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ABSTRACT 
We use a Meshless local Petrov-Galerkin method (MLPG) to analyse an elastostatic 

problem deformation of a homogeneous rectangular plate of two dimensional. First –
         the formulations of method local Petrov-Galerkin (MLPG) and Local radial point 

  interpolation method (LRPIM) are obtained. The aim of this article is to study the  

convergence and accuracy of these methods: MLPG and LRPIM. Finally a comparative 
study of numerical results obtained is made. 
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1. INTRODUCTION 
In recent years, many of meshless methods have been developed and achieved remarkable 

       progress, such element  free  Galerkin (EFG) method  [1], meshless local Petrov Galerkin –
(MLPG) method [2-3] and the point interpolation method (PIM) [4-5]. The meshless methods 
are developed using Galerkin weak form and shape functions are built in only on a group of 
nodes arbitrarily distributed in a local support domain by means of interpolation. A global 
background cell structure is required to evaluate the integration in the Galerkin weak-form. 
There are two types of the point interpolation method PIM) shape functions have been used  (

  so far with different forms of basic functions: polynomial basis functions and radial basis 



Ahmed Moussaoui and Touria Bouziane 

  http://iaeme.com/Home/journal/IJARET   64 editor@iaeme.com 

functions (RBFs) [5] that is named as radial point interpolation method (RPIM). In this paper, 
a 2D elastostatic problem is formulated by meshless local Petrov Galerkin (MLPG) method –
based on the Galerkin weak form using locally supported shape functions and the various types 
are notified. In section 3 the numerical example is given and some important parameters of 

           RPIM are investigated. The efficiency convergence and accuracy of local radial point 
interpolation method (LRPIM) and by comparison with the MLPG is studied in final section. 

2. RPIM SHAPE FUNCTIONS IN MESHLESS METH  OD
)x(uh  is composed of two part: )x(Pj Polynomial basis functions and )(xRi the radial basis 

functions 

RBFs -7]:           [6   
  


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h (x)bP(x)aR(x)u           (1)  

n m is the number of field  nodes in the local support domain and    is the number of 
polynomial terms. Radial basis is a function of distance  

r: 2
i

2
i )y(y)x(xr                      (2)  

The above equation (1) can be expressed in the matrix form [7].  

bPaRU1                       (3) 

Where 1U  the vector of function values:   T
n321 u,...,u,u,u1U ; R is the moment matrix of RBFs; 

P a, b are  is the moment matrix of Polynomial basis function and the values of unknowns 
coefficients (Radial and Polynomial). We note that, to obtain the unique solutions of eq. (  2),
the constraint conditions should be applied as follows [8]: 
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By combining Eqs.(3,4) yields a set of equations in the matrix form: 
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The unknown’s vector can be obtained by inversion of the matrix  
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SubsƵtuƵon of the vector obtained by inversion of matrixG  into eq.(1) leads to: 





n

1i
ii

h u(x)u                        (6) 

3. LOCAL WEAK FORM METHOD LRPIM 
Let us consider a two-dimensional problem of solid mechanics in domain   bounded by
whose strong-form of governing equation and the essential boundary conditions are given by: 

0)x(b)x( ij,ij                      (7) 

0
ijij  tn   on t                      (8)  

0
ii uu    on u                      (9)  



A Comparative Study of Size Parameters Effects in Meshless Method Local Petrov-Galerkin 
(Mlpg) and Local Radial Point Interpolation Method (Lrpim) 

  http://iaeme.com/Home/journal/IJARET   65 editor@iaeme.com 

Where  in  : ],,[ xyyyxx
T σσσσσ  is  the stress  vector, ]b,b[ yx

T bbbbb    the body  force  vector. 
)n,n( 21nnnnn denotes the vector of unit outward normal at a point on the natural boundaries 

0t is the prescribed effort, ]u,u[ 21 the displacement components in the plan and ]u,u[ 0
2

0
1  on 

the essential boundaries. In the local Petrov-Galerkin approaches [1] one may write a weak 
form over Q  a local quadrature domain (for node I), which may have an arbitrary shape, and 
contain the point Qx  in question, see (Fig. 1). The generalized local weak form of the differential 
eq. (7) is obtained by: 

 0d))x(b)x((
Q

Iij,ij                  (10)  

Where Q  is the local domain of quadrature for node I and I  is the weight or test function,  

