skip to main content
10.1145/3554944.3554956acmotherconferencesArticle/Chapter ViewAbstractPublication PagesvinciConference Proceedingsconference-collections
short-paper

MolecuSense: Using Force-Feedback Gloves for Creating and Interacting with Ball-and-Stick Molecules in VR

Published:31 October 2022Publication History

ABSTRACT

We contribute MolecuSense, a virtual version of a physical molecule construction kit, based on visualization in Virtual Reality (VR) and interaction with force-feedback gloves. Targeting at chemistry education, our goal is to make virtual molecule structures more tangible. Results of an initial user study indicate that the VR molecular construction kit was positively received. Compared to a physical construction kit, the VR molecular construction kit is on the same level in terms of natural interaction. Besides, it fosters the typical digital advantages though, such as saving, exporting, and sharing of molecules. Feedback from the study participants has also revealed potential future avenues for tangible molecule visualizations.

Skip Supplemental Material Section

Supplemental Material

VR_Molecular_construction_kit.mp4

mp4

62.7 MB

References

  1. Roger Bakeman. 2005. Recommended effect size statistics for repeated measures designs. Behavior research methods 37, 3 (2005), 379–384. https://doi.org/10.3758/BF03192707Google ScholarGoogle ScholarCross RefCross Ref
  2. Aaron Bangor, Philip T Kortum, and James T Miller. 2008. An Empirical Evaluation of the System Usability Scale. International Journal of Human–Computer Interaction (IJHCI) 24, 6(2008), 574–594. https://doi.org/10.1080/10447310802205776Google ScholarGoogle ScholarCross RefCross Ref
  3. Aude Bolopion, Barthélemy Cagneau, Stephane Redon, and Stéphane Régnier. 2009. Haptic Feedback for Molecular Simulation. In IEEE Conf. on Intelligent Robots and Systems (IROS). IEEE, 237–242. https://doi.org/10.1109/IROS.2009.5354256Google ScholarGoogle ScholarCross RefCross Ref
  4. Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, Franois Yergeau, 2000. Extensible Markup Language (XML) 1.0.Google ScholarGoogle Scholar
  5. Geoff Cumming. 2013. Understanding the new statistics: Effect sizes, confidence intervals, and meta-analysis. Routledge.Google ScholarGoogle Scholar
  6. Filipp Furche, Reinhart Ahlrichs, Christof Hättig, Wim Klopper, Marek Sierka, and Florian Weigend. 2014. Turbomole. Wiley Interdisciplinary Reviews: Computational Molecular Science 4, 2(2014), 91–100. https://doi.org/10.1002/wcms.1162Google ScholarGoogle ScholarCross RefCross Ref
  7. Samuel W Greenhouse and Seymour Geisser. 1959. On methods in the analysis of profile data. Psychometrika 24, 2 (1959), 95–112. https://doi.org/10.1007/BF02289823Google ScholarGoogle ScholarCross RefCross Ref
  8. Marcus D Hanwell, Donald E Curtis, David C Lonie, Tim Vandermeersch, Eva Zurek, and Geoffrey R Hutchison. 2012. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics 4, 1 (Dec. 2012), 17. https://doi.org/10.1186/1758-2946-4-17Google ScholarGoogle ScholarCross RefCross Ref
  9. Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In Advances in psychology. Vol. 52. Elsevier, 139–183. https://doi.org/10.1016/S0166-4115(08)62386-9Google ScholarGoogle ScholarCross RefCross Ref
  10. Xiyuan Hou and Olga Sourina. 2011. Six Degree-of-Freedom Haptic Rendering for Biomolecular Docking. In Trans. on computational science XII. Springer, 98–117. https://doi.org/10.1007/978-3-642-22336-5_6Google ScholarGoogle ScholarCross RefCross Ref
  11. Julian Kreimeier, Sebastian Hammer, Daniel Friedmann, Pascal Karg, Clemens Bühner, Lukas Bankel, and Timo Götzelmann. 2019. Evaluation of Different Types of Haptic Feedback Influencing the Task-based Presence and Performance in Virtual Reality. In ACM Proc. on Pervasive Technologies Related to Assistive Environments (PETRA). 289–298. https://doi.org/10.1145/3316782.3321536Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Anderson Maciel, Sofiane Sarni, Olivier Buchwalder, Ronan Boulic, and Daniel Thalmann. 2004. Multi-Finger Haptic Rendering of Deformable Objects. In Eurographics Symposium on Virtual Environments (EGVE). 105–111. https://doi.org/10.2312/EGVE/EGVE04/105-112Google ScholarGoogle ScholarCross RefCross Ref
