Skip to main content
Log in

Establishment of the Axial Polarity and Cell Fate in Metazoa via Canonical Wnt Signaling: New Insights from Sponges and Annelids

  • CONFERENCE MATERIALS
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract—

In this paper, the role of the Wnt/β-catenin pathway in the establishment of the body plan in multicellular animals has been analyzed. We demonstrated that at different stages of development the Wnt signaling cascade is involved in several directly unrelated processes such as inner germ layer specification, anterior–posterior axis patterning, and terminal growth. Bioinformatics analysis revealed the independent divergence of Wnt ligands in basal Metazoa and conservation of Wnt subfamilies within the Cnidaria + Bilateria clade. Polarized expression of Wnt ligands in sponge and annelid larvae has been shown, thus confirming the applicability of the existing model of the main body axis patterning to two more taxa. The β-catenin localization and inhibitory analysis have provided evidence of the unlikely role for Wnt pathway in endomesoderm determination in nereid polychaetes. The evolutionary trend to establish alternative mechanisms even for key events such as segregation of germ layers has been observed in the case of more determinative ontogeny and predominance of autonomous specification, as exemplified by the heteroquadrant (unequal) type of spiral development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Aberle, H., Bauer, A., Stappert, J., Kispert, A., and Kemler, R., β-Catenin is a target for the ubiquitin-proteasome pathway, EMBO J., 1997, vol. 16, no. 13, pp. 3797–3804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Adamska, M., Degnan, S.M., Green, K.M., Adamski, M., Craigie, A., Larroux, C., and Degnan, B.M., Wnt and TGF-beta expression in the sponge Amphimedon queenslandica and the origin of metazoan embryonic patterning, PLoS One, 2007, vol. 2. e1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Adamska, M., Larroux, C., Adamski, M., Green, K., Lovas, E., Koop, D., Richards, G.S., Zwafink, C., and Degnan, B.M., Structure and expression of conserved Wnt pathway components in the demosponge Amphimedon queenslandica, Evol. Dev., 2010, vol. 12, pp. 494–518.

    Article  CAS  PubMed  Google Scholar 

  4. Almuedo-Castillo, M., Sureda- Gómez, M., and Adell, T., Wnt signaling in planarians: new answers to old questions, Int. J. Dev. Biol., 2012, vol. 56, nos. 1–3, pp. 53–65.

    Article  CAS  PubMed  Google Scholar 

  5. Arenas-Mena, C., Embryonic expression of HeFoxA1 and HeFoxA2 in an indirectly developing polychaete, Dev. Genes Evol., 2006, vol. 216, no. 11, pp. 727–736.

    Article  CAS  PubMed  Google Scholar 

  6. Arenas-Mena, C., Brachyury, Tbx2/3 and sall expression during embryogenesis of the indirectly developing polychaete Hydroides elegans, Int. J. Dev. Biol., 2013, vol. 57, no. 1, pp. 73–83.

    Article  CAS  PubMed  Google Scholar 

  7. Arendt, D., Technau, U., and Wittbrodt, J., Evolution of the bilaterian larval foregut, Nature, 2001, vol. 409, no. 6816, pp. 81–85.

    Article  CAS  PubMed  Google Scholar 

  8. Bastin, B.R., Chou, H.-C., Pruitt, M.M., and Schneider, S.Q., Structure, phylogeny, and expression of the frizzled-related gene family in the lophotrochozoan annelid Platynereis dumerilii, EvoDevo, 2015, vol. 6, p. 37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Behrens, J., von Kries, J.P., Kühl, M., Bruhn, L., Wedlich, D., Grosschedl, R., and Birchmeier, W., Functional interaction of beta-catenin with the transcription factor LEF-1, Nature, 1996, vol. 382, no. 6592, pp. 638–642.

    Article  CAS  PubMed  Google Scholar 

  10. Beklemishev, V.N., Osnovy sravnitel’noi anatomii bespozvonochnykh (Basics of Comparative Anatomy of Invertebrates), vol. 1: Promorfologiya (Promorphology), Moscow: Nauka, 1964.

  11. Bertrand, V., β-Catenin-driven binary cell fate decisions in animal development, WIREs Dev. Biol., 2016, vol. 5, no. 3, pp. 377–388.

