Skip to main content
Log in

Nanofabrication by magnetic focusing of supersonic beams

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a new method for nanoscale atom lithography. We propose the use of a supersonic atomic beam, which provides an extremely high brightness and cold source of fast atoms. The atoms are to be focused onto a substrate using a thin magnetic film, into which apertures with widths on the order of 100 nm have been etched. Focused spot sizes near or below 10 nm, with focal lengths on the order of 10 μm, are predicted. Our method can be implemented in a highly parallel manner, enabling simultaneous fabrication of 106 identical elements, and it is applicable both to precision patterning of surfaces with metastable atomic beams and to direct deposition of material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Meschede, H. Metcalf, J. Phys. D 36, R17 (2003)

    Article  ADS  Google Scholar 

  2. V.I. Balykin, P.N. Melent’ev, Nanotechnol. Russ. 4, 425 (2009)

    Article  Google Scholar 

  3. P. Rai-Choudhury (ed.), Handbook of Microlithography, Micromachining, and Microfabrication (SPIE Optical Engineering Press and the Institution of Electrical Engineers, Bellingham, 1997)

    Google Scholar 

  4. L.A. Giannuzzi, F.A. Stevie (eds.), Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice (Springer, Berlin, 2005)

    Google Scholar 

  5. B. Wu, A. Kumar, Extreme Ultraviolet Lithography (McGraw-Hill, Bellingham, 2009)

    Google Scholar 

  6. J.L. O’Brien, A. Furusawa, J. Vuckovic, Nature Photonics 3, 687 (2009)

    Article  ADS  Google Scholar 

  7. J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Nature Mater. 9, 193 (2010)

    Article  ADS  Google Scholar 

  8. V.M. Shalaev, Nature Photonics 1, 41 (2007)

    Article  ADS  Google Scholar 

  9. K.S. Johnson, J.H. Thywissen, N.H. Dekker, K.K. Berggren, A.P. Chu, R. Younkin, M. Prentiss, Science 280, 1583 (1998)

    Article  ADS  Google Scholar 

  10. M. Baker, A.J. Palmer, W.R. MacGillivray, R.T. Sang, Nanotechnology 15, 1356 (2004)

    Article  ADS  Google Scholar 

  11. W. Lu, K.G.H. Baldwin, M.D. Hoogerland, S.J. Buckman, T.J. Senden, T.E. Sheridan, R.W. Boswell, J. Vac. Sci. Technol. B 16, 3846 (1998)

    Article  Google Scholar 

  12. A. Bard, K.K. Berggren, J.L. Wilbur, J.D. Gillaspy, S.L. Rolston, J.J. McClelland, W.D. Phillips, M. Prentiss, G.M. Whitesides, J. Vac. Sci. Technol. B 15, 1805 (1997)

    Article  Google Scholar 

  13. P. Engels, S. Salewski, H. Levsen, K. Sengstock, W. Ertmer, Appl. Phys. B 69, 407 (1999)

    Article  ADS  Google Scholar 

  14. Y. Chen, A. Pépin, Electrophoresis 22, 187 (2001)

    Article  Google Scholar 

  15. A.A. Tseng, Small 1, 594 (2005)

    Article  Google Scholar 

  16. S.Y. Chou, P.R. Krauss, P.J. Renstrom, Science 272, 85 (1996)

    Article  ADS  Google Scholar 

  17. J.J. McClelland, R.E. Scholten, E.C. Palm, R.J. Celotta, Science 262, 877 (1993)

    Article  ADS  Google Scholar 

  18. G. Timp, R.E. Behringer, D.M. Tennant, J.E. Cunningham, M. Prentiss, K.K. Berggren, Phys. Rev. Lett. 69, 1636 (1992)

    Article  ADS  Google Scholar 

  19. V. Natarajan, R.E. Behringer, G. Timp, Phys. Rev. A 53, 4381 (1996)

    Article  ADS  Google Scholar 

  20. R. Gupta, J.J. McClelland, Z.J. Jabbour, R.J. Celotta, Appl. Phys. Lett. 67, 1378 (1995)

    Article  ADS  Google Scholar 

  21. B. Smeets, P. van der Staten, T. Meijer, C.G.C.H.M. Fabrie, K.A.H. van Leeuwen, Appl. Phys. B 98, 697 (2009)

    Article  ADS  Google Scholar 

  22. K.K. Berggren, A. Bard, J.L. Wilbur, J.D. Gillaspy, A.G. Helg, J.J. McClelland, S.L. Rolston, W.D. Phillips, M. Prentiss, G.M. Whitesides, Science 269, 1255 (1995)