 

Figure 1 The local sub-domains around point Qx  and boundaries 

Using the divergence theorem [2] in eq.(10), we obtain: 0dbddn
 Q QQ

Iij,IijIjij       
    

(11)  
Where QtQuQiQ   ; Qi : The internal boundary of the quadrature domain; Qt  : 

The part of the natural boundary that intersects with the quadrature domain; Qu : The part of 
the essential boundary that intersects with the quadrature domain 

We can then change the expression of eq (11):  

0dbddndndn
   Q QQi Qu Qt

Iij,IijIjijIjijIjij               
      (12) 

Using the RPIM shape functions (see sub-section 2), we can approximate the trial function 
for the displacement at a point as  (6) the stress vector  defined by:  eq is

huuuuuLLLLLCCCCCεεεεεCCCCCσσσσσ ddddd                      (13)  

Where CCCCC  is the symmetric elasticity tensor of the material  
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Equation (12) can be written: 

 
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dddddT


 bbbbbVVVVVVVVVVtttttVVVVVttttttVtVtVtVtVσσσσσVVVVV IIIIIIIIII
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Where 
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be written as:  

σσσσσLLLLLttttt T
n                        (16) 

Substituting equations (15, 16) into equation (14), we obtain the discrete systems of linear 
equations for the node I. 
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The matrix form of Eq.(17) can be written as in matrix form:  


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Where expression of nodal matrix  

IKKKKK Is:  
QuQiQ

ddd II
T

I 
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And nodal force vector with contributions from body forces applied in the problem domains 

  
 Qt Q

ddt II  
 bbbbbVVVVVVVVVVfffff 00000

IIIII                  

(20)  

Where 0n denote the set of the nodes in the support domain S  of point Qx . 

Two independent linear Eqs (19, 20) can be obtained for each node in the entire problem 
domain and by assembling all these n*2  equations to obtain the final global system equations:   

1*n21*n2n2*n2     fffffuuuuukkkkk                     (21)  

To solve the precedent system, the standard Gauss quadrature formula is applied with 16 
Gauss points [9] for calculating integrals in Eqs (19, 20) on both boundary and domain.  

4. NUMERICAL EXAMPLE FOR 2D ELASTOSTATIC  
This section is about numerical results for a cantilever rectangular plate see (Fig. 2a). First, 
were investigated the effect of the size of support domain and was examined numerically 
convergence  for several materials; then, comparisons will of two methods LRPIM and MLPG
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   be  made  with  the analytic  solution for  several  materials  [10].  {We  choose:  steel, zinc, 
aluminum and copper with: 27 /10.3 mNE  , 3.0 ;

25 m/N10.113E  , 25.0 , 
27 m/N10.1E   

, 34.0 ; 26 m/N10.17E  , 33.0  respectively} Dimension of the plate are denoted: 
height m12D , length  m48L  , the thickness: unit and finally for Loading: N10P 3 . 

 

Figure 2 a-b. Plate subjected to distributed traction at the free end and regular field nodes distribution 
on the problem domain and boundaries 

In our numerical calculations, were considered many regular distributions of nodes tttttnnnnn : 55, 
91, 175 and 189. To calculate the error energy, a background cells are required; then, for each 
value of tttttnnnnn  e number of cell was varied. To obtain numerical values, the distribution of the th
deflection through the plates, size of support domain is varied and 2Q  . The sizes of support 
domain s (quadrature domain Q resp.) are defined by: css dd   (see Fig. 2b).  

5. RESULTS AND DISCUSSIONS  

5.1. Effect of and the .  spline functions  number of field nodes

 

Figure 3 Variation of the energy error as a function of S  for two spline functions, MLPG and 
LRPIM methods ( tn =55, 175 and steel) 

Figure 3 shows the energy error as a function of S  for two spline functions (  (cubic 1 ) 
and quartic ( 2 )) and the number of field nodes tn  = 55, 175. We chose a steel plate with results 
of both methods MLPG and LRPIM. The latter has the radial basis multi-quadrics (RBF-MQ) 
function. We notice that if the values S  are less than 1.80, the error energy is great for both 
methods MLPG and LRPIM; therefore, the methods are not convergent. Furthermore, we can 
see that there is an oscillation between the values S  ( 42 S  ) concerning MLPG method.  
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Moreove  fromr, 4S  , we note that both methods LRPIM and MLPG are well performed. The 
curves have the same shape  each method, so the LRPIM method has good in a 

Convergence starting from 80.1S  . The domain of convergence has its upper end to 5S   
for tn =55. Concerning tn  = 175 the maximum value S  decreases and takes the value of 

66.3S  [11].  

