skip to main content
research-article

Compression and direct manipulation of complex blendshape models

Published:12 December 2011Publication History
Skip Abstract Section

Abstract

We present a method to compress complex blendshape models and thereby enable interactive, hardware-accelerated animation of these models. Facial blendshape models in production are typically large in terms of both the resolution of the model and the number of target shapes. They are represented by a single huge blendshape matrix, whose size presents a storage burden and prevents real-time processing. To address this problem, we present a new matrix compression scheme based on a hierarchically semi-separable (HSS) representation with matrix block reordering. The compressed data are also suitable for parallel processing. An efficient GPU implementation provides very fast feedback of the resulting animation. Compared with the original data, our technique leads to a huge improvement in both storage and processing efficiency without incurring any visual artifacts. As an application, we introduce an extended version of the direct manipulation method to control a large number of facial blendshapes efficiently and intuitively.

Skip Supplemental Material Section

Supplemental Material

a164-seo.mp4

mp4

66.4 MB

References

  1. Autodesk, 2011. Autodesk Maya API White Paper.Google ScholarGoogle Scholar
  2. Bainville, E., 2010. OpenCL Training Course: GPU matrix-vector product. http://www.bealto.com/.Google ScholarGoogle Scholar
  3. Bergeron, P., and Lachapelle, P. 1985. Controlling facial expressions and body movements in the computer generated animated short 'Tony de Peltrie'. In SIGGRAPH 85 Tutorial Notes, Advanced Computer Animation Course.Google ScholarGoogle Scholar
  4. Blanz, V., and Vetter, T. 1999. A morphable model for the synthesis of 3d faces. In Proc. of SIGGRAPH 99, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 187--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Börm, S., Grasedyck, L., and Hackbusch, W. 2003. Introduction to hierarchical matrices with applications. Engineering Analysis with Boundary Elements 27, 5, 405--422.Google ScholarGoogle ScholarCross RefCross Ref
  6. Börm, S. 2010. Efficient numerical methods for non-local operators: H2-matrix compression, algorithms and analysis. EMS Tracts in Math. European Mathematical Society.Google ScholarGoogle Scholar
  7. Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright, W. R., McCallum, B. C., and Evans, T. R. 2001. Reconstruction and representation of 3d objects with radial basis functions. In Proc. of SIGGRAPH 2001, ACM, Computer Graphics Proceedings, Annual Conference Series, 67--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Çivril, A., and Magdon-Ismail, M. 2009. On selecting a maximum volume sub-matrix of a matrix and related problems. Theor. Comput. Sci. 410 (November), 4801--4811. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chandrasekaran, S., Gu, M., and Pals, T. 2004. Fast and stable algorithms for hierarchically semi-separable representations. Tech. rep., University of California, Berkeley.Google ScholarGoogle Scholar
  10. Chuang, E. S. 2004. Analysis, synthesis, and retargeting of facial expressions. PhD thesis, Stanford, CA, USA. AAI3128633. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Deng, Z., Chiang, P.-Y., Fox, P., and Neumann, U. 2006. Animating blendshape faces by cross-mapping motion capture data. In Proc. of the 2006 Symp. on Interactive 3D graphics and games, ACM, New York, NY, USA, I3D '06, 43--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Ernst, J., 2011. Fast and efficient facial rigging. Talk at Game Developers Conference (GDC) 2011.Google ScholarGoogle Scholar
  13. Feng, W.-W., Kim, B.-U., and Yu, Y. 2008. Real-time data driven deformation using kernel canonical correlation analysis. ACM Trans. Graph. 27 (August), 91:1--91:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Irving, G. 2011. Banded householder representation of linear subspaces. http://arxiv.org/abs/1108.5822.Google ScholarGoogle Scholar
  15. Johnson, S. G., 2010. The NLopt nonlinear-optimization package. http://ab-initio.mit.edu/nlopt.Google ScholarGoogle Scholar
  16. Joshi, P., Tien, W. C., Desbrun, M., and Pighin, F. 2003. Learning controls for blend shape based realistic facial animation. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symp. on Comp. Anim., Eurographics Association, SCA '03, 187--192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. 2007. Harmonic coordinates for character articulation. ACM Trans. Graph. 26 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Ju, T., Schaefer, S., and Warren, J. 2005. Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24 (July), 561--566. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Karni, Z., and Gotsman, C. 2000. Spectral compression of mesh geometry. In Proc. of SIGGRAPH 2000, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 279--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kernighan, B. W., and Lin, S. 1970. An Efficient Heuristic Procedure for Partitioning Graphs. The Bell System Tech. J. 49, 1, 291--307.Google ScholarGoogle ScholarCross RefCross Ref
