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ABSTRACT

Recognition of human gait could be performed effectively provided that significant gait features are well extracted along 
with effective recognition process. Thus, the gait features should be selected or optimized appropriately for optimal accuracy 
during recognition. Therefore, in this research, optimization of gait features for both oblique and frontal view are evaluated 
for recognition purpose using Locally Linear Embedded (LLE) along with multi-class Support Vector Machine (SVM). Firstly, 
dynamic gait features for one gait cycle are extracted from each subject’s walking gait that is acquired using Kinect sensor. 
Next, the extracted gait features were then optimized using LLE known as DG-LLE and further classified by multi-class SVM 
with Error Correcting Output Code (ECOC) algorithm. Further, to validate the effectiveness of LLE as optimization technique, 
the proposed method is then compared with another two gait features namely the original gait features known as DG and 
optimization using Principal Component Analysis labeled as DG-PCA. Results showed that the optimization based on DG-LLE 
outperformed the other two methods namely DG and DG-PCA for both oblique and frontal views. In addition, DG-LLE method 
contributed as the highest recognition rate for both frontal and oblique views. Results also confirmed that the accuracy rate 
for frontal view is higher specifically 98.33% as compared to oblique view with 94.67%. 
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ABSTRAK

Pengecaman manusia melalui gaya berjalan boleh dijalankan secara lebih efektif dengan menggunakan fitur yang penting 
serta proses pengecaman yang efektif. Oleh yang demikian, fitur gaya berjalan yang optimum perlu dipilih untuk mendapatkan 
ketepatan yang terbaik semasa proses pengecaman. Maka dalam kajian ini, pengoptimuman fitur gaya berjalan untuk 
pandangan oblik dan pandangan hadapan dinilai untuk tujuan pengecaman, menggunakan kaedah Terbenam Linear Setempat 
(LLE) dan Mesin Penyokong Vektor (SVM). Pertama, fitur dinamik satu kitaran gaya jalan subjek diekstrak menggunakan 
sensor Kinect. Seterusnya, fitur yang diekstrak dioptimumkan menggunakan kaedah LLE yang dikenali sebagai DG-LLE diikuti 
dengan fasa pengelasan menggunakan algoritma Mesin Penyokong Vektor pelbagai kelas dan Kod Keluaran Pembetul Ralat 
(ECOC). Selanjutnya, untuk mengesahkan keberkesanan LLE sebagai kaedah pengoptimuman, kaedah tersebut dibandingkan 
dengan dua jenis fitur gaya berjalan yang dikenali sebagai fitur asal gaya berjalan iaitu DG dan fitur yang dioptimumkan 
menggunakan kaedah Komponen Analysis Utama yang dilabel sebagai DG-LLE. Keputusan kadar pengecaman menunjukkan 
bahawa pengoptimuman menggunakan DG-LLE adalah lebih tinggi berbanding kaedah DG dan DG-PCA, bagi kedua-dua 
pandangan oblik dan pandangan hadapan. Selain itu, bagi gaya berjalan pandangan hadapan, DG-LLE memberikan kadar 
pengecaman yang lebih tinggi berbanding gaya berjalan pandangan sisi iaitu dengan kadar ketepatan bernilai 98.33% 
bagi pandangan hadapan berbanding 94.67% bagi pandangan oblik.

Kata kunci: Pengenalpastian gaya berjalan pandangan hadapan; gerakan; terbenam linear setempat, mesin penyokong 
vektor

INTRODUCTION

The study of gait as features in human recognition has been 
extensively carried out due to its advanced characteristics in 
biometrics namely fingerprints, iris (Mei et al. 2007), and 
voice recognition (Sharrif & Theong 1991). Each individual 
gait has its unique characteristics of its own that are difficult 
to emulate and to recognise human from their gait does not 

require physical contact between human and the recognition 
device as well (Yoo & Nixon 2011).

Gait analysis can be divided into model-based analysis 
and model-free analysis. In the model-free analysis, 
information from the silhouette shape is extracted for further 
analysis. On the other hand, the model-based analysis 
requires data from body structure. As opposed to model-based 
analysis, the model-free analysis involves low computational 
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cost and gait feature representation. However, the model-
free analysis is limited to circumstances such as occlusion 
and clothing conditions (Hosseini & Nordin 2013; Han & 
Bhanu 2004; Rida, Jiang & Marcialis 2016). In order to 
overcome these limitations, numerous researches have been 
conducted, for instance, researchers focused on generating 
potential extracted features that in return reduced the effect 
of occlusion and clothing conditions (Han & Bhanu 2006; 
Sengupta et al. 2013; Kochhar et al. 2013; Shirke, Pawar & 
Shah 2014). Moreover, the optimisation of gait features with 
various feature optimisation methods are being developed 
due to the large dimension of extracted gait features. These 
feature optimisation methods are also meant to improve 
recognition performances (Hofmann & Rigoll 2013; Lam 
et al. 2011; Hofmann et al. 2014b; Sivapalan et al. 2012; 
Ekinci 2006; Ekinci 2007; Fazli et al. 2011; Sivapalan et al. 
2011; Hofmann et al. 2014a). The common methods used are 
Principal Component Analysis (PCA) and Linear Discriminant 
Analysis (LDA). These methods were proven to be effective 
along with classifiers namely Support Vector Machine (SVM) 
and k-Nearest Neighbour (KNN) (Hofmann et al. 2014a; Fazli, 
et al. 2011; Hofmann & Rigoll 2013).