    CAS  Google Scholar 

  12. Borisenko, I., Adamski, M., Ereskovsky, A., and Adamska, M., Surprisingly rich repertoire of Wnt genes in the demosponge Halisarca dujardini, BMC Evol. Biol., 2016, vol. 16, p. 123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boyle, M.J. and Seaver, E.C., Developmental expression of foxA and gata genes during gut formation in the polychaete annelid, Capitella sp. I, Evol. Dev., 2008, vol. 10, no. 1, pp. 89–105.

    Article  CAS  PubMed  Google Scholar 

  14. Boyle, M.J., Yamaguchi, E., and Seaver, E.C., Molecular conservation of metazoan gut formation: evidence from expression of endomesoderm genes in Capitella teleta (Annelida), EvoDevo, 2014, vol. 5, no. 1, p. 39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Broun, M., Gee, L., Reinhardt, B., and Bode, H.R., Formation of the head organizer in hydra involves the canonical Wnt pathway, Development, 2005, vol. 132, no. 12, pp. 2907–2916.

    Article  CAS  PubMed  Google Scholar 

  16. Cavallo, R.A., Cox, R.T., Moline, M.M., Roose, J., Polevoy, G.A., Clevers, H., Peifer, M., and Bejsovec, A., Drosophila Tcf and Groucho interact to repress Wingless signalling activity, Nature, 1998, vol. 395, no. 6702, pp. 604–608.

    Article  CAS  PubMed  Google Scholar 

  17. Cebrià, F., Saló, E., and Adell, T., Regeneration and growth as modes of adult development: the platyhelminthes as a case study, in Evolutionary Developmental Biology of Invertebrates 2, Wanninger, A., Ed., Vienna: Springer, 2015, pp. 41–78.

    Google Scholar 

  18. Cho, S.-J., Valles, Y., Giani, V.C., Seaver, E.C., and Weisblat, D.A., Evolutionary dynamics of the wnt gene family: a lophotrochozoan perspective, Mol. Biol. Evol., 2010, vol. 27, no. 7, pp. 1645–1658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Clevers, H., Wnt/β-catenin signaling in development and disease, Cell, 2006, vol. 127, no. 3, pp. 469–480.

    Article  CAS  Google Scholar 

  20. Cruciat, C.M. and Niehrs, C., Secreted and transmembrane Wnt inhibitors and activators, Cold Spring Harb. Perspect. Med., 2013, vol. 3, no. 3. a015081.

    Google Scholar 

  21. Darras, S., Fritzenwanker, J.H., Uhlinger, K.R., Farrelly, E., Pani, A.M., Hurley, I.A., Norris, R.P., Osovitz, M., Terasaki, M., Wu, M., Aronowicz, J., Kirschner, M., Gerhart, J.C., and Lowe, C.J., Anteroposterior axis patterning by early canonical Wnt signaling during hemichordate development, PLoS Biol., 2018, vol. 16, no. 1. e2003698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dondua, A.K. and Kostyuchenko, R.P., Concerning one obsolete tradition: does gastrulation in sponges exist?, Russ. J. Dev. Biol., 2013, vol. 44, no. 5, pp. 267–272.

    Article  Google Scholar 

  23. DuBuc, T.Q., Stephenson, T.B., Rock, A.N., and Martindale, M.Q., Hox and Wnt pattern the primary body axis of an anthozoan cnidarian before gastrulation, Nat. Comm., 2018, vol. 9, no. 1, pp. 2007.

  24. Ereskovsky, A.V. and Dondua, A.K., The problem of germ layers in sponges (Porifera) and some issues concerning early metazoan evolution, Zool. Anz., 2006, vol. 245, no. 2, pp. 65–76.

    Article  Google Scholar 

  25. Fortunato, S.A., Adamski, M., Ramos, O.M., Leininger, S., Liu, J., Ferrier, D.E., and Adamska, M., Calcisponges have a ParaHox gene and dynamic expression of dispersed NK homeobox genes, Nature, 2014, vol. 30, no. 514 (7524), pp. 620–623.

  26. Fortunato, S.A., Adamski, M., and Adamska, M., Comparative analyses of developmental transcription factor repertoires in sponges reveal unexpected complexity of the earliest animals, Mar. Genom., 2015, vol. 24, no. 2, pp. 121–129.

    Article  Google Scholar 

  27. Genikhovich, G. and Technau, U., On the evolution of bilaterality, Development, 2017, vol. 144, no. 19, pp. 3392–3404.

    Article  CAS  PubMed  Google Scholar 

  28. Le Gouar, M., Guillou, A., and Vervoort, M., Expression of a SoxB and a Wnt2/13 gene during the development of the mollusc Patella vulgata, Dev. Genes Evol., 2004, vol. 214, no. 5, pp. 250–256.

