, 286:1719–1722, 1999.

    CAS  Google Scholar 

  19. R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy. Photon emission at molecular resolution induced by a scanning tunneling microscope. Science, 262:1425–1427, 1993.

    CAS  Google Scholar 

  20. B. G. Briner, M. Doering, H. P. Rust, and A. M. Bradshaw. Microscopic diffusion enhanced by adsorbate interaction. Science, 278:257–260, 1997.

    CAS  Google Scholar 

  21. J. Kliewer, R. Berndt, E. V. Chulkov, V. M. Silkin, P. M. Echenique, and S. Crampin. Dimensionality effects in the lifetime of surface states. Science, 288:1399–1401, 2000.

    CAS  Google Scholar 

  22. M. F. Crommie, C. P. Lutz, and D. M. Eigler. Imaging standing waves in a two-dimensional electron gas. Nature, 363:524–527, 1993.

    CAS  Google Scholar 

  23. B. C. Stipe, M. A. Rezaei, and W. Ho. Single-molecule vibrational spectroscopy and microscopy. Science, 280:1732–1735, 1998.

    CAS  Google Scholar 

  24. H. J. Lee and W. Ho. Structural determination by single-molecule vibrational spectroscopy and microscopy: Contrast between copper and iron carbonyls. Phys. Rev. B, 61:R16347–R16350, 2000.

    CAS  Google Scholar 

  25. C. W. J. Beenakker and H. van Houten. Quantum transport in semiconductor nanostructures. Solid State Phys., 44:1–228, 1991.

    Article  Google Scholar 

  26. S. H. Pan, E. W. Hudson, K. M. Lang, H. Eisaki, S. Uchida, and J. C. Davis. Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+δ . Nature, 403:746–750, 2000.

    CAS  Google Scholar 

  27. R. S. Becker, J. A. Golovchenko, and B. S. Swartzentruber. Atomic-scale surface modifications using a tunneling microscope. Nature, 325:419–42, 1987.

    CAS  Google Scholar 

  28. J. A. Stroscio and D. M. Eigler. Atomic and molecular manipulation with the scanning tunneling microscope. Science, 254:1319–1326, 1991.

    CAS  Google Scholar 

  29. L. Bartels, G. Meyer, and K. H. Rieder. Basic steps of lateral manipulation of single atoms and diatomic clusters with a scanning tunneling microscope. Phys. Rev. Lett., 79:697–700, 1997.

    CAS  Google Scholar 

  30. J. J. Schulz, R. Koch, and K. H. Rieder. New mechanism for single atom manipulation. Phys. Rev. Lett., 84:4597–4600, 2000.

    CAS  Google Scholar 

  31. T. C. Shen, C. Wang, G. C. Abeln, J. R. Tucker, J. W. Lyding, Ph. Avouris, and R. E. Walkup. Atomic-scale desorption through electronic and vibrational excitation mechanisms. Science, 268:1590–1592, 1995.

    CAS  Google Scholar 

  32. T. Komeda, Y. Kim, M. Kawai, B. N. J. Persson, and H. Ueba. Lateral hopping of molecules induced by excitations of internal vibration mode. Science, 295:2055–2058, 2002.

    CAS  Google Scholar 

  33. Y. W. Mo. Reversible rotation of antimony dimers on the silicon(001) surface with a scanning tunneling microscope. Science, 261:886–888, 1993.

    CAS  Google Scholar 

  34. B. C. Stipe, M. A. Rezaei, and W. Ho. Inducing and viewing the rotational motion of a single molecule. Science, 279:1907–1909, 1998.

    CAS  Google Scholar 

  35. F. Moresco, G. Meyer, K. H. Rieder, H. Tang, A. Gourdon, and C. Joachim. Conformational changes of single molecules by scanning tunneling microscopy manipulation: a route to molecular switching. Phys. Rev. Lett., 86:672–675, 2001.

    CAS  Google Scholar 

  36. S. W. Hla, L. Bartels, G. Meyer, and K. H. Rieder. Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: Towards single molecule engineering. Phys. Rev. Lett., 85:2777–2780, 2000.

    CAS  Google Scholar 

  37. E. Ganz, S. K. Theiss, I. S. Hwang, and J. Golovchenko. Direct measurement of diffusion by hot tunneling microscopy: Activations energy, anisotropy, and long jumps. Phys. Rev. Lett., 68:1567–1570, 1992.

    CAS  Google Scholar 

  38. M. Schuhnack, T. R. Linderoth, F. Rosei, E. Laegsgaard, I. Stensgaard, and F. Besenbacher. Long jumps in the surface diffusion of large molecules. Phys. Rev. Lett., 88:156102, 1–4, 2002.

    Google Scholar 

  39. L. J. Lauhon and W. Ho. Direct observation of the quantum tunneling of single hydrogen atoms with a scanning tunneling microscope. Phys. Rev. Lett., 85:4566–4569, 2000.