    Article  ADS  Google Scholar 

  23. I.S. Averbukh, R. Arvieu, Phys. Rev. Lett. 87, 163601 (2001)

    Article  ADS  Google Scholar 

  24. W.H. Oskay, D.A. Steck, M.G. Raizen, Phys. Rev. Lett. 89, 163601 (2002)

    Article  Google Scholar 

  25. W.G. Känders, F. Lison, A. Richter, R. Wynands, D. Meschede, Nature 375, 214 (1995)

    Article  ADS  Google Scholar 

  26. W.G. Kaenders, F. Lison, I. Müller, A. Richter, R. Wynands, D. Meschede, Phys. Rev. A 54, 5067 (1995)

    Article  ADS  Google Scholar 

  27. R.R. Chaustowski, V.Y.F. Leung, K.G.H. Baldwin, Appl. Phys. B 86, 491 (2007)

    Article  ADS  Google Scholar 

  28. P.N. Melentiev, A.V. Zablotskiy, D.A. Lapshin, E.P. Sheshin, A.S. Baturin, V.I. Balykin, Nanotechnology 20, 235301 (2009)

    Article  ADS  Google Scholar 

  29. R. Campargue (ed.), Atom and Molecular Beams: The State of the Art 2000 (Springer, Berlin, 2001)

    Google Scholar 

  30. H. Pauly, Atom, Molecule and Clusterbeams I: Basic Theory, Production, and Detection of Thermal Energy Beams (Springer, Berlin, 2000)

    Google Scholar 

  31. J.R. Buckland, Ph.D. thesis, University of Cambridge, Cambridge, UK (1998)

  32. M.D. Hoogerland, J.P.J. Driessen, E.J.D. Vredenbregt, H.J.L. Megens, M.P. Schuwer, H.C.W. Beijerinck, K.A.H. van Leeuwen, in Proceedings of the 1994 IEEE International Frequency Control Symposium (IEEE, New York, 1994), p. 651

    Google Scholar 

  33. E. Rasel, F.P.D. Santos, F.S. Pavone, F. Perales, C.S. Unnikrishnan, M. Leduc, Eur. J. Phys. D 7, 311 (1999)

    Article  ADS  Google Scholar 

  34. Y.T. Xing, I. Barb, R. Gerritsma, R.J.C. Spreeuw, H. Luigjes, Q.F. Xiao, C. R’etif, J.B. Goedkoop, J. Magn. Magn. Mater. 313, 192 (2007)

    Article  ADS  Google Scholar 

  35. T. Fernholz, R. Gerritsma, S. Whitlock, I. Barb, R.J.C. Spreeuw, Phys. Rev. A 77, 033409 (2008)

    Article  ADS  Google Scholar 

  36. D.W. Keith, M.L. Schattenburg, H.I. Smith, D.E. Pritchard, Phys. Rev. Lett. 61, 1580 (1988)

    Article  ADS  Google Scholar 

  37. E. Narevicius, A. Libson, C.G. Parthey, I. Chavez, J. Narevicius, U. Even, M.G. Raizen, Phys. Rev. Lett. 100, 093003 (2008)

    Article  ADS  Google Scholar 

  38. D. Loss, D.P. DiVincenzo, Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  39. A. Imamoglu, D.D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, Phys. Rev. Lett. 83, 4204 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Clark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, R.J., Mazur, T.R., Libson, A. et al. Nanofabrication by magnetic focusing of supersonic beams. Appl. Phys. B 103, 547–551 (2011). https://doi.org/10.1007/s00340-010-4229-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4229-x

Keywords

Navigation