    Article  PubMed  Google Scholar 

  29. Guder, C., Philipp, I., Lengfeld, T., Watanabe, H., Hobmayer, B., and Holstein, T.W., The Wnt code: cnidarians signal the way, Oncogene, 2006, vol. 25, pp. 7450–7460.

    Article  CAS  PubMed  Google Scholar 

  30. Haeckel, E., On the organization of sponges and their relationship to the corals, Ann. Mag. Nat. Hist., 1870, vol. 5, pp. 1–13.

    Article  Google Scholar 

  31. Henry, J.Q., Perry, K.J., Wever, J., Seaver, E., and Martindale, M.Q., β-Catenin is required for the establishment of vegetal embryonic fates in the nemertean, Cerebratulus lacteus, Crepidula fornicata, Dev. Biol., 2008, vol. 317, no. 1, pp. 368–379.

    Article  CAS  PubMed  Google Scholar 

  32. Henry, J.Q., Perry, K.J., and Martindale, M.Q., β-Catenin and early development in the gastropod, Crepidula fornicata, Integr. Comp. Biol., 2010, vol. 50, no. 5, pp. 707–719.

    Article  CAS  PubMed  Google Scholar 

  33. Holstein, T.W., Watanabe, H., and Özbek, S., Signaling pathways and axis formation in the lower Metazoa, Curr. Top. Dev. Biol., 2011, vol. 97, pp. 137–177.

    Article  CAS  PubMed  Google Scholar 

  34. Holstein, T.W., The evolution of the Wnt pathway, Cold Spring Harb. Perspect. Biol., 2012, vol. 4, no. 7. a007922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Isaeva, V.V., Symmetry transformations in ontogeny and evolution, Paleontol. J., 2014, vol. 48, no. 11, pp. 1127–1136.

    Article  Google Scholar 

  36. Ivanova-Kazas, O.M., Evolyutsionnaya embriologiya zhivotnykh (Evolutionary Embryology of Animals), St. Petersburg: Nauka, 1995.

  37. Janssen, R., Gouar, M.L., Pechmann, M., Poulin, F., Bolognesi, R., Schwager, E.E., Hopfen, C., Colbourne, J.K., Budd, G.E., Brown, S.J., Prpic, N.-M., Kosiol, C., Vervoort, M., Damen, W.G., Balavoine, G., and McGregor, A.P., Conservation, loss, and redeployment of Wnt ligands in protostomes: implications for understanding the evolution of segment formation, BMC Evol. Biol., 2010, vol. 10, no. 1, p. 374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kiecker, C., Bates, T., and Bell, E., Molecular specification of germ layers in vertebrate embryos, Cell. Mol. Life Sci., 2015, vol. 73, no. 5, pp. 923–947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kin, K., Kakoi, S., and Wada, H., A novel role for dpp in the shaping of bivalve shells revealed in a conserved molluscan developmental program, Dev. Biol., 2009, vol. 329, no. 1, pp. 152–166.

    Article  CAS  PubMed  Google Scholar 

  40. Kostyuchenko, R.P., Kozin, V.V., Filippova, N.A., and Sorokina, E.V., FoxA expression pattern in two polychaete species, Alitta virens and Platynereis dumerilii: examination of the conserved key regulator of the gut development from cleavage through larval life, post-larval growth and regeneration, Dev. Dyn., 2019. In press.

  41. Kozin, V.V., Babakhanova, R.A., and Kostyuchenko, R.P., Functional role for MAP kinase signaling in cell lineage and dorsoventral axis specification in the basal gastropod Testudinalia testudinalis (Patellogastropoda, Mollusca), Russ. J. Dev. Biol., 2013, vol. 44, no. 1, pp. 35–47.

    Article  CAS  Google Scholar 

  42. Kozin, V.V., Filimonova, D.A., Kupriashova, E.E., and Kostyuchenko, R.P., Mesoderm patterning and morphogenesis in the polychaete Alitta virens (Spiralia, Annelida): Expression of mesodermal markers Twist, Mox, Evx and functional role for MAP kinase signaling, Mech. Dev., 2016, vol. 140, pp. 1–11.

    Article  CAS  PubMed  Google Scholar 

  43. Kozin, V.V. and Kostyuchenko, R.P., Evolutionary conservation and variability of the mesoderm development in Spiralia: a peculiar pattern of nereid polychaetes, Biol. Bull. (Moscow), 2016, vol. 43, no. 3, pp. 216–225.