  13. Magnus Norrby, Christoph Grebner, Joakim Eriksson, and Jonas Boström. 2015. Molecular Rift: Virtual Reality for Drug Designers. Journal of Chemical Information and Modeling 55, 11 (2015), 2475–2484. https://doi.org/10.1021/acs.jcim.5b00544 arXiv:https://doi.org/10.1021/acs.jcim.5b00544PMID: 26558887.Google ScholarGoogle ScholarCross RefCross Ref
  14. William A Pike, John Stasko, Remco Chang, and Theresa A O’connell. 2009. The Science of Interaction. Information visualization 8, 4 (2009), 263–274. https://doi.org/10.1057/ivs.2009.22Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Priscilla Ramsamy, Adrian Haffegee, Ronan Jamieson, and Vassil Alexandrov. 2006. Using haptics to improve immersion in virtual environments. In International Conference on Computational Science (ICCS). Springer, 603–609. https://doi.org/10.1007/11758525_81Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hasti Seifi, Farimah Fazlollahi, Michael Oppermann, John Andrew Sastrillo, Jessica Ip, Ashutosh Agrawal, Gunhyuk Park, Katherine J Kuchenbecker, and Karon E MacLean. 2019. Haptipedia: Accelerating Haptic Device Discovery to Support Interaction & Engineering Design. 1–12. https://doi.org/10.1145/3290605.3300788Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Samuel Sanford Shapiro and Martin B Wilk. 1965. An analysis of variance test for normality (complete samples). Biometrika 52, 3/4 (1965), 591–611. https://doi.org/10.2307/2333709Google ScholarGoogle ScholarCross RefCross Ref
  18. Daniel Shor, Bryan Zaaijer, Laura Ahsmann, Simon Immerzeel, Max Weetzel, Daniël Eikelenboom, Jess Hartcher-O’Brien, and Doris Aschenbrenner. 2018. Designing Haptics: Comparing Two Virtual Reality Gloves with Respect to Realism, Performance and Comfort. IEEE, 318–323. https://doi.org/10.1109/ISMAR-Adjunct.2018.00095Google ScholarGoogle ScholarCross RefCross Ref
  19. Claudia Steffen, Klaus Thomas, Uwe Huniar, Arnim Hellweg, Oliver Rubner, and Alexander Schroer. 2010. TmoleX—A graphical user interface for TURBOMOLE. Journal of Computational Chemistry 31, 16 (2010), 2967–2970. https://doi.org/10.1002/jcc.21576Google ScholarGoogle ScholarCross RefCross Ref
  20. Matthew B Stocks, Steven Hayward, and Stephen D Laycock. 2009. Interacting with the Biomolecular Solvent Accessible Surface via A Haptic Feedback Device. BMC structural biology 9, 1 (2009), 1–7. https://doi.org/10.1186/1472-6807-9-69Google ScholarGoogle ScholarCross RefCross Ref
  21. Martin Turner. 1971. Ball and stick models for organic chemistry. Journal of Chemical Education 48, 6 (1971), 407. https://doi.org/10.1021/ed048p407Google ScholarGoogle ScholarCross RefCross Ref
  22. Bob G. Witmer and Michael J. Singer. 1998. Measuring Presence in Virtual Environments: A Presence Questionnaire. Presence: Teleoperators and Virtual Environments 7, 3 (June 1998), 225–240. https://doi.org/10.1162/105474698565686Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Robert C Zeleznik, Andrew S Forsberg, and Jürgen P Schulze. 2005. Look-that-there: Exploiting Gaze in Virtual Reality Interactions. Brown Univ., Providence, RI, USA, Tech. Rep. CS-05 (2005).Google ScholarGoogle Scholar
  24. Thomas G Zimmerman, Jaron Lanier, Chuck Blanchard, Steve Bryson, and Young Harvill. 1986. A hand gesture interface device. ACM SIGCHI Bulletin 18, 4 (1986), 189–192. https://doi.org/10.1145/1165387.275628Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. MolecuSense: Using Force-Feedback Gloves for Creating and Interacting with Ball-and-Stick Molecules in VR

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        VINCI '22: Proceedings of the 15th International Symposium on Visual Information Communication and Interaction
        August 2022
        136 pages
        ISBN:9781450398060
        DOI:10.1145/3554944

        Copyright © 2022 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 31 October 2022

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • short-paper
        • Research
        • Refereed limited

        Acceptance Rates

        Overall Acceptance Rate71of193submissions,37%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format