    CAS  Google Scholar 

  40. N. Kitamura, M. Lagally, and M. B. Webb. Real-time observation of vacancy diffusion on Si(001)-(2 × 1) by scanning tunneling microscopy. Phys. Rev. Lett., 71:2082–2085, 1993.

    CAS  Google Scholar 

  41. M. Morgenstern, T. Michely, and G. Comsa. Onset of interstitial diffusion determined by scanning tunneling microscopy. Phys. Rev. Lett., 79:1305–1308, 1997.

    CAS  Google Scholar 

  42. K. Morgenstern, G. Rosenfeld, B. Poelsema, and G. Comsa. Brownian motion of vacancy islands on Ag(111). Phys. Rev. Lett., 74:2058–2061, 1995.

    CAS  Google Scholar 

  43. B. Reihl, J. H. Coombs, and J. K. Gimzewski. Local inverse photoemission with the scanning tunneling microscope. Surf. Sci., 211–212:156–164, 1989.

    Google Scholar 

  44. R. Berndt, J. K. Gimzewski, and P. Johansson. Inelastic tunneling excitation of tipinduced plasmon modes on noble-metal surfaces. Phys. Rev. Lett., 67:3796–3799, 1991.

    CAS  Google Scholar 

  45. P. Johansson, R. Monreal, and P. Apell. Theory for light emission from a scanning tunneling microscope. Phys. Rev. B, 42:9210–9213, 1990.

    CAS  Google Scholar 

  46. J. Aizpurua, G. Hoffmann, S. P. Apell, and R. Berndt. Electromagnetic coupling on an atomic scale. Phys. Rev. Lett., 89:156803, 1–4, 2002.

    CAS  Google Scholar 

  47. G. Hoffmann, J. Kliewer, and R. Berndt. Luminescence from metallic quantum wells in a scanning tunneling microscope. Phys. Rev. Lett., 78:176803, 1–4, 2001.

    Google Scholar 

  48. A. Downes and M. E. Welland. Photon emission from Si(111)-(7 × 7) induced by scanning tunneling microscopy: atomic scale and material contrast. Phys. Rev. Lett., 81:1857–1860, 1998.

    CAS  Google Scholar 

  49. M. Kemerink, K. Sauthoff, P. M. Koenraad, J. W. Geritsen, H. van Kempen, and J. H. Wolter. Optical detection of ballistic electrons injected by a scanning-tunneling microscope. Phys. Rev. Lett., 86:2404–2407, 2001.

    CAS  Google Scholar 

  50. J. Tersoff and D. R. Hamann. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett., 50:1998–2001, 1983.

    CAS  Google Scholar 

  51. C. J. Chen. Introduction to Scanning Tunneling Microscopy. Oxford Univ. Press, 1993.

    Google Scholar 

  52. J. Winterlin, J. Wiechers, H. Brune, T. Gritsch, H. Hofer, and R. J. Behm. Atomic-resolution imaging of close-packed metal surfaces by scanning tunneling microscopy. Phys. Rev. Lett., 62:59–62, 1989.

    Google Scholar 

  53. A. L. Vazquez de Parga, O. S. Hernan, R. Miranda, A. Levy Yeyati, N. Mingo, A. Martin-Rodero, and F. Flores. Electron resonances in sharp tips and their role in tunneling spectroscopy. Phys. Rev. Lett., 80:357–360, 1998.

    CAS  Google Scholar 

  54. S. H. Pan, E. W. Hudson, and J. C. Davis. Vacuum tunneling of superconducting quasiparticles from atomically sharp scanning tunneling microscope tips. Appl. Phys. Lett., 73:2992–2994, 1998.

    CAS  Google Scholar 

  55. J. T. Li, W. D. Schneider, R. Berndt, O. R. Bryant, and S. Crampin. Surface-state lifetime measured by scanning tunneling spectroscopy. Phys. Rev. Lett., 81:4464–4467, 1998.

    CAS  Google Scholar 

  56. L. Bürgi, O. Jeandupeux, H. Brune, and K. Kern. Probing hot-electron dynamics with a cold scanning tunneling microscope. Phys. Rev. Lett., 82:4516–4519, 1999.

    Google Scholar 

  57. J. W. G. Wildoer, C. J. P. M. Harmans, and H. van Kempen. Observation of landau levels at the InAs(110) surface by scanning tunneling spectroscopy. Phys. Rev. B, 55:R16013–R16016, 1997.

    CAS  Google Scholar 

  58. M. Morgenstern, V. Gudmundsson, C. Wittneven, R. Dombrowski, and R. Wiesendanger. Nonlocality of the exchange interaction probed by scanning tunneling spectroscopy. Phys. Rev. B, 63:201301(R), 1–4, 2001.

    Google Scholar 

  59. M. V. Grishin, F. I. Dalidchik, S. A. Kovalevskii, N. N. Kolchenko, and B. R. Shub. Isotope effect in the vibrational spectra of water measured in experiments with a scanning tunneling microscope. JETP Lett., 66:37–40, 1997.