    Article  Google Scholar 

  44. Kraus, Y., Aman, A., Technau, U., and Genikhovich, G., Pre-bilaterian origin of the blastoporal axial organizer, Nat. Comm., 2016, vol. 7, p. 11694.

    Article  CAS  Google Scholar 

  45. Kumburegama, S. and Wikramanayake, A.H., Wnt signaling in the early sea urchin embryo, in Wnt Signaling Methods in Molecular Biology, Totowa, N.J.: Humana Press, 2008, pp. 187–199.

    Google Scholar 

  46. Lambert, J.D., Mesoderm in spiralians: the organizer and the 4D cell, J. Exp. Zool., 2008, vol. 310B, no. 1, pp. 15–23.

    Article  Google Scholar 

  47. Lapébie, P., Gazave, E., Ereskovsky, A., Derelle, R., Bézac, C., Renard, E., Houliston, E., and Borchiellini, C., WNT/β-catenin signalling and epithelial patterning in the homoscleromorph sponge Oscarella, PLoS One, 2009, vol. 4, no. 6. e5823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lartillot, N., Gouar, M.L., and Adoutte, A., Expression patterns of fork head and goosecoid homologues in the mollusc Patella vulgata supports the ancestry of the anterior mesendoderm across Bilateria, Dev. Genes Evol., 2002a, vol. 212, no. 11, pp. 551–561.

    Article  PubMed  Google Scholar 

  49. Lartillot, N., Lespinet, O., Vervoort, M., and Adoutte, A., Expression pattern of Brachyury in the mollusc Patella vulgata suggests a conserved role in the establishment of the AP axis in Bilateria, Development, 2002b, vol. 129, no. 6, pp. 1411–1421.

    CAS  PubMed  Google Scholar 

  50. Leininger, S., Adamski, M., Bergum, B., Guder, C., Liu, J., Laplante, M., Bråte, J., Hoffmann, F., Fortunato, S., Jordal, S., Rapp, H.T., and Adamska, M., Developmental gene expression provides clues to relationships between sponge and eumetazoan body plans, Nat. Comm., 2014, vol. 3905, no. 5, p. 3905.

    Article  CAS  Google Scholar 

  51. Loh, K.M., van Amerongen, R., and Nusse, R., Generating cellular diversity and spatial form: Wnt signaling and the evolution of multicellular animals, Dev. Cell, 2016, vol. 38, no. 6, pp. 643–655.

    Article  CAS  PubMed  Google Scholar 

  52. MacDonald, B.T. and He, X., Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling, Cold Spring Harb. Perspect. Biol., 2013, vol. 4. a007880.

    Google Scholar 

  53. Mamkaev, Yu.V., Evolutionary significance of morphogenetic mechanisms, Russ. J. Mar. Biol., 2004, vol. 30, suppl. 1, pp. S34–S42.

    Article  Google Scholar 

  54. Martin- Durán, J.M., Monjo, F., and Romero, R., Planarian embryology in the era of comparative developmental biology, Int. J. Dev. Biol., 2012, vol. 56, nos. 1–3, pp. 39–48.

  55. Martindale, M.Q., The evolution of metazoan axial properties, Nat. Rev. Genet., 2005, vol. 6, no. 12, pp. 917–927.

    Article  CAS  PubMed  Google Scholar 

  56. Miller, J.R., The Wnts, Genome Biol., 2002, vol. 3, no. 1. REVIEWS3001.

  57. Nakanishi, N., Sogabe, S., and Degnan, B.M., Evolutionary origin of gastrulation: insights from sponge development, BMC Biol., 2014, vol. 12, p. 26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ozernyuk, N.D. and Isaeva, V.V., Evolyutsiya ontogeneza (The Evolution of Ontogeny), Moscow: KMK, 2016.

  59. Petersen, C.P. and Reddien, P.W., Wnt signaling and the polarity of the primary body axis, Cell, 2009, vol. 139, no. 6, pp. 1056–1068.

    Article  CAS  PubMed  Google Scholar 

  60. Prud’homme, B., de Rosa, R., Arendt, D., Julien, J.-F., Pajaziti, R., Dorresteijn, A.W.C., Adoutte, A., Wittbrodt, J., and Balavoine, G., Arthropod-like expression patterns of engrailed and wingless in the annelid Platynereis dumerilii suggest a role in segment formation, Curr. Biol., 2003, vol. 13, no. 21, pp. 1876–1881.