On the contrary, model-based analysis is robust to these 
limitations. These limitations do not affect the recognition 
of the model-based analysis. Unfortunately, the model-based 
analysis requires high computational cost for modelling and 
tracking the human gait. Numerous studies on generating 
model fitting with low computational cost have been carried 
out, however, as Kinect was introduced by Preis et al. (Preis 
et al. 2012) in 2012, the motivation behind these studies have 
migrated to extracting potential gait features and pattern 
classifier (Preis et al. 2012; Naresh Kumar and Venkatesh 
Babu 2012; Araujo et al. 2013; Gianaria et al. 2013; Sadhu and 
Konar 2014; Andersson and Araújo 2014; Jiang et al. 2014; 
Gianaria et al. 2014). Kinect is a low-cost motion sensing 
device capable of modelling and tracking human motion, for 
instance, posing, walking, running or other similar actions and 
automatically provides information of the skeleton joints of 
the walking human in both 3D and 2D space. As compared to 
a standard video camera, Kinect is able to generate skeleton 
joints, accurately, without involving complex processes. 
Studies done by Preis et al. 2012; Kumar & Babu 2012; 
Araujo and Andersson 2013; Gianaria et al. 2014; Chang & 
Nam 2013 have proven that features extracted using Kinect 
are indeed reliable for human recognition as these studies 
reported good recognition performance. Therefore, in this 
study, video sequences of human walking gait captured using 
Kinect was employed in the data acquisition stage.

Investigation on extracting potential features is still 
ongoing which can further widen the potential for feature 
optimisations. Hence, in this study, we deem further to 
develop feature extraction method of dynamic human gait 
in both oblique and frontal view followed by optimisation 
using Locally Linear Embedded (LLE) based on 30 subjects. 
Consequently, the multi-class SVM with Error Correcting 
Output Code (ECOC) algorithm is employed as pattern 
recognition. In order to verify the performance of LLE, both 

original gait features along with PCA as the feature extraction 
is conducted. Recognition of these three approaches 
are computed and compared to acquire the best feature 
optimisation method.

RELATED WORKS

Human Gait Recognition with Kinect

Preis et. al (2012) is one of the earlier researchers that 
introduced Kinect for human gait recognition with promising 
recognition rates. Their study developed a method for 
human gait recognition of nine subjects in lateral view. 11 
sets of static features and two sets of dynamic features were 
generated from the skeleton joints that were extracted from 
Kinect. The feature sets were classified using Naïve Bayes, 
One Rule (1R) and C4.5 algorithms with 91% recognition 
accuracy using four static gait features and Naïve Bayes as 
classifier. The four static gait features were height, length of 
legs, length of torso and length of the left upper arm. In the 
same year, 2012, Naresh et al. (2012) also performed human 
gait recognition with Kinect. The researchers performed the 
recognition of 20 subjects in frontal view. 21 sets of static 
features were extracted and further classified by covariance 
analysis. Results showed that combined features contributed 
higher recognition accuracy as opposed to those of single 
features. The highest recognition accuracy attained was 
93.33% by fusing gait features from the spine, the right arm, 
and the left leg. The result also showed that Kinect is a robust 
device with regards to multi-view scenarios.

Subsequently, in 2013, another study was conducted 
by Araujo et al. (Araujo, Graña, and Andersson 2013) and 
in this study they reported that features extracted through 
anthropometric identification using Kinect was a success 
as well. They investigated types of static gait features, 
classifiers and pose. The researchers focused on the gait of 
eight subjects in lateral and frontal views. The results revealed 
that the combination of the entire static gait features with 
KNN as classifier produced the highest recognition accuracy 
of 99.6%. The next research on human gait recognition 
with Kinect was carried out as reported in (Gianaria et al. 
2013). In this research, the gait recognition of 20 subjects 
in frontal view was performed. The study extracted various 
sets of static features and dynamic features within one gait 
cycle in order to obtain the most significant features for gait 
recognition purposes and K-means unsupervised algorithm 
with Euclidean distance used for classification. As a result, 
dynamic features, specifically the combination of distance 
between knees, distance between elbows, movement of 
head in the x-coordinate and movement of head in the 
y-coordinate were found to be the most significant features 
with highest recognition accuracy of 52%. A year later, the 
same researchers further explored and investigated both static 
and dynamic gait features of twenty subjects (Gianaria et al. 
2014). This time, they revealed that movement of elbows, 
knees, and head were significant features in recognizing 
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human gait. With SVM as classifier, the recognition of human 
gait with 20 subjects showed 96.25% accuracy rate.

