Skip to main content
Log in

Influence of NaCl on Magnetic Properties of MgFe2O4 Nanoparticles Synthesized by Gel Combustion

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

The effect of sodium chloride (NaCl) on the magnetism of nanopowders of the spinel ferrite (MgFe2O4) produced using a salt-assisted solution combustion synthesis was investigated. X-ray diffraction (XRD) analysis was conducted to evaluate crystalline structure and phase composition of the synthesized materials. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) was used to evaluate the particle size and morphology. Magnetic behavior was analyzed by measuring and analyzing the respective hysteresis loops using a vibrating sample magnetometer (VSM). The characterization showed that the presence of NaCl affects the phase composition, size, and dispersion of the nanoparticles, as well as their magnetic behavior. The theoretical size of the nanoparticles was calculated using the Scherrer equation, obtaining sizes of about 21.07 nm for the nanoparticles without salt, 5.90 nm for the sample salt content of 1.7 mol and 6.48 nm—for 3.4 mol. The synthesized nanoparticles showed a drastic decrease in coercivity field, remanence, and saturation with increasing salt content. Therefore, the salt content is a crucial parameter in controlling the morphology and magnetic properties of the nanoparticles obtained by the solution combustion route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Sikalidis, C., Advances in Ceramics: Synthesis and Characterization, Processing and Specific Applications, Croatia: InTech, 2011.

    Google Scholar 

  2. Mallesh, S., Prabu, D., and Srinivas, V., Thermal stability and magnetic properties of MgFe2O4@ZnO nanoparticles, AIP Adv., 2017, vol. 7, p. 56103. https://doi.org/10.1063/1.4975355

    Article  CAS  Google Scholar 

  3. Chavarriaga, E.A., Lopera, A.A., Franco, V., Bergmann, C.P., and Alarcón, J., Gel combustion synthesis and magnetic properties of CoFe2O4, ZnFe2O4, and MgFe2O4 using 6-aminohexanoic acid as a new fuel, J. Magn. Magn. Mater., 2020, vol. 497, p. 166054. https://doi.org/10.1016/j.jmmm.2019.166054

    Article  CAS  Google Scholar 

  4. Khot, V.M., Salunkhe, A.B., Thorat, N.D., Phadatare, M.R., and Pawar, S.H., Induction heating studies of combustion synthesized MgFe2O4 nanoparticles for hyperthermia applications, J. Magn. Magn. Mater., 2013, vol. 332, pp. 48–51. https://doi.org/10.1016/j.jmmm.2012.12.010

    Article  CAS  Google Scholar 

  5. Kang, D., Yu, X., Ge, M., and Song, W., One-step fabrication and characterization of hierarchical MgFe2O4 microspheres and their application for lead removal, Microporous Mesoporous Mater., 2015, vol. 207, pp. 170–178. https://doi.org/10.1016/j.micromeso.2015.01.023

    Article  CAS  Google Scholar 

  6. Shakir, I., Sarfraz, M., Ali, Z., Aboud, M.F.A., and Agboola, P.O., Magnetically separable and recyclable graphene–MgFe2O4 nanocomposites for enhanced photocatalytic applications, J. Alloys Compd., 2016, vol. 660, pp. 450–455. https://doi.org/10.1016/j.jallcom.2015.11.055

    Article  CAS  Google Scholar 

  7. Narsimulu, D., Rao, B.N., Venkateswarlu, M., Srinadhu, E.S., and Satyanarayana, N., Electrical and electrochemical studies of nanocrystalline mesoporous MgFe2O4 as anode material for lithium battery applications, Ceram. Int., 2016, vol. 42, pp. 16789–16797. https://doi.org/10.1016/j.ceramint.2016.07.168

    Article  CAS  Google Scholar 

  8. Reza Barati, M., Selomulya, C., and Suzuki, K., Particle size dependence of heating power in MgFe2O4 nanoparticles for hyperthermia therapy application, J. Appl. Phys., 2014, vol. 115, p. 17B522. https://doi.org/10.1063/1.4867751