5.2. Effect of the radial basis functions RBF (mu -quadrics (MQ) function, the lti
Gaussian (Exp) function and the thin plate spline (TPS) function 

   

Figure 4-5 Variation of the energy error as a function of S  for two bases RBF (MQ, EXP and TPS) 

for MLPG and LRPIM methods ( tn =189 and 2 ). 

 

Figure 6 Variation of the energy error as a function of S for different bases RBF (MQ, EXP and 
TPS) and 1  for MLPG and LRPIM methods ( tn =55 and 1 ). 

Figures 4-6 illustrate the variations of the energy error as a function of S  with different 
radial basis functions of LRPIM method and the number of field nodes tn  =55,189. We chose 
the optimal shape parameters: (q=1.03 and 4C   ) for RBF-MQ, ( 03.0C  ) for RBF-
EXP and ( 001.4 ) for RBF-TPS. The LRPIM method with different radial basis functions 
gives a lower energy starting from S =1.80 [12]. It is remarked that there is no dependence 
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between the extremities of the domain of convergence. If tn =55,  5S   and if tn = 189, the 
maximum value of S  decreases and takes the value 66.3S  . The results obtained [11] for 
the studied spline functions are consistent with those found by the MLPG method. The results 
found by MLPG are very good. 

5.3. Effect of different materials.  

 

Figure 7-8 Variation of the energy error as a function of S for different materials and 1  for MLPG 
and LRPIM methods ( tn =55, 91) 

Figures 7-8 display the variation of energy error as a function of S  for different materials, 
for the number of field nodes tn =55, 91 and for the cubic spline function of both methods 
MLPG and LRPIM. It is clear that there is an oscillation between the values of S : 42 S    

     (Fig.7) and between the values of S : 66.32 S         (Fig.8) for MLPG method. For LRPIM 
method with different values of E  and   ie different rectangular plates (steel, zinc, copp  and er
aluminum), starting from S =1.80, so the method LRPIM is convergent. When S  is between 
the values 4 and 5 (Fig.7), both methods MLPG and LRPIM show a good convergence. We 
note that all the curves of each of the different materials studied have the same shape for a fixed 
value of S . The obtained results are compared with the results found by method MLPG [11] 
for different materials.  

5.4. Effect of number of nodes  
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Figure 9 Variation of the energy error as a function of S for different number of field nodes tttttnnnnn  and 

1  for MLPG and LRPIM. 

Figure 9 displays the variation of energy error as a function of S  for different number of 
field nodes tn =55, 91, 175, 189 and the cubic spline function ( 1 ) of both methods MLPG and 
LRPIM. It is crucial to notice that if the values S  are less than 1.80, the error energy is great 
with the oscillation between the values of S : 42 S   for 55tn and between the values of S
: 66.32 S   for other values of node numbers tn in the method MLPG. For LRPIM method 
with different values of tn number of nodes, the energy error is low for steel starting from S
= 1.80. Thus, the LRPIM method is convergent. When S   between and 5, both methods is 4 
MLPG and LRPIM have good convergence for 55tn  . The results are identical, so the effect 
of tn is almost the same for the both methods. 

6. CONCLUSION  
The convergence and the accuracy of both methods MLPG and LRPIM are dependent on the 
size of support domain, number of nodes, spline functions, radial basis function RBF (MQ, 
EXP and TPS) for LRPIM method. The choice number of nodes that has its upper end to 5S   
for tn =55, and for tn = (91, 175, 189) the maximum value of S  decreases and takes the value 

66.3S           .  These results are in agreement  with the analytical  solution. The domain of 
      convergence is independent of the choice of the studied materials: steel, zinc, copper and 

aluminum, with values 55n t  , 5S   and  189175,91 andnt   66.3S  . Finally, this study 
showed that the domain of convergence  the same for both methods LRPIM and MLPG. No is
dependence between the ends of the domain of convergence  noticed. If is tn =55 then 5S   
is if maximum and  tn  = (91, 175 and 189), so this value decreases to 66.3S  [11].  
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