As discussed in Sadhu and Konar (2014), nine from the 
20 skeleton joints of 25 subjects were employed. The nine 
features include hip centre, left and right elbow, left and right 
hand, left and right knee along with left and right foot. The 
hip centre was used for normalization of all eight skeleton 
joints. The features were generated from all eight joints. The 
study proposed recognition using differences between total 
feature error and standard deviation. As a benchmark, SVM 
and KNN were implemented as classifiers and the results 
were then compared. The proposed method resulted accuracy 
recognition rate of 92.48%. Conversely, another investigation 
by Andersson and Araújo (2014) on a 3D skeleton data with a 
multi-view-angle imagery was also done using Kinect. In this 
study the lower limbs of one hundred and sixty-six subjects 
were extracted and analysed. Potential features of skeleton 
joints such as kinematic features and anthropometry features 
within one gait cycle were extracted as well. The Multi-
layer Perceptron (MLP) with 20 hidden numbers and KNN 
were used to classify the features. Interestingly, the results 
showed that the highest recognition accuracy was acquired 
with the anthropometry features used as input features to 
the classifier. It was also observed that the recognition 
accuracy decreases as the number of subject increases from 
10 to 160. Furthermore, investigation on the frame number 
was carried out and it was found that higher number of gait 
frames contributed to higher recognition accuracy with KNN 
as classifier and anthropometry features as inputs.

In addition, the recognition of 10 subjects walking in 
lateral view was carried out by Jiang et. al (2014). Two 
feature sets were generated; static and dynamic feature sets 
within one full gait cycle from certain skeleton joint points 
in 3D space. Dynamic time warping (DTW) is then used to 
normalize time frames for train and test datasets. As a result, 
82% recognition accuracy was obtained using both static 
and dynamic features with neural network (NN) as classifier. 
Furthermore, a research on multi-view angle using Kinect-
based human gait analysis was performed by Cheewakidakarn 
and Nattee (2014). In this research, videos of 17 walking 
subjects in various angle views such as lateral, frontal and 
oblique views were recorded. Seventeen sets of static gait 
features and three sets of dynamic features were extracted. 
DTW was employed as pattern classifier. It was reported that 
51.77% of accuracy was achieved with fusion of static and 
kinematic as gait features.

Optimisation of Gait Feature Extraction using Kinect

A year after Kinect was introduced for human gait 
recognition, studies on extracting potential gait features 
have been expanded for optimisation or selection of the 
extracted features. Sinha et al. (2013) employed ANN as 
feature selection in recognition of ten subjects; walking in 
lateral view. Two sets of features namely static features and 
hybrid features within each half gait cycle were extracted 
from skeleton joints and classified using ANN. The results 

reported that the static features were the most significant 
features compared to the dynamic features with accuracy 
rate of 62% obtained with hybrid features and ANN as feature 
selection. Additionally, study by Sinha et al. reported better 
recognition rate as compared to the studies by Preis et al. 
(2012) and Ball et al. (2012).

Progressive researches on feature optimisation in human 
gait recognition were carried out continuously in 2014. 
Dikovski et. al (2014) employed PCA as a feature selection 
technique in their work. In this study, seven potential feature 
sets were generated from specific skeleton joints extracted 
from 15 subjects at lateral view using Kinect. The gait features 
were extracted within one full gait cycle. Next, MLP, SVM 
and J48 decision tree algorithm were chosen to evaluate the 
effectiveness of the gait features for recognition purposes. 
As a result, the highest recognition accuracy was obtained 
with MLP classifier based on features with joint distance. 
Besides that, features of lower body attained higher accuracy 
as compared to the upper body since most of the upper parts 
were hidden whilst the worst classification accuracy obtained 
was using PCA as feature extraction.

Another study that reported poor recognition accuracy 
using PCA as a feature selection is the work by Molina et al. 
(2014). In this study, recognition of ten subjects walking in 
lateral, oblique and frontal movements in front of the Kinect 
were performed using WEKA application. The results attained 
showed that low recognition accuracy of 70% obtained with 
feature selections via PCA as opposed to the original features 
that attained higher recognition accuracy specifically of 90%. 
The results also proven that the most significant features were 
fusion of seven features namely the length of the right and 
left shoulder, height, the length of the right arm, the length of 
the right knee and right foot, and the length of the right hip. 
Also, in 2015, Ahmed et al. (2015) proposed another feature 
extraction and feature optimisation method. In this proposed 
method, vector of the joint angle between two skeleton joints 
with respect to the spine joint is extracted as features. The 
features were extracted within a full gait cycle. The most 
significant feature was selected based on large variation of 
gait features while walking, whereas features with smaller 
variations were eliminated. For recognition stage, the study 
used DTW-kernel. As a result, the proposed method obtained 
a 93.30% recognition rate as compared to the results in the 
study obtained in Preis et al. (2012).

Another feature optimisation method was proposed by 
Prathap and Sakkara (2015). The researchers extracted static 
features such as height and the length of both legs and both 
hands. In addition, they proposed dynamic features such 
as the angle between the left hand and hip centre, and the 
angle between the right hand and hip centre. This research 
also extorted other dynamic features such as step length and 
distance between centroids. The features were extracted from 
the entire sequences of frames. For the optimisation process, 
the extracted features were then further chosen at a single 
value. The selected single features were chosen based on 
the traits they possess. For example, for the height attribute, 
the maximum value is chosen as the selected feature and 
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standard deviation for the hand angle. The optimized features 
were then fed to classifiers such as Levenberg-Marquardt 
back propagation and correlation algorithm. The end result 
indicated that features such as height, distance between 
centroids and step length proven to be significant features 
in recognition of the five subjects. To sum it up, Levenberg-
Marquardt back propagation excelled at an accuracy of 
94%.