  9. Ensafi, A.A., Allafchian, A.R., and Mohammadzadeh, R., Characterization of MgFe2O4 nanoparticles as a novel electrochemical sensor: application for the voltammetric determination of ciprofloxacin, Anal. Sci., 2012, vol. 28, pp. 705–710. https://doi.org/10.2116/analsci.28.705

    Article  CAS  Google Scholar 

  10. Chen, Q., Rondinone, A.J., Chakoumakos, B.C., and Zhang, Z.J., Synthesis of superparamagnetic MgFe2O4 nanoparticles by coprecipitation, J. Magn. Magn. Mater., 1999, vol. 194, pp. 1–7. https://doi.org/10.1016/S0304-8853(98)00585-X

    Article  CAS  Google Scholar 

  11. Das, H., Debnath, N., Toda, A., Kawaguchi, T., Sakamoto, N., Aono, H., Shinozaki, K., Suzuki, H., and Wakiya, N., Impact of precursor solution concentration to form superparamagnetic MgFe2O4 nanospheres by ultrasonic spray pyrolysis technique for magnetic thermotherapy, Adv. Powder Technol., 2017, vol. 28, pp. 1696–1703. https://doi.org/10.1016/j.apt.2017.04.007

    Article  CAS  Google Scholar 

  12. Kurian, J. and Mathew, M.J., Structural, optical and magnetic studies of CuFe2O4, MgFe2O4 and ZnFe2O4 nanoparticles prepared by hydrothermal/solvothermal method, J. Magn. Magn. Mater., 2018, vol. 451, pp. 121–130. https://doi.org/10.1016/j.jmmm.2017.10.124

    Article  CAS  Google Scholar 

  13. Ali, N.A., Yahya, M.S., Mustafa, N.S., Sazelee, N.A., Idris, N.H., and Ismail, M., Modifying the hydrogen storage performances of NaBH4 by catalyzing with MgFe2O4 synthesized via hydrothermal method, Int. J. Hydrogen Energy, 2019, vol. 44, pp. 6720–6727. https://doi.org/10.1016/j.ijhydene.2019.01.149

    Article  CAS  Google Scholar 

  14. Akbari, S., Masoudpanah, S.M., Mirkazemi, S.M., and Aliyan, N., PVA assisted coprecipitation synthesis and characterization of MgFe2O4 nanoparticles, Ceram. Int., 2017, vol. 43, pp. 6263–6267. https://doi.org/10.1016/j.ceramint.2017.02.030

    Article  CAS  Google Scholar 

  15. Ajeesha, T., Ashwini, A., George, M., Manikandan, A., Mary, J.A., Slimani, Y., Almessiere, M.A., and Baykal, A., Nickel substituted MgFe2O4 nanoparticles via co-precipitation method for photocatalytic applications, Phys. B Condens. Matter., 2021, vol. 606, p. 412660. https://doi.org/10.1016/j.physb.2020.412660

    Article  CAS  Google Scholar 

  16. Heidari, P. and Masoudpanah, S.M., Structural and magnetic properties of MgFe2O4 powders synthesized by solution combustion method: the effect of fuel type, J. Mater. Res. Technol., 2020, vol. 9, pp. 4469–4475. https://doi.org/10.1016/j.jmrt.2020.02.07

  17. Rúbia, Y.S.Z., Claudir Jr, G.K., Annelise, K.A., and Carlos, P.B., Influence of the fuel composition and the fuel/oxidizer ratio on the combustion solution synthesis of MgFe2O4 catalyst nanoparticles, FME Trans., 2018, vol. 46, pp. 157–164. https://doi.org/10.5937/fmet1802157Z