    Google Scholar 

  60. A. Hewson. From the Kondo Effect to Heavy Fermions. Cambridge Univ. Press, 1993.

    Google Scholar 

  61. V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and N. S. Wingreen. Tunneling into a single magnetic atom: Spectroscopic evidence of the kondo resonance. Science, 280:567–569, 1998.

    CAS  Google Scholar 

  62. J. Li, W. D. Schneider, R. Berndt, and B. Delley. Kondo scattering observed at a single magnetic impurity. Phys. Rev. Lett., 80:2893–2896, 1998.

    CAS  Google Scholar 

  63. T. W. Odom, J. L. Huang, C. L. Cheung, and C. M. Lieber. Magnetic clusters on single-walled carbon nanotubes: the kondo effect in a one-dimensional host. Science, 290:1549–1552, 2000.

    CAS  Google Scholar 

  64. M. Ouyang, J. L. Huang, C. L. Cheung, and C. M. Lieber. Energy gaps in metallic single-walled carbon nanotubes. Science, 292:702–705, 2001.

    CAS  Google Scholar 

  65. U. Fano. Effects of configuration interaction on intensities and phase shifts. Phys. Rev., 124:1866–1878, 1961.

    CAS  Google Scholar 

  66. H. C. Manoharan, C. P. Lutz, and D. M. Eigler. Quantum mirages formed by coherent projection of electronic structure. Nature, 403:512–515, 2000.

    CAS  Google Scholar 

  67. O. Y. Kolesnychenko, R. de Kort, M. I. Katsnelson, A. I. Lichtenstein, and H. van Kempen. Real-space observation of an orbital kondo resonance on the Cr(001) surface. Nature, 415:507–509, 2002.

    CAS  Google Scholar 

  68. H. A. Mizes and J. S. Foster. Long-range electronic perturbations caused by defects using scanning tunneling microscopy. Science, 244:559–562, 1989.

    CAS  Google Scholar 

  69. P. T. Sprunger, L. Petersen, E. W. Plummer, E. Laegsgaard, and F. Besenbacher. Giant friedel oscillations on beryllium (0001) surface. Science, 275:1764–1767, 1997.

    CAS  Google Scholar 

  70. P. Hofmann, B. G. Briner, M. Doering, H. P. Rust, E. W. Plummer, and A. M. Bradshaw. Anisotropic two-dimensional friedel oscillations. Phys. Rev. Lett., 79:265–268, 1997.

    CAS  Google Scholar 

  71. E. J. Heller, M. F. Crommie, C. P. Lutz, and D. M. Eigler. Scattering and adsorption of surface electron waves in quantum corrals. Nature, 369:464–466, 1994.

    Google Scholar 

  72. M. C. M. M. van der Wielen, A. J. A. van Roij, and H. van Kempen. Direct observation of friedel oscillations around incorporated SiGa dopants in GaAs by low-temperature scanning tunneling microscopy. Phys. Rev. Lett., 76:1075–1078, 1996.

    Google Scholar 

  73. O. Millo, D. Katz, Y. W. Cao, and U. Banin. Imaging and spectroscopy of artificial-atom states in core/shell nanocrystal quantum dots. Phys. Rev. Lett., 86:5751–5754, 2001.

    CAS  Google Scholar 

  74. L. C. Venema, J. W. G. Wildoer, J. W. Janssen, S. J. Tans, L. J. T. Tuinstra, L. P. Kouwenhoven, and C. Dekker. Imaging electron wave functions of quantized energy levels in carbon nanotubes. Nature, 283:52–55, 1999.

    CAS  Google Scholar 

  75. S. G. Lemay, J. W. Jannsen, M. van den Hout, M. Mooij, M. J. Bronikowski, P. A. Willis, R. E. Smalley, L. P. Kouwenhoven, and C. Dekker. Two-dimensional imaging of electronic wavefunctions in carbon nanotubes. Nature, 412:617–620, 2001.

    CAS  Google Scholar 

  76. C. Wittneven, R. Dombrowski, M. Morgenstern, and R. Wiesendanger. Scattering states of ionized dopants probed by low temperature scanning tunneling spectroscopy. Phys. Rev. Lett., 81:5616–5619, 1998.

    CAS  Google Scholar 

  77. D. Haude, M. Morgenstern, I. Meinel, and R. Wiesendanger. Local density of states of a three-dimensional conductor in the extreme quantum limit. Phys. Rev. Lett., 86:1582–1585, 2001.

    CAS  Google Scholar 

  78. R. Joynt and R. E. Prange. Conditions for the quantum hall effect. Phys. Rev. B, 29:3303–3317, 1984.

    Google Scholar 

  79. M. Morgenstern, J. Klijn, C. Meyer, M. Getzlaff, R. Adelung, R. A. Römer, K. Rossnagel, L. Kipp, M. Skibowski, and R. Wiesendanger. Direct comparison between potential landscape and local density of states in a disordered two-dimensional electron system. Phys. Rev. Lett., 89:136806, 1–4, 2002.