THEORETICAL BACKGROUND

Principal Component Analysis (PCA)

The Principal Component Analysis (PCA) is a well-known 
feature reduction method employed in pattern recognition 
area. PCA is mainly used to select useful information and 
remove the superfluous information as well. The information 
said here is referred to as features. Firstly, PCA transforms 
features into the orthogonal linear space, known as principal 
components (PCs) and calculates their variances. Then, the PCs 
are ranked according to their variances. PC with the largest 
variance is ranked at the top and vice versa.

The critical step is to eliminate the redundancy and 
insignificant features. Originally, there are three methods 
namely cumulative percentage of variance, eigenvalue-
one-criterion and scree test. In the cumulative percentage 
of variance method, features with variances accumulated 
up to 80 % are retained and the remainders are eliminated. 
In the eigenvalue-one-criterion and the scree test methods, 
features with eigenvalue less than one and features with large 
variation are eliminated respectively. According to previous 
research, employment and performance of the selection 
methods of PCA varies with the respective research area. In 
cases like classification of infant cry (Sahak et al. 2011), 
the eigenvalue-one-criterion excelled than the other two 
methods, however in other cases such as the texture of SAR 
image (Chamundeeswari & Singh 2009), the SCREE test was 
selected as the best method.

Locally Linear Embedded (LLE)

To begin with, Locally Linear Embedded (LLE) is suitable 
for identifying significant features, to reduce dimensionality 
of the input features as well as to enhance recognition 
performances. Unlike PCA, LLE is designed for nonlinear 
dimensionality reduction of high dimensionality features. 
Let the input matrix X in the size of D by N. LLE produces 
an output of Y in the size of d by N where d << D. Note that 
the K-th column vector of Y corresponds to the K-th column 
of vector X. Basically, there are three main processes in 
LLE. Firstly, K, known as the nearest neighbour is computed 
for each feature point, using Euclidean distances. Then, 
reconstruction errors resulting from the approximation of 
each feature point, Xi by its K are measured by the cost 
function as shown in Equation 1:
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1 1

N K

i ij ji j
X W X

= =
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which provide a unique solution.
In order to find matrix Y under these constraints, a new matrix 
is constructed based on matrix W as shown in Equation 3:

M = (1 – W)T (1 – W)		  (3)

Next, LLE computes bottom d + 1 eigenvectors of M, 
associated with the d + 1 smallest eigenvalues. The first 
eigenvector (composed of 1’s) by which the eigenvalue is 
close to zero is excluded. The remaining d eigenvectors yield 
the final embedding of Y (Kouropteva and Pietik 2003). A 
good LLE mapping is based on two parameters that need to 
be adjusted; the dimensionality d to be mapped to and the 
number of neighbours K.

Multi-class SVM

Originally SVM is designated for binary class problem. Further, 
the SVM is used to solve multi-class problems. Numerous 
binary classifiers were constructed and their performances 
were computed. The performances were compiled to gauge 
as overall recognition performance. Several approaches were 
introduced in the designation of multi-class SVM, such as one-
versus-one (OVO), one-versus-all (OVA) and error correcting 
output code (ECOC).

Among these approaches, ECOC is proven capable to 
solve classification of three and more classes by reducing bias 
and variances that were introduced in the learning algorithm 
(Escalera 2010; Escalera & Pujol 2006). ECOC can be divided 
into two main components. The first component is coding 
design. In this component, base codeword for each trained 
binary classes were designed. The common used coding 
design is OVA. In OVA, the number of binary classifier is 
similar to the number of class. Let the number of class be 
known as L. Hence, there are L binary classifiers. For each 
binary classifier, one class is designated as positive class and 
the rest are designated as negative class. Therefore, the L 
codeword is then generated from the trained binary classifiers. 
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The L codeword is then decoded in the second component, 
which is known as decoding scheme. This scheme determines 
the predictions of the binary classifiers to be combined. Here, 
a new codeword is generated from the test data. Then the 
new codeword is compared with the base codeword that was 
obtained in the coding design. To compare the codeword, 
classification error is used to determine the performances of 
the classifiers. Similar to original SVM, the multi-class SVM 
also has kernels in solving problem of non-separable data. 
The common kernel used is radial basis kernel (RBF). The 
optimal SVM model can be obtained by selecting appropriate 
regularization parameter (C) and sigma (σ) as well.

METHODOLOGY

The general overview of the proposed methodology for 
human gait recognition using Kinect is as depicted in 
Figure 1. Firstly, the database of each subjects is recorded 
in the experimental area as per depicted in Figure 2. Next, 
all database need to go through the pre-processing stage. 
Upon completion of pre-processing, the most vital stage for 
gait recognition is the feature extraction. For this feature 
extraction stage, the original gait features as well as feature 
selection using PCA and LLE will be evaluated. Next is the 
classification of each subject using SVM classifier followed 
by evaluating the robustness of the developed method based 
on performance measures.

