Strengthening of Magnesium Alloy WE43 by Rotary Swaging

Article Preview

Abstract:

The article presents the results of an investigation of microstructure, mechanical properties and corrosion resistance of magnesium alloy WE43 processed by rotary swaging. The resulting microstructure is characterized by an average size of structural elements of 0.5 – 0.8 μm. The grain refinement leads to an increase in the strength of the alloy to 393 – 416 MPa while the tensile elongation stays at a level of 7 – 12.5%. The microstructure produced by rotary swaging does not lead to deterioration of the resistance of the alloy to electrochemical and chemical corrosion.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

808-813

Citation:

Online since:

December 2018

Export:

Price:

* - Corresponding Author

[1] R.Z. Valiev, A.P. Zhilyaev, T.G. Langdon, Bulk Nanostructured materials, TMS, Wiley, (2014).

Google Scholar

[2] S.-J. Lim, H.-J. Choi, C.-H. Lee, Forming characteristics of tubular product through the rotary swaging process, J. Mater. Process. Technol. 209(1) (209) 283-288.

DOI: 10.1016/j.jmatprotec.2007.08.086

Google Scholar

[3] Q. Zhang, K. Jin, D. Mu, Tube/tube joining technology by using rotary swaging forming method, J. Mater. Process. Technol. 214(10) (2014) 2085-2094.

DOI: 10.1016/j.jmatprotec.2014.02.002

Google Scholar

[4] Q. Zhang, K. Jin, D. Mu, P. Ma, J. Tian, Rotary Swaging Forming Process of Tube Workpieces, Procedia Eng 81 (2014) 2336-2341.

DOI: 10.1016/j.proeng.2014.10.330

Google Scholar

[5] S. Chen, X. Jin, L. Rong, Improving the strength and ductility of reduced activation ferritic/martensitic steel by cold-swaging and post-annealing, Mater. Sci. Eng., A 631 (2015) 139-143.

DOI: 10.1016/j.msea.2015.02.044

Google Scholar

[6] M.A. Abdulstaar, E.A. El-Danaf, N.S. Waluyo, L. Wagner, Severe plastic deformation of commercial purity aluminum by rotary swaging: Microstructure evolution and mechanical properties, Mater. Sci. Eng., A 565 (2013) 351-358.

DOI: 10.1016/j.msea.2012.12.046

Google Scholar

[7] W. Pachla, M. Kulczyk, S. Przybysz, J. Skiba et al, Effect of severe plastic deformation realized by hydrostatic extrusion and rotary swaging on the properties of CP Ti grade 2, J. Mater. Process. Technol. 221 (2015) 255-268.

DOI: 10.1016/j.jmatprotec.2015.02.027

Google Scholar

[8] W.M. Gan, Y.D. Huang, R. Wang, G.F. Wang et al, Microstructures and mechanical properties of pure Mg processed by rotary swaging, Mater Des. 63 (2014) 83-88.

DOI: 10.1016/j.matdes.2014.05.057

Google Scholar

[9] W.M. Gan, Y.D. Huang, R. Wang, Z.Y. Zhong et al, Bulk and local textures of pure magnesium processed by rotary swaging, J. Magnes. Alloys. 1 (2013) 341-345.

DOI: 10.1016/j.jma.2013.12.004

Google Scholar

[10] L. Rong, Z. Nie, T. Zuo, 3D finite element modeling of cogging-down rotary swaging of pure magnesium square billet - Revealing the effect of high-frequency pulse stroking, Mater. Sci. Eng., A. 464 (2007) 28–37.

DOI: 10.1016/j.msea.2007.01.086

Google Scholar

[11] P. Minárik, M. Zemková, R. Král, M. Mhaede et al, Effect of Microstructure on the Corrosion Resistance of the AE42 Magnesium Alloy Processed by Rotary Swaging, Acta Phys. Pol. A. 128(4) (2015) 805-807.

DOI: 10.12693/aphyspola.128.805

Google Scholar

[12] E. Knauer, J. Freudenberger, T. Marr, A. Kauffmann et al., Metals. 3 (2013) 283-297.

Google Scholar

[13] J. Chen, Y. Chen., H. Li, K. Chan, C. Chang, Effects of Nd and rotary forging on mechanical properties of AZ71 Mg alloys, Trans. Nonferrous Met. Soc. China. 25 (2015) 3223−3231.

DOI: 10.1016/s1003-6326(15)63955-3

Google Scholar

[14] N.T. Kirkland, N. Birbilis, M.P. Staiger, Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations, Acta Biomater. 8 (2012) 925-936.

DOI: 10.1016/j.actbio.2011.11.014

Google Scholar

[15] H. Okamoto, Mg-Nd, J. Phase Equil. Diffusion. 28(4) (2007) 405.

Google Scholar

[16] J.-F. Nie, Precipitation and Hardening in Magnesium Alloys, Metall. Mater. Trans. 43A(11) (2012) 3891-3939.

Google Scholar

[17] N.S. Martynenko, E.A. Lukyanova, V.N. Serebryany, M.V. Gorshenkov et al., Increasing strength and ductility of magnesium alloy WE43 by equal-channel angular pressing, Mater. Sci. Eng., A. 712 (2018) 625–629.

DOI: 10.1016/j.msea.2017.12.026

Google Scholar

[18] D. Ahmadkhaniha, M. Fedel, S.M. Heydarzadeh., F. Deflorian, Corrosion Behavior of Severely Plastic Deformed Magnesium Based Alloys: A review, Surf. Eng. Appl. Electrochem. 53(5) (2017) 439–448.

DOI: 10.3103/s1068375517050039

Google Scholar