    CAS  Google Scholar 

  80. E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan. Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett., 42:673–676, 1979.

    Google Scholar 

  81. M. Morgenstern, J. Klijn, and R. Wiesendanger. Real space observation of drift states in a two-dimensional electron system at high magnetic fields. Phys. Rev. Lett., 90:056804, 1–4, 2003.

    CAS  Google Scholar 

  82. R. E. Peierls. Quantum Theory of Solids. Clarendon, 1955.

    Google Scholar 

  83. C. G. Slough, W. W. McNairy, R. V. Coleman, B. Drake, and P. K. Hansma. Charge-density waves studied with the use of a scanning tunneling microscope. Phys. Rev. B, 34:994–1005, 1986.

    CAS  Google Scholar 

  84. X. L. Wu and C. M. Lieber. Hexagonal domain-like charge-density wave of TaS2 determined by scanning tunneling microscopy. Science, 243:1703–1705, 1989.

    CAS  Google Scholar 

  85. T. Nishiguchi, M. Kageshima, N. Ara-Kato, and A. Kawazu. Behaviour of charge density waves in a one-dimensional organic conductor visualized by scanning tunneling microscopy. Phys. Rev. Lett., 81:3187–3190, 1998.

    CAS  Google Scholar 

  86. X. L. Wu and C. M. Lieber. Direct observation of growth and melting of the hexagonal-domain charge-density-wave phase in 1 T-TaS2 by scanning tunneling microscopy. Phys. Rev. Lett., 64:1150–1153, 1990.

    CAS  Google Scholar 

  87. J. M. Carpinelli, H. H. Weitering, E. W. Plummer, and R. Stumpf. Direct observation of a surface charge density wave. Nature, 381:398–400, 1996.

    CAS  Google Scholar 

  88. H. H. Weitering, J. M. Carpinelli, A. V. Melechenko, J. Zhang, M. Bartkowiak, and E. W. Plummer. Defect-mediated condensation of a charge density wave. Science, 285:2107–2110, 1999.

    CAS  Google Scholar 

  89. H. W. Yeom, S. Takeda, E. Rotenberg, I. Matsuda, K. Horikoshi, J. Schäfer, C. M. Lee, S. D. Kevan, T. Ohta, T. Nagao, and S. Hasegawa. Instability and charge density wave of metallic quantum chains on a silicon surface. Phys. Rev. Lett., 82:4898–4901, 1999.

    CAS  Google Scholar 

  90. K. Swamy, A. Menzel, R. Beer, and E. Bertel. Charge-density waves in self-assembled halogen-bridged metal chains. Phys. Rev. Lett., 86:1299–1302, 2001.

    CAS  Google Scholar 

  91. J. J. Kim, W. Yamaguchi, T. Hasegawa, and K. Kitazawa. Observation of mott localization gap using low temperature scanning tunneling spectroscopy in commensurate 1T-TaSe2. Phys. Rev. Lett., 73:2103–2106, 1994.

    CAS  Google Scholar 

  92. J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Theory of superconductivity. Phys. Rev., 108:1175–1204, 1957.

    CAS  Google Scholar 

  93. A. Yazdani, B. A. Jones, C. P. Lutz, M. F. Crommie, and D. M. Eigler. Probing the local effects of magnetic impurities on superconductivity. Science, 275:1767–1770, 1997.

    CAS  Google Scholar 

  94. S. H. Tessmer, M. B. Tarlie, D. J. van Harlingen, D. L. Maslov, and P. M. Goldbart. Probing the superconducting proximity effect in NbSe2 by scanning tunneling micrsocopy. Phys. Rev. Lett, 77:924–927, 1996.

    Google Scholar 

  95. K. Inoue and H. Takayanagi. Local tunneling spectroscopy of Nb/InAs/Nb superconducting proximity system with a scanning tunneling microscope. Phys. Rev. B, 43:6214–6215, 1991.

    CAS  Google Scholar 

  96. H. F. Hess, R. B. Robinson, R. C. Dynes, J. M. Valles, and J. V. Waszczak. Scanning-tunneling-microscope observation of the abrikosov flux lattice and the density of states near and inside a fluxoid. Phys. Rev. Lett., 62:214–217, 1989.

    CAS  Google Scholar 

  97. H. F. Hess, R. B. Robinson, and J. V. Waszczak. Vortex-core structure observed with a scanning tunneling microscope. Phys. Rev. Lett., 64:2711–2714, 1990.

    Google Scholar 

  98. N. Hayashi, M. Ichioka, and K. Machida. Star-shaped local density of states around vortices in a type-ii superconductor. Phys. Rev. Lett., 77:4074–4077, 1996.