Data Acquisition

As mentioned earlier, this study investigated the gait features 
of 30 subjects in an indoor environment. The data acquisition 
stage was performed in daylight, in a laboratory. Figure 2 and 
Figure 3 show the layout of the experimental area. Here, the 
Kinect was placed 1 meter above the floor, as illustrated in 
Figure 2. The red area indicates the covered captured area, 
and this is the area of walking gait of subjects is recorded. 
Firstly, 11 male subjects and 19 female subjects were required 
to perform their normal walking gait using their normal speed. 
In order to gain normal walking patterns, the subjects began 
walking outside of the captured area. The subjects were 
requested to walk repeatedly for 10 times and no restriction 
on clothing types except for pants. In addition, each of the 
subject’s information such as age, height and weight were 
recorded as well.

FIGURE 1. Overall process in the recognition of human gait using 
Kinect

FIGURE 2. Top view of the walking gait acquisition experimental 
area

FIGURE 3. Actual experimental area
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Pre-processing

The main aim of this stage is to normalise skeleton joints, 
considering that the skeleton image increases as the subject 
walks towards the Kinect. Firstly, empty frames resulted 
from the recorded skeleton data were removed prior to 
normalization of the skeleton joints. The empty frames are 
due to extra frames obtained at the beginning and end during 
recording of the walking gait of each subject.

The normalisation was performed in xyz-coordinate. At 
first, the skeleton joint points are standardised at the height 
reference, hr or i-th frame using (4). For each subject, the 
height at half of the trimmed frame was represented as the 
reference height.

j(new)i = (j(old)i ÷ hi) × hr	 (4)

where jold is the original skeleton joint, jnew is the new skeleton 
joint, h is the height and hr is the height reference.

The relative movement of the standardised skeleton 
joints was then scaled at a constant head joint. The purpose 
of this step is to replicate the subjects’ walk on a treadmill. 
The head joint was fixed at one point using (5).

jh(fix)i = jhr – jh(new)i	 (5)

where jhr is the reference head joint and jhnew is the new 
head joint.

The normalized skeleton joints were then calculated 
using (6).

j(norm)i = jh(new)i + hj(fix)i	 (6)

The pre-processed skeleton joints were further extracted in 
the next stage.

Feature Extraction

In this research, skeleton joints in the xyz-coordinates; also 
known as skeleton joint points were extracted within one 
full gait cycle. Figure 4 showed the steps involved in the 
feature extraction stage. Firstly, detection of full gait cycle 
upon completion of pre-processed skeleton joint points 
was performed. Note that the resulted gait cycles consist of 
various numbers of frames which can lead to difficulty in 
the classification stage. Hence, synchronization process was 
implemented in order to standardize the number of frames. 
Upon standardisation, the skeleton joint points were extracted 
as input features.

Detection of gait cycle

Gait cycle is a period of a sequence of the same foot touching 
the ground twice (Boulgouris & Plataniotis 2005; Sinha et 
al. 2014). Thus, the gait cycle was computed based on the 
distance between the right ankle and left ankle. Throughout 
this study, distance between the right ankle and left ankle in 
the xy-coordinates was calculated for oblique view, while 
for frontal view, the distance between the right ankle and 
left ankle was computed in xyz-coordinates. In addition, the 
distance vector was filtered and smoothed using Savitzky-
Golay moving average algorithm. Local minima; which is 
transition from negative slope to positive slope is detected 
from the distance vector and one full gait cycle comprised 
of three consecutive local minima (Dikovski & Gjorgjevikj 
2014; Sinha & Bhowmick 2013). For simplicity, the detection 
of gait cycle is illustrated in lateral view, as depicted in Figure 
5. Therefore, one to three gait cycles were computed for 
oblique view whilst for frontal view, one to two gait cycles 
were computed. For standardization purposes, only gait 
features within one gait cycle for each walking sequence 
per subject is used for further analysis. Since there are 30 
subjects and 10 walking sequence, thus the gait features 
were made of 300 gait cycles for both oblique and frontal 
view. For the next section, these 300 gait cycles were named 
as 300 samples.

Synchronization of Gait Feature

For each subject, the number of frames extracted for each 
gait cycle is dissimilar for oblique and frontal views. For 
instance, 12 frames to 26 frames were attained for the resulted 
gait cycles for both the oblique and frontal views. This is due 
to the different walking speed amongst the subjects since 
they are allowed to walk at their normal comfortable speed. 
Hence, the diverse numbers of frames could cause unequal 
size of feature patterns, which can lead to intricacy in the 
classification stage. As such, the synchronisation stage of 
gait features was implemented in order to standardise the 
size of the input feature via spline interpolation process that 
synchronised the number of frame for each gait cycle to a 
similar size. Spline interpolation is a mathematical algorithm 
commonly used for curve fitting (Spline Curves 2016). It is 
a process of generating new data points within the range of 
a discrete set of original data points and smoothing the set of 
data points as well. Consequently, gait cycles with the size 
of maximum numbers of frames, 26 frames were fixed for 
both frontal and oblique views.