    Article  Google Scholar 

  18. Fan, H.-T., Liu, X.-G., Xing, X.-J., Li, B., Wang, K., Chen, S.-T., Wu, Z., and Qiu, D.-F., Ordered mesoporous silica cubic particles decorated with silver nanoparticles: a highly active and recyclable heterogeneous catalyst for the reduction of 4-nitrophenol, Dalton Trans., 2019, vol. 48, pp. 2692–2700. https://doi.org/10.1039/C8DT04663H

    Article  CAS  Google Scholar 

  19. Thoda, O., Xanthopoulou, G., Vekinis, G., and Chroneos, A., Review of recent studies on solution combustion synthesis of nanostructured catalysts, Adv. Eng. Mater., 2018, vol. 20, p. 1800047. https://doi.org/10.1002/adem.201800047

    Article  CAS  Google Scholar 

  20. Deganello, F. and Tyagi, A.K., Solution combustion synthesis, energy and environment: Best parameters for better materials, Prog. Cryst. Growth Charact. Mater., 2018, vol. 64, pp. 23–61. https://doi.org/10.1016/j.pcrysgrow.2018.03.001

    Article  CAS  Google Scholar 

  21. Hossain, M.K., Kecsenovity, E., Varga, A., Molnár, M., Janáky, C., and Rajeshwar, K., Solution combustion synthesis of complex oxide semiconductors, Int. J. Self-Propag. High-Temp. Synth., 2018, vol. 27, pp. 129–140. https://doi.org/10.3103/S1061386218030032

    Article  CAS  Google Scholar 

  22. Rai, A.K., Thi, T.V., Gim, J., and Kim, J., Combustion synthesis of MgFe2O4/graphene nanocomposite as a high-performance negative electrode for lithium ion batteries, Mater. Charact., 2014, vol. 95, pp. 259–265. https://doi.org/10.1016/j.matchar.2014.06.024.

    Article  CAS  Google Scholar 

  23. Nguyen, L.T.T., Nguyen, L.T.H., Manh, N.C., Quoc, D.N., Quang, H.N., Nguyen, H.T.T., Nguyen, D.C., and Bach, L.G., A facile synthesis, characterization, and photocatalytic activity of magnesium ferrite nanoparticles via the solution combustion method, J. Chem., 2019, vol. 2019, p. 3428681. https://doi.org/10.1155/2019/3428681

    Article  CAS  Google Scholar 

  24. He, A., Lu, R., Wang, Y., Xiang, J., Li, Y., and He, D., Adsorption characteristic of congo red onto magnetic MgFe2O4 nanoparticles prepared via the solution combustion and gel calcination process, J. Nanosci. Nanotechnol., 2017, vol. 17, pp. 3967–3974. https://doi.org/10.1166/jnn.2017.13091

    Article  CAS  Google Scholar 

  25. Patil, K.C., Hegde, M.S., Rattan, T., and Aruna, S.T., Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications. World Scientific, 2008, 364 p. https://doi.org/10.1142/6754

  26. Chen, W., Li, F., Yu, J., and Liu, L., A facile and novel route to high surface area ceria-based nanopowders by salt-assisted solution combustion synthesis, Mater. Sci. Eng. B, 2006, vol. 133, pp. 151–156. https://doi.org/10.1016/j.mseb.2006.06.020

    Article  CAS  Google Scholar 

  27. Chen, W., Hong, J., and Li, Y., Facile fabrication of perovskite single-crystalline LaMnO3 nanocubes via a salt-assisted solution combustion process, J. Alloys Compd., 2009, vol. 484, pp. 846–850. https://doi.org/10.1016/j.jallcom.2009.05.059

    Article  CAS  Google Scholar 

  28. Yang, J., Li, X., Deng, X., Huang, Z., and Zhang, Y., Salt-assisted solution combustion synthesis of ZnFe2O4 nanoparticles and photocatalytic activity with TiO2 (P25) as nanocomposite, J. Ceram. Soc. Japan., 2012, vol. 120, pp. 579–583. https://doi.org/10.2109/jcersj2.120.579