    CAS  Google Scholar 

  99. H. Sakata, M. Oosawa, K. Matsuba, and N. Nishida. Imaging of vortex lattice transition in YNi2B2C by scanning tunneling spectroscopy. Phys. Rev. Lett., 84:1583–1586, 2000.

    CAS  Google Scholar 

  100. S. Behler, S. H. Pan, P. Jess, A. Baratoff, H.-J. Güntherodt, F. Levy, G. Wirth, and J. Wiesner. Vortex pinning in ion-irrediated NbSe2 studied by scanning tunneling microscopy. Phys. Rev. Lett., 72:1750–1753, 1994.

    CAS  Google Scholar 

  101. R. Berthe, U. Hartmann, and C. Heiden. Influence of a transport current on the abrikosov flux lattice observed with a low-temperature scanning tunneling microscope. Ultramicroscopy, 42–44:696–698, 1992.

    Google Scholar 

  102. A. Polkovnikov, S. Sachdev, and M. Vojta. Impurity in a d-wave superconductor: Kondo effect and stm spectra. Phys. Rev. Lett., 86:296–299, 2001.

    CAS  Google Scholar 

  103. E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, S. Uchida, and J. C. Davis. Interplay of magnetism and high-t c superconductivity at individual Ni impurity atoms in Bi2Sr2CaCu2O8+δ . Nature, 411:920–924, 2001.

    CAS  Google Scholar 

  104. K. M. Lang, V. Madhavan, J. E. Hoffman, E. W. Hudson, H. Eisaki, S. Uchida, and J. C. Davis. Imaging the granular structure of high-t c superconductivity in underdoped Bi2Sr2CaCu2O8+δ . Nature, 415:412–416, 2002.

    CAS  Google Scholar 

  105. I. Maggio-Aprile, C. Renner, E. Erb, E. Walker, and Ø. Fischer. Direct vortex lattice imaging and tunneling spectroscopy of flux lines on YBa2Cu3O7−δ . Phys. Rev. Lett., 75:2754–2757, 1995.

    CAS  Google Scholar 

  106. C. Renner, B. Revaz, K. Kadowaki, I. Maggio-Aprile, and Ø. Fischer. Observation of the low temperature pseudogap in the vortex cores of Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett., 80:3606–3609, 1998.

    CAS  Google Scholar 

  107. S. H. Pan, E. W. Hudson, A. K. Gupta, K. W. Ng, H. Eisaki, S. Uchida, and J. C. Davis. Stm studies of the electronic structure of vortex cores in Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett., 85:1536–1539, 2000.

    CAS  Google Scholar 

  108. D. P. Arovas, A. J. Berlinsky, C. Kallin, and S. C. Zhang. Superconducting vortex with antiferromagnetic core. Phys. Rev. Lett., 79:2871–2874, 1997.

    CAS  Google Scholar 

  109. J. E. Hoffmann, E. W. Hudson, K. M. Lang, V. Madhavan, H. Eisaki, S. Uchida, and J. C. Davis. A four unit cell periodic pattern of quasi-particle states surrounding vortex cores in Bi2Sr2CaCu2O8+δ . Science, 295:466–469, 2002.

    Google Scholar 

  110. M. Fäth, S. Freisem, A. A. Menovsky, Y. Tomioka, J. Aaarts, and J. A. Mydosh. Spatially inhomogeneous metal-insulator transition in doped manganites. Science, 285:1540–1542, 1999.

    Google Scholar 

  111. C. Renner, G. Aeppli, B. G. Kim, Y. A. Soh, and S. W. Cheong. Atomic-scale images of charge ordering in a mixed-valence manganite. Nature, 416:518–521, 2000.

    Google Scholar 

  112. M. Bode, M. Getzlaff, and R. Wiesendanger. Spin-polarized vacuum tunneling into the exchange-split surface state of Gd(0001). Phys. Rev. Lett., 81:4256–4259, 1998.

    CAS  Google Scholar 

  113. A. Kubetzka, M. Bode, O. Pietzsch, and R. Wiesendanger. Spin-polarized scanning tunneling microscopy with antiferromagnetic probe tips. Phys. Rev. Lett., 88:057201, 1–4, 2002.

    CAS  Google Scholar 

  114. O. Pietzsch, A. Kubetzka, M. Bode, and R. Wiesendanger. Observation of magnetic hysteresis at the nanometer scale by spin-polarized scanning tunneling spectroscopy. Science, 292:2053–2056, 2001.

    CAS  Google Scholar 

  115. S. Heinze, M. Bode, A. Kubetzka, O. Pietzsch, X. Xie, S. Blügel, and R. Wiesendanger. Real-space imaging of two-dimensional antiferromagnetism on the atomic scale. Science, 288:1805–1808, 2000.

    CAS  Google Scholar 

  116. A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern, and R. Wiesendanger. Internal spin-structure of magnetic vortex cores observed by spin-polarized scanning tunneling microscopy. Science, 298:577–580, 2002.