Extraction of Skeleton Joint Points

As mentioned earlier, this study is concerned with the 
dynamic gait features, known as skeleton joints. Thus, in this 
study, skeleton joints in the xyz-coordinates were designated 
as skeleton joint points. Kinect provides 20 skeleton joints in 
the xyz-axis. Hence, a total of 60 skeleton joint points were 
extracted in this stage. Firstly, skeleton joint points for each 
subject were extracted in a column vector using (7). Here, FIGURE 4. Feature extraction stage of human gait recognition 

using kinect

Detection of gait cycle

Synchronization of gait signal

Extraction of skeleton joint points

Pre-processed skeleton data

Feature selection stage
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FIGURE 5. Detection of gait cycle
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the 20 skeleton joints in the x-coordinate were arranged 
followed by the same 20 skeleton joints in the y-coordinate 
and finally the skeleton joints in the z-coordinate. As a result, 
the extracted gait feature size was 60 by 26.

jxn jyn jzn × i	 (7)

where jx is the skeleton joint in x-coordinate, jy is the skeleton 
joint in y-coordinate, jz is the skeleton joint in z-coordinate, 

i is the number of frame and n is the number of skeleton 
joint.

To arrange these as input features as obtained in (7), 
a column vector format was used for all 30 subjects. As 
previously mentioned, 10 samples were allocated for each 
subject, this resulted a 1560 by 300 feature sizes. Figure 6 
illustrates the 20 skeleton joints and their designated label, 
provided by the Kinect.

FIGURE 6. Skeleton joints provided by Kinect

	 Number of Skeleton Joint	 Name of Skeleton Joints

	 1	 Hip_center
	 2	 Spine
	 3	 Shoulder_center
	 4	 Head
	 5	 Shoulder_left
	 6	 Elbow_left
	 7	 Wrist_left
	 8	 Hand_left
	 9	 Shoulder_right
	 10	 Elbow_right
	 11	 Wrist_right
	 12	 Hand_right
	 13	 Hip_left
	 14	 Knee_left
	 15	 Ankle_left
	 16	 Foot_left
	 17	 Hip_right
	 18	 Knee_right
	 19	 Ankle_right
	 20	 Foot_right

4

3

5

6

7

8

13

2
1

17

9

10

11

12

18

19

20
16

15

14
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Pattern Recognition

In this stage, the obtained input features were first normalised 
with zero mean and unity standard deviation. Then, the input 
features were mapped in the range of -1 to +1 prior to inputs 
of the classifier. In this study, RBF kernel SVM was chosen 
due to its good performance in the pattern recognition area 
(Cheng & Xu 2007; Kusy 2004; Sahay et al. 2016; Hall 2015; 
Yan & Wang 2009; Banerjee et al. 2015; Purnama et al. 2015; 
Meddeb & Karray 2015). In the selection of the optimal 
model of SVM classifier with RBF kernel, both C and σ varies 
from 10 to 100 with increment of 10. In order to determine the 
best optimisation method, three approaches were evaluated 
and tested. The three approaches are described as follows;

Original Gait Features (DG)

In the first approach known as DG, gait features were extracted 
directly from the feature extraction stage and the original 
gait features were the inputs to the SVM classifier with RBF 
as kernel.

Feature Extraction via PCA ( DG-PCA)

In the second approach, the gait features were selected by 
PCA as feature selection prior to classification stage using 
SVM with RBF kernel. This approach was designated as DG-
PCA. The input features were transposed as 300 by 1560 
before projected into a high dimensional space and variances 
computed, which further resulted the principal components 
(PCs). Then, the PCs with the largest variances were retained 
whilst PCs with smallest variances were discarded. In 
this study, PC with the cumulative variance of 99% was 
retained.

Feature Extraction via LLE (DG-LLE)

In the third approach, the gait features were selected using 
LLE before acting as input features to the SVM classifier 
and RBF as kernel. This approach was designated as DG-
LLE. With LLE employed, firstly K, the nearest neighbour is 
computed for each input feature using Euclidean distances. 
Then, cost function was calculated using (1) in determining 
the reconstruction errors from the estimation of the input 
feature by its K. The input feature was then mapped to a low 
dimensional embedding feature using (2). An investigation 
into the number of neighbours, K and the dimensionality 
of low embedding feature, d was performed in order to 
determine the most significant gait features as well as the 
optimal LLE mapping. To attain the significant gait features, 
K was tuned from 84 to 100 with increment of 4 and d was 
varied from 50 to K-2 with increment of 2.

Recognition Performance

Performances of human gait recognition such as recognition 
accuracy, specificity and sensitivity were evaluated in order 
to gauge effectiveness of the proposed approach (Hossin 
& Sulaiman 2015; Sokolova & Lapalme 2009). Correct 

recognition rate (CRR) is the average of correct recognition 
of all subjects using 10-fold cross validation approach. The 
correct recognition is calculated as follows:

CRR = 
1

1

l

i

l

i

tp tn
n

n
tp

tp fn
l

=

=

+

+

∑

∑where l is the number of subject, tp is the true positive, tn is 
the true negative, n is the number of sample.