    Article  CAS  Google Scholar 

  29. Chen, Y., Yang, J., Wang, X., Feng, F., Zhang, Y., and Tang, Y., Synthesis YFeO3 by salt-assisted solution combustion method and its photocatalytic activity, J. Ceram. Soc. Japan, 2014, vol. 122, pp. 146–150. https://doi.org/10.2109/jcersj2.122.146

    Article  CAS  Google Scholar 

  30. Zhong, X., Yang, J., Chen, Y., Qiu, X., and Zhang, Y., Synthesis of magnetically separable MnFe2O4 nanocrystals via salt-assisted solution combustion method and their utilization as dye adsorbent, J. Ceram. Soc. Japan, 2015, vol. 123, pp. 394–398. https://doi.org/10.2109/jcersj2.123.394

    Article  CAS  Google Scholar 

  31. Lopera, A.A., Chavarriaga, E.A., Zuluaga, B., Marin, S., Giraldo, G.O., Estupiñan, H.A., Zapata, V., and Garcia, C.P., Effect of salt concentration on the electrical and morphological properties of calcium phosphates obtained via microwave-induced combustion synthesis, Adv. Powder Technol., 2017, vol. 28, pp. 2787–2795. https://doi.org/10.1016/j.apt.2017.08.007

    Article  CAS  Google Scholar 

  32. Lee, M.K. and Kang, S., A study of salt-assisted solution combustion synthesis of magnesium aluminate and sintering behaviour, Ceram. Int., 2019, vol. 45, pp. 6665–6672. https://doi.org/10.1016/j.ceramint.2018.12.155

    Article  CAS  Google Scholar 

  33. Biglari, Z., Alamolhoda, S., and Masoudpanah, S.M., Salt-assisted solution combustion synthesis of Ni and Ni/NiO powders, J. Supercond. Nov. Magn., 2019, vol. 32, pp. 3321–3327. https://doi.org/10.1007/s10948-019-5100-x

    Article  CAS  Google Scholar 

  34. Abbasian, A.R. and Rahmani, M., Salt-assisted solution combustion synthesis of nanostructured ZnFe2O4–ZnS powders, Inorg. Chem. Commun., 2020, vol. 111, p. 107629. https://doi.org/10.1016/j.inoche.2019.107629

    Article  CAS  Google Scholar 

  35. Aali, H., Baygi, N.J., Mollazadeh, S., and Khaki, J.V., Improving the physicochemical properties of NaCl-assisted solution combustion synthesized iron oxide nanoparticles by controlling the thermodynamics of the process, Ceram. Int., 2021, vol. 47, pp. 19315–19327. https://doi.org/10.1016/j.ceramint.2021.03.233

    Article  CAS  Google Scholar 

  36. Abbasian, A.R., Mahvary, A., and Alirezaei, S., Salt-assisted solution combustion synthesis of NiFe2O4: Effect of salt type, Ceram. Int., 2021, vol. 47, pp. 23794–23802. https://doi.org/10.1016/j.ceramint.2021.05.086

    Article  CAS  Google Scholar 

  37. Chavarriaga, E.A., Lopera, A.A., Wermuth, T.B., Arcaro, S., García, C., Alarcón, J., and Bergmann, C.P., Superparamagnetic MnFe2O4 ferrite by gel combustion synthesis using TRIS as a fuel: Influence of oxidizer to fuel ratio, Int. J. Self-Propag. High-Temp. Synth., 2021, vol. 30, pp. 73–80. https://doi.org/10.3103/S1061386221020059

    Article  CAS  Google Scholar 

  38. Manukyan, K.V, Cross, A., Roslyakov, S., Rouvimov, S., Rogachev, A.S., Wolf, E.E., and Mukasyan, A.S., Solution combustion synthesis of nano-crystalline metallic materials: Mechanistic studies, J. Phys. Chem. C, 2013, vol. 117, pp. 24417–24427. https://doi.org/10.1021/jp408260m

