Skip to main content
Log in

Diagnostic Model that Takes Medical Preferences into Account. Prediction of the Clinical Status of Prostate Cancer

  • MATHEMATICAL MODELS AND COMPUTATIONAL METHODS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract—A mathematical model is proposed to describe and solve problems of medical diagnostics and forecasting based on a risk criterion. Within the framework of the model, problems with ranked diagnoses are considered, whose solution benefits from taking medical preferences into account. A diagnostic algorithm, which is the implementation of this model, is used to solve the problem of predicting the clinical status of prostate cancer. A comparative analysis of the quality of the prediction for four model options was carried out, informative prognostic indicators were revealed, and the results were interpreted. Taking medical preferences into account increases the accuracy of prediction for patients with more frequent and aggressive tumor process due to loss of accuracy for patients with less frequent and aggressive tumor process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2nd Ed. (Morgan Kaufmann Publishers, 2005).

    MATH  Google Scholar 

  2. P. Flakh, Machine Training (DMK Press, Moscow, 2015).

    Google Scholar 

  3. S. A. Aivazyan, V. M. Bukhshtaber, I. S. Enyukov, and L. D. Meshalkin, “Applied Statistics: Classification and Decrease in Dimension” (Finansy i Statistika, Moscow, 1989) [in Russian].

    Google Scholar 

  4. C. Bishop, Pattern Recognition and Machine Learning, (Springer-Verlag, New York, 2007).

    MATH  Google Scholar 

  5. R. A. Fisher, “The Use of Multiple Measurements in Taxonomic Problems,” Ann. Eugenics 7, 179–188 (1936).

    Article  Google Scholar 

  6. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, 2nd. Ed. (Springer-Verlag, New York, 2009).

    Book  MATH  Google Scholar 

  7. R. Duda, P. Hart, and D. Stork, Pattern Classification, 2nd. Ed. (Wiley Interscience, 2000).

    MATH  Google Scholar 

  8. V. Vapnik, Statistical learning theory (Wiley, New York, 1999).

    MATH  Google Scholar 

  9. J. Pearl and S. Russell, Bayesian Networks. Handbook of Brain Theory and Neural Networks (MIT Press, Cambridge, MA, 2003), pp. 157–160.

    Google Scholar 

  10. L. Breiman, J. H. Friedman, R. A. Olshen, and C. I. Stone, Classification and Regression Trees (Wadsworth, Belmont, Calif., 1984).

    MATH  Google Scholar 

  11. V. G. Gitis, “Metod approksimatsii funktsional’nykh zavisimostei po ball’nym ekspertnym otsenkam,” Probl. Peredachi Inf. 23 (3), 94–100 (1987).

    MathSciNet  Google Scholar 

  12. G. Chernov and L. Mozes, Elementary Theory of Statistical Decisions (Sovetskoe Radio, Moscow, 1962).

    Google Scholar 

  13. A. Val’d, “Statistical Decision Functions,” in Position Games, (Nauka, Moscow, 1967), pp. 300–522.

    Google Scholar 

  14. Malignant New Growths in Russia in 2016 (Incidence and Death Rate), Ed. by A. D. Kaprin, V. V. Starinskii, and G. V. Petrova, (MNIOI im. P. A. Gertsena, Moscow, 2018) [in Russian].

  15. L. Klotz, D. Vesprini, P. Sethukavalan, et al. “Long-term follow-up of a large active surveillance cohort of patients with prostate cancer [Journal],” J. Clin. Oncol. 33, 272–277 (2015).

    Article  Google Scholar 

  16. J. J. Tosoian, M. Mamawala, J. I. Epstein, et al., “Intermediate and longer-term outcomes from a prospective active-surveillance program for favorable-risk prostate cancer [Journal],” J. Clin. Oncol. 33 (30), 3379–3385 (2015).

    Article  Google Scholar 

  17. T. F. Hsieh, C. H. Chang, W. C. Chen, et al., “Correlation of gleasonscores between needle-core biopsy and radical prosta-tectomyspecimens in patients with prostate cancer [Journal],” J. Chin. Med. Assoc. 68 (4), 167–171 (2005).

    Article  Google Scholar 

  18. N. N. Volchenko, A. D. Kaprin, M. M. Belyakov, and A. N. Petrov, “Comparative analysis of degree of the differentiation of the prostate cancer on biopsy and operational materials,” Onkologiya. Zh. im. P.A. Gertsena. 1 (5), 8−22 (2016).

    Google Scholar 

  19. E. F. Yurkov, S. A. Pirogov, V. G. Gitis, N. S. Sergeeva, B. Ya. Alekseev, T. E. Skachkova, and A. D. Kaprin, “Forecast of the aggressive status of the prostate cancer for presurgical data,” Inf. Protsessy 16, 301–311 (2016).

    Google Scholar 

  20. A. D. Kaprin, B. Ya. Alekseev, N. S. Sergeeva, T. E. Skachkova, E. F. Yurkov, S. A. Pirogov, V. G. Gitis, N. V. Marshutina, and K. M. Nyushko, “The laboratory index of the clinical separation into stages—the new multiparametrical indicator for the prostate cancer,“ Onkologiya. Zh. im. P. A. Gertsena 5 (1), 23–30 (2016).

    Google Scholar 

  21. N. S. Sergeeva, T. E. Skachkova, B. Ya. Alekseev, E. F. Yurkov, S. A. Pirogov, V. G. Gitis., N. V. Marshutina, and A. D. Kaprin, “The VIZG index—the new multiparametrical indicator for the prostate cancer,” Onkourologiya 12 (4), 89–95 (2016).

    Article  Google Scholar 

  22. P. McCullagh and J. Nelder, A Generalized Linear Models, 2nd Ed. (Chapman & Hall, London, 1989).

    Book  MATH  Google Scholar 

  23. J. Long, Regression Models for Categorical and Limited Dependent Variables (Sage, Thousand Oaks, CA, 1997).

    MATH  Google Scholar 

  24. A. Agresti, An Introduction to Categorical Data Analysis, 2nd Ed. (Wiley, New York, 2007).

    Book  MATH  Google Scholar 

  25. A. Dobson and A. Barnett, An Introduction to Generalized Linear Models, 3nd Ed. (Chapman & Hall, London, 2008).

    MATH  Google Scholar 

  26. S. J1. Freedland, W. B. Isaacs, E. A. Platz, et al., “Prostate size and risk of high-grade, advanced prostate cancer and biochemical progression after radical prostatectomy: a search data-base study,” J. Clin. Oncol. 23 (30), 7546–7554 (2005).

Download references

Funding

Sections 2 and 7 of the study were performed by S.A. Pirogov and V.G. Gitis in the Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences with the support of the Russian Science Foundation, project no. 14-50-00150.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. Yurkov.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurkov, E.F., Pirogov, S.A., Gitis, V.G. et al. Diagnostic Model that Takes Medical Preferences into Account. Prediction of the Clinical Status of Prostate Cancer. J. Commun. Technol. Electron. 64, 834–845 (2019). https://doi.org/10.1134/S1064226919080266

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226919080266

Navigation