Sensitivity is evaluated to measure the fraction of 
an appointed subject that is correctly classified. It can be 
calculated by:

Sensitivity = 

1
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Specificity is used to calculate the fraction of non-
appointed subject that is correctly classified.

Specificity = 
1

l

i

tn
tn fp
l

= +∑

RESULTS AND DISCUSSIONS

In this section the conducted experiment and results attained 
are elaborated and discussed. It was computed that the 
average subjects aged 30.10 years old have the average height 
and weight of 1.60m and 61.68 kg respectively.

Optimisation of SVM Model using RBF Kernel

Firstly, the value of C and σ as of all three methods are 
tabulated in Table 1. As mentioned earlier, selection of 
optimal parameter for RBF kernel was performed by varying 
C and σ from 10 to 100, with an interval of 10. In the case 
of DG, for both the frontal and oblique views, large C and σ 
were required in determining the optimal RBF kernel for the 
SVM model. It was observed that the least value of C and σ 
were required for DG-PCA, for both oblique and frontal views 
as well. As for DG-LLE, the value for σ was similar as DG-PCA 
however the value of regularization parameter C was the 
highest amongst the three methods for frontal view in order 
to construct the optimal classifier. With these selections of 
regularization; parameter C, RBF kernel value σ, and all three 
methods attained 100% CRR for the training datasets.

TABLE 1. The optimal C and σ for DG, DG-PCA and DG-LLE with 
SVM as classifier

	 No.	 View	 Approach	 C	 σ

			   DG	 80	 90
	 1.	 Frontal	 DG-PCA	 20	 20
			   DG-LLE	 90	 20
			   DG	 80	 90
	 2.	 Oblique	 DG-PCA	 30	 10
			   DG-LLE	 50	 10
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Feature Selection of Gait Features using PCA

The selections of input features using PCA algorithms such 
as eigenvalue-one-criterion, cumulative percentage of 
variance, and scree test were reported in this section. For 
the cumulative percentage of variances; in order to obtain 
significant features, variances accumulated from 80% to 99% 
were computed. Upon completion of experimental analysis, 
cumulative percentage of variance of 99% was chosen as the 
best selection method since poor recognition accuracy was 
obtained for the variance accumulated less than 99% and 

in the other two selection methods as well. Therefore, only 
results from the cumulative percentage of variance of 99% 
were presented. Table 2 tabulates the first 68 PCs with their 
cumulative variance (%) for frontal and oblique views. The 
shaded area indicates PCs that were selected and retained. 
The PCs were retained until variance of 99% was achieved. 
Hence, in this analysis, 66 PCs were retained for frontal view 
and 23 PCs for oblique view. As a result, the dimension of 
the input features for DG-PCA was reduced from 1560 by 300 
to 66 by 300 and 23 by 300 for frontal and oblique view, 
respectively.

TABLE 2. Cumulative variance (%) for the first 68 PCs for frontal and oblique view

	 PC	 Frontal	 Oblique	 PC	 Frontal	 Oblique

	 1	 37.281	 69.795	 35	 98.039	 99.289
	 2	 70.376	 86.600	 36	 98.092	 99.308
	 3	 80.187	 92.813	 37	 98.141	 99.325
	 4	 87.614	 96.873	 38	 98.186	 99.342
	 5	 89.856	 97.343	 39	 98.231	 99.358
	 6	 91.377	 97.630	 40	 98.273	 99.374
	 7	 92.583	 97.839	 41	 98.313	 99.389
	 8	 93.338	 97.981	 42	 98.352	 99.404
	 9	 93.916	 98.121	 43	 98.389	 99.418
	 10	 94.425	 98.231	 44	 98.426	 99.432
	 11	 94.811	 98.332	 45	 98.461	 99.445
	 12	 95.152	 98.424	 46	 98.495	 99.457
	 13	 95.432	 98.500	 47	 98.528	 99.469
	 14	 95.692	 98.575	 48	 98.559	 99.481
	 15	 95.914	 98.639	 49	 98.590	 99.492
	 16	 96.122	 98.696	 50	 98.619	 99.503
	 17	 96.312	 98.749	 51	 98.647	 99.513
	 18	 96.471	 98.799	 52	 98.675	 99.524
	 19	 96.618	 98.844	 53	 98.703	 99.534
	 20	 96.755	 98.885	 54	 98.730	 99.543
	 21	 96.884	 98.925	 55	 98.755	 99.552
	 22	 97.010	 98.962	 56	 98.780	 99.561
	 23	 97.126	 98.997	 57	 98.805	 99.570
	 24	 97.232	 99.028	 58	 98.828	 99.579
	 25	 97.332	 99.058	 59	 98.851	 99.587
	 26	 97.422	 99.086	 60	 98.874	 99.595
	 27	 97.507	 99.114	 61	 98.896	 99.603
	 28	 97.589	 99.139	 62	 98.918	 99.611
	 29	 97.663	 99.163	 63	 98.938	 99.619
	 30	 97.734	 99.187	 64	 98.958	 99.626
	 31	 97.803	 99.209	 65	 98.977	 99.633
	 32	 97.865	 99.230	 66	 98.996	 99.640
	 33	 97.925	 99.250	 67	 99.015	 99.647
	 34	 97.984	 99.270	 68	 99.033	 99.654