    CAS  Google Scholar 

  117. M. D. Kirk, T. R. Albrecht, and C. F. Quate. Low-temperature atomic force microscopy. Rev. Sci. Instrum., 59:833–835, 1988.

    Google Scholar 

  118. D. Pelekhov, J. Becker, and J. G. Nunes. Atomic force microscope for operation in high magnetic fields at millikelvin temperatures. Rev. Sci. Instrum., 70:114–120, 1999.

    CAS  Google Scholar 

  119. J. Mou, Y. Jie, and Z. Shao. An optical detection low temperature atomic force microscope at ambient pressure for biological research. Rev. Sci. Instrum., 64:1483–1488, 1993.

    CAS  Google Scholar 

  120. H. J. Mamin and D. Rugar. Sub-attonewton force detection at millikelvin temperatures. Appl. Phys. Lett., 79:3358–3360, 2001.

    CAS  Google Scholar 

  121. A. Schwarz, W. Allers, U. D. Schwarz, and R. Wiesendanger. Dynamic mode scanning force microscopy of n-InAs(110)-(1 × 1) at low temperatures. Phys. Rev. B, 61:2837–2845, 2000.

    CAS  Google Scholar 

  122. W. Allers, S. Langkat, and R. Wiesendanger. Dynamic low-temperature scanning force microscopy on nickel oxide(001). Appl. Phys. A, 72:S27–S30, 2001.

    Google Scholar 

  123. F. J. Giessibl. Atomic resolution of the silicon(111)-(7 × 7) surface by atomic force microscopy. Science, 267:68–71, 1995.

    CAS  Google Scholar 

  124. M. A. Lantz, H. J. Hug, P. J. A. van Schendel, R. Hoffmann, S. Martin, A. Baratoff, A. Abdurixit, and H.-J. Güntherodt. Low temperature scanning force microscopy of the Si(111)-(7 × 7) surface. Phys. Rev. Lett., 84:2642–2465, 2000.

    CAS  Google Scholar 

  125. K. Suzuki, H. Iwatsuki, S. Kitamura, and C. B. Mooney. Development of low temperature ultrahigh vacuum force microscope/scanning tunneling microscope. Jpn. J. Appl. Phys., 39:3750–3752, 2000.

    CAS  Google Scholar 

  126. N. Suehira, Y. Sugawara, and S. Morita. Artifact and fact of Si(111)-(7 × 7) surface images observed with a low temperature noncontact atomic force microscope (lt-nc-afm). Jpn. J. Appl. Phys., 40:292–294, 2001.

    Google Scholar 

  127. R. Peréz, M. C. Payne, I. Štich, and K. Terakura. Role of covalent tip-surface interactions in noncontact atomic force microscopy on reactive surfaces. Phys. Rev. Lett., 78:678–681, 1997.

    Google Scholar 

  128. S. H. Ke, T. Uda, R. Pérez, I. Štich, and K. Terakura. First principles investigation of tip-surface interaction on GaAs(110): Implication for atomic force and tunneling microscopies. Phys. Rev. B, 60:11631–11638, 1999.

    CAS  Google Scholar 

  129. J. Tobik, I. Štich, R. Peréz, and K. Terakura. Simulation of tip-surface interactions in atomic force microscopy of an InP(110) surface with a Si tip. Phys. Rev. B, 60:11639–11644, 1999.

    CAS  Google Scholar 

  130. A. Schwarz, W. Allers, U. D. Schwarz, and R. Wiesendanger. Simultaneous imaging of the In and As sublattice on InAs(110)-(1 × 1) with dynamic scanning force microscopy. Appl. Surf. Sci., 140:293–297, 1999.

    CAS  Google Scholar 

  131. G. Schwarz, A. Kley, J. Neugebauer, and M. Scheffler. Electronic and structural properties of vacancies on and below the GaP(110) surface. Phys. Rev. B, 58:1392–1499, 1998.

    CAS  Google Scholar 

  132. H. Hölscher, W. Allers, U. D. Schwarz, A. Schwarz, and R. Wiesendanger. Interpretation of ‘true atomic resolution’ images of graphite (0001) in noncontact atomic force microscopy. Phys. Rev. B, 62:6967–6970, 2000.

    Google Scholar 

  133. H. Hölscher, W. Allers, U. D. Schwarz, A. Schwarz, and R. Wiesendanger. Simulation of nc-afm images of xenon(111). Appl. Phys. A, 72:S35–S38, 2001.

    Article  Google Scholar 

  134. H. Hölscher, W. Allers, U. D. Schwarz, A. Schwarz, and R. Wiesendanger. Determination of tip-sample interaction potentials by dynamic force spectroscopy. Phys. Rev. Lett., 83:4780–4783, 1999.

    Google Scholar 

  135. H. Hölscher, U. D. Schwarz, and R. Wiesendanger. Calculation of the frequency shift in dynamic force microscopy. Appl. Surf. Sci., 140:344–351, 1999.