    Article  CAS  PubMed  Google Scholar 

  61. Pruitt, M.M., Letcher, E.J., Chou, H.-C., Bastin, B.R., and Schneider, S.Q., Expression of the wnt gene complement in a spiral-cleaving embryo and trochophore larva, Int. J. Dev. Biol., 2014, vol. 58, pp. 563–573.

    Article  CAS  PubMed  Google Scholar 

  62. De Robertis, E.M., Spemann’s organizer and the self-regulation of embryonic fields, Mech. Dev., 2009, vol. 126, nos. 11–12, pp. 925–941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Roose, J., Molenaar, M., Peterson, J., Hurenkamp, J., Brantjes, H., Moerer, P., van de Wetering, M., Destree, O., and Clevers, H., The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors, Nature, 1998, vol. 395, no. 6702, pp. 608–612.

    Article  CAS  PubMed  Google Scholar 

  64. Schenkelaars, Q., Pratlong, M., Kodjabachian, L., Fierro-Constain, L., Vacelet, J., Bivic, A.L., Renard, E., and Borchiellini, C., Animal multicellularity and polarity without Wnt signaling, Sci. Rep., 2017, vol. 7, p. 15383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schneider, S.Q. and Bowerman, B., β-Catenin asymmetries after all animal/vegetal-oriented cell divisions in Platynereis dumerilii embryos mediate binary cell-fate specification, Dev. Cell, 2007, vol. 13, no. 1, pp. 73–86.

    Article  CAS  PubMed  Google Scholar 

  66. Seaver, E.C. and Kaneshige, L.M., Expression of ‘segmentation’ genes during larval and juvenile development in the polychaetes Capitella sp. I and H. elegans, Dev. Biol., 2006, vol. 289, no. 1, pp. 179–194.

    Article  CAS  PubMed  Google Scholar 

  67. Svetlov, P.G., Ratio of morphological axes in ontogeny and phylogeny of different groups of animals, Zh. Obshch. Biol., 1967, vol. 28, no. 5, pp. 567–578.

    CAS  PubMed  Google Scholar 

  68. Tan, S., Huan, P., and Liu, B., Expression patterns indicate that BMP2/4 and Chordin, not BMP5-8 and Gremlin, mediate dorsal-ventral patterning in the mollusk Crassostrea gigas, Dev. Genes Evol., 2017, vol. 227, no. 2, pp. 75–84.

    Article  CAS  PubMed  Google Scholar 

  69. Vellutini, B.C. and Hejnol, A., Expression of segment polarity genes in brachiopods supports a non-segmental ancestral role of engrailed for bilaterians, Sci. Rep., 2016, vol. 6, p. 32387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wanninger, A., Evolutionary Developmental Biology of Invertebrates 1: Introduction, Non-Bilateria, Acoelomorpha, Xenoturbellida, Chaetognatha, Vienna: Springer Vienna, 2015a.

    Book  Google Scholar 

  71. Wanninger, A., Evolutionary Developmental Biology of Invertebrates 2: Lophotrochozoa (Spiralia), Vienna: Springer Vienna, 2015b.

    Book  Google Scholar 

  72. Windsor, P.J. and Leys, S.P., Wnt signaling and induction in the sponge aquiferous system: evidence for an ancient origin of the organizer: polarity in sponges, Evol. Dev., 2010, vol. 12, pp. 484–493.

    Article  CAS  PubMed  Google Scholar 

  73. Windsor, ReidP.J., Matveev, E., McClymont, A., Posfai, D., Hill, A.L., and Leys, S.P., Wnt signaling and polarity in freshwater sponges, BMC Evol. Biol., 2018, p. 18.

  74. Zeng, X., Tamai, K., Doble, B., Li, S., Huang, H., Habas, R., Okamura, H., Woodgett, J., and He, X., A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation, Nature, 2005, vol. 438, no. 7069, pp. 873–877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kozin.

Additional information

Translated by E. Martynova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozin, V.V., Borisenko, I.E. & Kostyuchenko, R.P. Establishment of the Axial Polarity and Cell Fate in Metazoa via Canonical Wnt Signaling: New Insights from Sponges and Annelids. Biol Bull Russ Acad Sci 46, 14–25 (2019). https://doi.org/10.1134/S1062359019010035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359019010035

Navigation