    Article  CAS  Google Scholar 

  39. Huang, Y., Tang, Y., Wang, J., and Chen, Q., Synthesis of MgFe2O4 nanocrystallites under mild conditions, Mater. Chem. Phys., 2006, vol. 97, pp. 394–397. https://doi.org/10.1016/J.MATCHEMPHYS.2005.08.035

    Article  CAS  Google Scholar 

  40. Levy, D., Diella, V., Dapiaggi, M., Sani, A., Gemmi, M., and Pavese, A., Equation of state, structural behaviour and phase diagram of synthetic MgFe2O4 as a function of pressure and temperature, Phys. Chem. Miner., 2004, vol. 31, pp. 122–129. https://doi.org/10.1007/S00269-004-0380-4/METRICS

    Article  CAS  Google Scholar 

  41. Jain, I.P., Hydrogen the fuel for 21st century, Int. J. Hydrogen Energy, 2009, vol. 34, pp. 7368–7378. https://doi.org/10.1016/j.ijhydene.2009.05.093

    Article  CAS  Google Scholar 

  42. Inoue, M. and Hirasawa, I., The relationship between crystal morphology and XRD peak intensity on CaSO4·2H2O, J. Cryst. Growth., 2013, vol. 380, pp. 169–175. https://doi.org/10.1016/j.jcrysgro.2013.06.017

    Article  CAS  Google Scholar 

  43. Padhan, A.M., Rajaitha, P.M., Nayak, S., Hajra, S., Sahu, M., Jagličić, Z., Koželj, P., and Kim, H.J., Synthesis and application of mixed-spinel magnesioferrite: structural, vibrational, magnetic, and electrochemical sensing properties, Mater. Chem. Front., 2022, vol. 7, pp. 72–84. https://doi.org/10.1039/D2QM00628F

    Article  Google Scholar 

  44. Chandradass, J., Jadhav, A.H., Kim, K.H., and Kim, H., Influence of processing methodology on the structural and magnetic behavior of MgFe2O4 nanopowders, J. Alloys Compd., 2012, vol. 517, pp. 164–169. https://doi.org/10.1016/j.jallcom.2011.12.071

    Article  CAS  Google Scholar 

  45. Tripathi, V.K. and Nagarajan, R., Magnetically separable, bifunctional catalyst MgFe2O4 obtained by epoxide mediated synthesis, Adv. Powder Technol., 2016, vol. 27, pp. 1251–1256. https://doi.org/10.1016/j.apt.2016.04.013

    Article  CAS  Google Scholar 

  46. Zhang, X., Jiang, W., Song, D., Sun, H., Sun, Z., and Li, F., Salt-assisted combustion synthesis of highly dispersed superparamagnetic CoFe2O4 nanoparticles, J. Alloys Compd., 2009, vol. 475, pp. L34–L37. https://doi.org/10.1016/j.jallcom.2008.07.131

    Article  CAS  Google Scholar 

  47. Naaz, F., Dubey, H.K., Kumari, C., and Lahiri, P., Structural and magnetic properties of MgFe2O4 nanopowder synthesized via co-precipitation route, SN Appl. Sci., 2020, vol. 2, p. 808. https://doi.org/10.1007/s42452-020-2611-9

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the funding of the German Federal Ministry of Education and Research (BMBF) under the program promotion of scientific and technological cooperation with Colombia (project 01DN21002).

J.G.R. and R.M. Acknowledge suport from Facultad de Ciencias y Vicerrectoría de Investigaciones Universidad de los Andes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lopera.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orozco, Y., Betancur, A., Chavarriaga, E. et al. Influence of NaCl on Magnetic Properties of MgFe2O4 Nanoparticles Synthesized by Gel Combustion. Int. J Self-Propag. High-Temp. Synth. 32, 139–149 (2023). https://doi.org/10.3103/S106138622302005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106138622302005X

Keywords:

Navigation