    Google Scholar 

  136. B. Gotsman, B. Anczykowski, C. Seidel, and H. Fuchs. Determination of tip-sample interaction forces from measured dynamic force spectroscopy curves. Appl. Surf. Sci., 140:314–319, 1999.

    Google Scholar 

  137. U. Dürig. Extracting interaction forces and complementary observables in dynamic probe microscopy. Appl. Phys. Lett., 76:1203–1205, 2000.

    Google Scholar 

  138. M. A. Lantz, H. J. Hug, R. Hoffmann, P. J. A. van Schendel, P. Kappenberger, S. Martin, A. Baratoff, and H.-J. Güntherodt. Quantitative measurement of short-range chemical bonding forces. Science, 291:2580–2583, 2001.

    CAS  Google Scholar 

  139. S. M. Langkat, H. Hölscher, A. Schwarz, and R. Wiesendanger. Determination of site specific forces between an iron coated tip and the NiO(001) surface by force field spectroscopy. Surf. Sci., 2002.

    Google Scholar 

  140. H. Hölscher, S. M. Langkat, A. Schwarz, and R. Wiesendanger. Measurement of three-dimensional force fields with atomic resolution using dynamic force spectroscopy. Appl. Phys. Lett., 2002.

    Google Scholar 

  141. B. C. Stipe, H. J. Mamin, T. D. Stowe, T. W. Kenny, and D. Rugar. Noncontact friction and force fluctuations between closely spaced bodies. Phys. Rev. Lett., 87, 2001.

    Google Scholar 

  142. C. Sommerhalter, T. W. Matthes, T. Glatzel, A. Jäger-Waldau, and M. C. Lux-Steiner. High-sensitivity quantitative kelvin probe microscopy by noncontact ultra-high-vacuum atomic force microscopy. Appl. Phys. Lett., 75:286–288, 1999.

    CAS  Google Scholar 

  143. A. Schwarz, W. Allers, U. D. Schwarz, and R. Wiesendanger. Dynamic mode scanning force microscopy of n-InAs(110)-(1 × 1) at low temperatures. Phys. Rev. B, 62:13617–13622, 2000.

    CAS  Google Scholar 

  144. K. L. McCormick, M. T. Woodside, M. Huang, M. Wu, P. L. McEuen, C. Duruoz, and J. S. Harris. Scanned potential microscopy of edge and bulk currents in the quantum hall regime. Phys. Rev. B, 59:4656–4657, 1999.

    Google Scholar 

  145. P. Weitz, E. Ahlswede, J. Weis, K. v. Klitzing, and K. Eberl. Hall-potential investigations under quantum hall conditions using scanning force microscopy. Physica E, 6:247–250, 2000.

    CAS  Google Scholar 

  146. E. Ahlswede, P. Weitz, J. Weis, K. v. Klitzing, and K. Eberl. Hall potential profiles in the quantum hall regime measured by a scanning force microscope. Physica B, 298:562–566, 2001.

    CAS  Google Scholar 

  147. M. T. Woodside, C. Vale, P. L. McEuen, C. Kadow, K. D. Maranowski, and A. C. Gossard. Imaging interedge-state scattering centers in the quantum hall regime. Phys. Rev. B, 64, 2001.

    Google Scholar 

  148. K. Moloni, B. M. Moskowitz, and E. D. Dahlberg. Domain structures in single crystal magnetite below the verwey transition as observed with a low-temperature magnetic force microscope. Geophys. Res. Lett., 23:2851–2854, 1996.

    CAS  Google Scholar 

  149. Q. Lu, C. C. Chen, and A. de Lozanne. Observation of magnetic domain behavior in colossal magnetoresistive materials with a magnetic force microscope. Science, 276:2006–2008, 1997.

    CAS  Google Scholar 

  150. G. Xiao, J. H. Ross, A. Parasiris, K. D. D. Rathnayaka, and D. G. Naugle. Low-temperature mfm studies of cmr manganites. Physica C, 341–348:769–770, 2000.

    Google Scholar 

  151. M. Liebmann, U. Kaiser, A. Schwarz, R. Wiesendanger, U. H. Pi, T. W. Noh, Z. G. Khim, and D. W. Kim. Domain nucleation and growth of La07Ca0.3MnO3−δ /LaAlO3 films studied by low temperature mfm. J. Appl. Phys., 93:8319–8321, 2003.

    CAS  Google Scholar 

  152. A. Moser, H. J. Hug, I. Parashikov, B. Stiefel, O. Fritz, H. Thomas, A. Baratoff, H. J. Güntherodt, and P. Chaudhari. Observation of single vortices condensed into a vortex-glass phase by magnetic force microscopy. Phys. Rev. Lett., 74:1847–1850, 1995.

    CAS  Google Scholar 

  153. C. W. Yuan, Z. Zheng, A. L. de Lozanne, M. Tortonese, D. A. Rudman, and J. N. Eckstein. Vortex images in thin films of YBa2Cu3O7−x and Bi2Sr2Ca1Cu2O8−x obtained by low-temperature magnetic force microscopy. J. Vac. Sci. Technol. B, 14:1210–1213, 1996.

    CAS  Google Scholar 

  154. A. Volodin, K. Temst, C. van Haesendonck, and Y. Bruynseraede. Observation of the abrikosov vortex lattice in NbSe2 with magnetic force microscopy. Appl. Phys. Lett., 73:1134–1136, 1998.

    CAS  Google Scholar 

  155. A. Moser, H. J. Hug, B. Stiefel, and H. J. Güntherodt. Low temperature magnetic force microscopy on YBa2Cu3O7−δ thin films. J. Magn. Magn. Mater., 190:114–123, 1998.

    CAS  Google Scholar 

  156. A. Volodin, K. Temst, C. van Haesendonck, and Y. Bruynseraede. Imaging of vortices in conventional superconductors by magnetic force microscopy images. Physica C, 332:156–159, 2000.

    CAS  Google Scholar 

  157. M. Roseman and P. Grütter. Estimating the magnetic penetration depth using constant-height magnetic force microscopy images of vortices. New J. Phys., 3:24.1–24.8, 2001.

    Google Scholar 

  158. A. Volodin, K. Temst, C. van Haesendonck, Y. Bruynseraede, M. I. Montero, and I. K. Schuller. Magnetic force microscopy of vortices in thin niobium films: Correlation between the vortex distribution and the thickness-dependent film morphology. Europhys. Lett., 58:582–588, 2002.

    CAS  Google Scholar 

  159. U. H. Pi, T. W. Noh, Z. G. Khim, U. Kaiser, M. Liebmann, A. Schwarz, and R. Wiesendanger. Vortex dynamics in Bi2Sr2CaCu2O8 single crystal with low density columnar defects studied by magnetic force microscopy. J. Low Temp. Phys., 131:993–1002, 2003.

    CAS  Google Scholar 

  160. M. Roseman, P. Grütter, A. Badia, and V. Metlushko. Flux lattice imaging of a patterned niobium thin film. J. Appl. Phys., 89:6787–6789, 2001.

    CAS  Google Scholar 

  161. K. Nakamura, H. Hasegawa, T. Oguchi, K. Sueoka, K. Hayakawa, and K. Mukasa. First-principles calculation of the exchange interaction and the exchange force between magnetic Fe films. Phys. Rev. B, 56:3218–3221, 1997.

    CAS  Google Scholar 

  162. A. S. Foster and A. L. Shluger. Spin-contrast in non-contact afm on oxide surfaces: Theoretical modeling of NiO(001) surface. Surf. Sci., 490:211–219, 2001.

    CAS  Google Scholar 

  163. H. Hoisoi, M. Kimura, K. Hayakawa, K. Sueoka, and K. Mukasa. Non-contact atomic force microscopy of an antiferromagnetic NiO(100) surface using a ferromagnetic tip. Appl. Phys. A, 72:S23–S26, 2001.

    Google Scholar 

  164. J. A. Sidles, J. L. Garbini, and G. P. Drobny. The theory of oscillator-coupled magnetic resonance with potential applications to molecular imaging. Rev. Sci. Instrum., 63:3881–3899, 1992.

    CAS  Google Scholar 

  165. J. A. Sidles, J. L. Garbini, K. J. Bruland, D. Rugar, O. Züger, S. Hoen, and C. S. Yannoni. Magnetic resonance force microscopy. Rev. Mod. Phys., 67:249–265, 1995.

    CAS  Google Scholar 

  166. D. Rugar, C. S. Yannoni, and J. A. Sidles. Mechanical detection of magnetic resonance. Nature, 360:563–566, 1992.

    Google Scholar 

  167. K. Wago, D. Botkin, O. Züger, R. Kendrick, C. S. Yannoni, and D. Rugar. Force-detected electron spin resonance: Adiabatic inversion, nutation and spin echo. Phys. Rev. B, 57:1108–1114, 1998.

    CAS  Google Scholar 

  168. D. Rugar, O. Züger, S. Hoen, C. S. Yannoni, H. M. Vieth, and R. D. Kendrick. Force detection of nuclear magnetic resonance. Science, 264:1560–1563, 1994.

    CAS  Google Scholar 

  169. Z. Zhang, P. C. Hammel, and P. E. Wigen. Observation of ferromagnetic resonance in a microscopic sample using magnetic resonance force microscopy. Appl. Phys. Lett., 68:2005–2007, 1996.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morgenstern, M., Schwarz, A., Schwarz, U.D. (2005). Low Temperature Scanning Probe Microscopy. In: Bhushan, B. (eds) Nanotribology and Nanomechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28248-3_5

Download citation

Publish with us

Policies and ethics