Optimization of Gait Features using LLE

The optimisation of gait features using LLE was performed via 
selection of suitable LLE parameter; namely the dimensionality 
d was mapped and the number of neighbours K. Hence, K 

and d was varied as aforementioned in the previous section. 
The resulted K and d led to the variation of inputs features. 
The input features were inputs to the optimal model of SVM 
classifier. CRR on test data was computed and compared 
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for each K and d, so that the optimum input features can be 
determined. Consequently, for frontal view, the optimal input 
features attained were at K = 84 and d = 64 while for oblique 
view, the finest input features attained were at K = 100 and d 
= 98 respectively. Figure 7 demonstrates the selection of the 
finest K when d was set at 98 and 64 for the oblique and frontal 
view, respectively. For oblique view, for K = 100 the CRR 
attained was 94.67% whilst for frontal view, the CRR slowly 

fluctuated as K varied. Note that highest CRR at 98.26% 
achieved at K = 84. Figure 8 below depicts the selection of 
suitable d when K was fixed at 100 for the oblique view and 
as K was set to 84 for the frontal view. As can be seen in the 
oblique view, the CRR oscillated over the valued of d. Highest 
CRR of 89.26% was attained at d = 68. As for the frontal view, 
the highest CRR was at 98.26% for d = 64.
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FIGURE 7. Results for selection of the best K, at d = 98 (Oblique View) & d = 64 (Frontal View)

FIGURE 8. Results for selection of optimum d at K = 100 (Oblique View) & K = 84 (Frontal View)

Performance Measure

The recognition performance for DG, DG-PCA and DG-LLE is 
as tabulated in Table 3. It is apparent that feature optimisation 
method reduced the dimension of input features. For the 
frontal view, lesser dimension was attained for DG-LLE, 
followed by DG-PCA. However, it is the opposite for oblique 
view. For oblique view, it can be concluded that DG-LLE 
outshined with high CRR (94.67%) for input features of 50. 
Sensitivity and specificity were also the highest as presented 

in Table 4. Though DG-PCA offered fewer dimensions of input 
features than DG-LLE, the CRR was not encouraging since it 
had lower CRR. Similar for oblique view, DG-LLE once again 
outperformed accuracy rate in frontal view as compared to DG 
and DG-PCA. As tabulated in Table 3, highest CRR of 98.33% 
with low number of features namely 64 input features attained 
based on DG-LLE.

Additionally, highest accuracy was obtained for both 
sensitivity (98.33%) and specificity (99.94%) too. Based on 
sensitivity and specificity attained, it was revealed that the 
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TABLE 3. Recognition performance for DG, DG-PCA and DG-LLE for frontal view and oblique view

	 View	 Approach	 # of feature	 CRR (%)	 Sensitivity (%)	 Specificity (%)

		  DG	 1560	 96.67	 96.67	 99.86
	 Frontal	 DG-PCA	 66	 96.67	 96.67	 99.86
		  DG-LLE	 64	 98.33	 98.33	 99.94
		  DG	 1560	 87.00	 87.00	 99.50
	 Oblique	 DG-PCA	 23	 81.00	 81.00	 99.34
		  DG-LLE	 50	 94.67	 94.67	 99.82

TABLE 4. Comparison between other studies on human gait recognition in frontal view using Kinect

	 No.	                   Researcher	 Number of subjects	 CRR (%)

	 1.	 Prathap et al. (Prathap and Sakkara 2015)	 5	 94.00
	 2.	 Naresh Kumar (Naresh Kumar and Venkatesh Babu 2012)	 20	 97.50
	 3.	 Elena (Gianaria et al. 2014)	 20	 96.00
	 4.	 Proposed study (Rohilah et al.)	 30	 98.33

recognition of non-appointed subject was slightly higher 
than the appointed subject. Overall, the proposed method 
was proven capable to enhance the recognition of human 
gait. Moreover, the utmost recognition rate is during frontal 
gait. Conversely, Table 4 tabulates the comparison between 

other studies on human gait recognition in frontal view using 
Kinect. As shown, the proposed study based on LLE along 
with SVM and larger numbers of subjects namely 30 subjects 
outperformed with recognition rate of 98.33% as compared 
to other studies.

CONCLUSION

This study investigated the optimisation of gait patterns 
using LLE and multi-class SVM in recognition of human gait. 
Results attained showed that DG-LLE outperformed for both 
oblique and frontal views for all three performance measures 
namely recognition rate, sensitivity as well as specificity. 
Moreover, the results also determined that the recognition 
of human gait in the frontal view excelled than that of the 
oblique view. Future work includes pre-processing of multi-
views walking gait and extraction of these multi-views gait 
features to be evaluated for recognition purpose. Also, further 
investigation on other feature optimisation methods namely 
statistical analysis and other pattern classifiers specifically 
deep learning neural network and extreme learning machine 
for recognition human gait will be performed in the upcoming 
research projects.
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