  21. Lau, M., Chai, J., Xu, Y.-Q., and Shum, H.-Y. 2009. Face poser: Interactive modeling of 3d facial expressions using facial priors. ACM Trans. Graph. 29 (December), 3:1--3:17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lewis, J., and Anjyo, K.-i. 2010. Direct manipulation blend-shapes. IEEE Comp. Graph. and Appl. 30, 4 (July-Aug.), 42--50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Lewis, J. P., Mooser, J., Deng, Z., and Neumann, U. 2005. Reducing blendshape interference by selected motion attenuation. In Proc. of the 2005 Symp. on Interactive 3D graphics and games, ACM, New York, NY, USA, I3D '05, 25--29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Li, H., Weise, T., and Pauly, M. 2010. Example-based facial rigging. ACM Trans. Graph. 29 (July), 32:1--32:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Lipman, Y., Kopf, J., Cohen-Or, D., and Levin, D. 2007. Gpu-assisted positive mean value coordinates for mesh deformations. In Proc. of the fifth Eurographics Symp. on Geom. Proc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Loiola, E. M., Maria, N., Abreu, M., Boaventuranetto, P. O., Hahn, P., and Querido, T. 2007. An analytical survey for the quadratic assignment problem. European Journal Operational Research 176, 657--690.Google ScholarGoogle ScholarCross RefCross Ref
  27. Nguyen, H. 2007. GPU Gems 3. Addison-Wesley Professional. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. NVIDIA. 2010. CUDA Compute Unified Device Architecture - Programming Guide.Google ScholarGoogle Scholar
  29. Osipa, J. 2010. Stop Staring: Facial Modeling and Animation Done Right, 3rd Ed. Sybex. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Peng, J., Kim, C.-S., and Kuo, C.-C. J. 2005. Technologies for 3d mesh compression: A survey. Journal of Visual Communication and Image Representation 16, 6, 688--733. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Pighin, F., Hecker, J., Lischinski, D., Szeliski, R., and Salesin, D. H. 1998. Synthesizing realistic facial expressions from photographs. In Proc. of SIGGRAPH 98, ACM, New York, NY, USA, 75--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Powell, M. J. D. 2009. The BOBYQA algorithm for bound constrained optimization without derivatives. Tech. rep., Cambridge, England.Google ScholarGoogle Scholar
  33. Raitt, B., 2004. The making of gollum. Presentation at U. Southern California Institute for Creative Technologies' Frontiers of Facial Animation Workshop, August.Google ScholarGoogle Scholar
  34. Seol, Y., Seo, J., Kim, P. H., Lewis, J. P., and Noh, J. 2011. Artist friendly facial animation retargeting. ACM Trans. Graph. (Proceedings of SIGGRAPH ASIA 2011) 30, 6. Google ScholarGoogle Scholar
  35. Sifakis, E., Neverov, I., and Fedkiw, R. 2005. Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Trans. Graph. 24 (July), 417--425. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sorkine, O., Cohen-Or, D., Irony, D., and Toledo, S. 2005. Geometry-aware bases for shape approximation. IEEE Trans. on Viz. and Comp. Graph. 11, 2 (March-April), 171--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Stefanoski, N., and Ostermann, J. 2008. Spatially and temporally scalable compression of animated 3d meshes with MPEG-4/FAMC. In ICIP '08 - IEEE International Conference on Image Processing, vol. 0.Google ScholarGoogle Scholar
  38. Sumner, R. W., Zwicker, M., Gotsman, C., and Popović, J. 2005. Mesh-based inverse kinematics. ACM Trans. Graph. 24 (July), 488--495. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Vlasic, D., Brand, M., Pfister, H., and Popović, J. 2005. Face transfer with multilinear models. ACM Trans. Graph. 24 (July), 426--433. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Wu, Q., Xia, T., Chen, C., Lin, H.-Y. S., Wang, H., and Yu, Y. 2008. Hierarchical tensor approximation of multidimensional visual data. IEEE Trans. on Vis. and Comp. Graph. 14 (January), 186--199. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Xia, J., Chandrasekaran, S., Gu, M., and Li, X. S. 2010. Fast algorithms for hierarchically semiseparable matrices. Numerical Linear Algebra with Applications 17, 6, 953--976.Google ScholarGoogle ScholarCross RefCross Ref
  42. Zhang, L., Snavely, N., Curless, B., and Seitz, S. M. 2004. Spacetime faces: high resolution capture for modeling and animation. ACM Trans. Graph. 23 (August), 548--558. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Compression and direct manipulation of complex blendshape models

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 30, Issue 6
      December 2011
      678 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2070781
      Issue’s Table of Contents

      Copyright © 2011 ACM

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 December 2011
      Published in tog Volume 30, Issue 6

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader