Skip to main content
Log in

Calcium hydride synthesis of Ti–Nb-based alloy powders

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The metallothermic (calcium hydride) synthesis of Ti–Nb alloy powders alloyed with tantalum and zirconium is experimentally studied under various conditions. Chemical, X-ray diffraction, and metallographic analyses of the synthesized products show that initial oxides are completely reduced and a homogeneous β-Ti-based alloy powder forms under the optimum synthesis conditions at a temperature of 1200°C. At a lower synthesis temperature, the end products have a high oxygen content. The experimental results are used to plot the thermokinetic dependences o formation of a bcc solid solution at various times of isothermal holding of Ti–22Nb–6Ta and Ti–22Nb–6Zr (at %) alloys. The physicochemical and technological properties of the Ti–22Nb–6Ta and Ti–22Nb–6Zr alloy powders synthesized by calcium hydride reduction under the optimum conditions are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Niinomi, “Recent titanium R&D for biomedical applications in Japan,” JOM 51 (6), 32–34 (1999).

    Article  Google Scholar 

  2. M. Long and H. J. Rack, “Titanium alloys in total joint replacement—a materials science perspective,” Biomaterials 19, 1621–1839 (1998).

    Article  Google Scholar 

  3. S. G. Fedotov, “Metastable phases in titanium alloys, mechanisms and conditions of their formation,” in Study of Metals in Solid and Liquid States (Nauka, Moscow, 1964), pp. 207–240.

    Google Scholar 

  4. H. Y. Kim, Y. Ikehara, J. I. Kim, H. Hosoda, and S. Miyazaki, “Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys,” Acta Materialia 54, 2419–2429 (2006).

    Article  Google Scholar 

  5. H. Y. Kim and S. Miyazaki, “Martensitic transformation and superelastic properties of Ti–Nb base alloys,” Mater. Trans. 56, 625–634 (2015).

    Article  Google Scholar 

  6. S. Miyazaki, H. Y. Kim, and H. Hosoda, “Development and characterization of Ni-free Ti-base shape memory and superelastic alloys,” Mater. Sci. Eng. A 438–440, 18–24 (2006).

    Article  Google Scholar 

  7. D. Minami, T. Uesugi, Y. Takigawa, and K. Higashi, “Effect of alloying element X on transformation strains and phase stabilities between α'' and β Ti–Nb–X (X = Al, Sn, Zr, Ta) ternary alloys from first-principles calculations,” Mater. Trans. 57, 263–268 (2016).

    Article  Google Scholar 

  8. H. Y. Kim, S. Hashimoto, J. I. Kima, T. Inamura, H. Hosoda, and S. Miyazaki, “Effect of Ta addition on shape memory behavior of Ti–22Nb alloy,” Mater. Sci. Eng. A 417, 120–128 (2006).

    Article  Google Scholar 

  9. J. I. Kima, H. Y. Kim, T. Inamura, H. Hosoda, and S. Miyazaki, “Shape memory characteristics of Ti22Nb–(2–8) Zr (at %) biomedical alloys,” Mater. Sci. Eng. A 403, 334–339 (2005).

    Article  Google Scholar 

  10. Phase Diagrams of Binary Metallic Systems: A Handbook, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 2000), Vol. 3, Book 1.

  11. Phase Diagrams of Binary Metallic Systems: A Handbook, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 2000), Vol. 3, Book 3.

  12. Yu. S. Zhukova, “Synthesis and investigation of the properties of superelastic medical Ti–Nb–Ta and TiNb–Zr,” Extended Abstract of Cand. (Eng.) Sci. Dissertation, National University of Science and Technology MISiS, Moscow, 2013.

    Google Scholar 

  13. V. N. Eremenko and L. A. Tret’yachenko, Ternary Systems of Titanium with Group IV–VI Transition Metals (Naukova Dumka, Kiev, 1987).

    Google Scholar 

  14. Properties, Preparation, and Application of Refractory Compounds: A Handbook, Ed. by T. Ya. Kosolapova, (Metallurgiya, Moscow, 1986).

  15. A. V. Tarasov, Metallurgy of Titanium (IKTs Akademkniga, Moscow, 2003).

    Google Scholar 

  16. A. S. Konopatsky, Yu. S. Zhukova, and M. R. Filonov, “Production and quality assessment of superelastic TiNb-based alloys for medical application,” Advanc. Mater. Res. 1040, 130–136 (2014).

    Article  Google Scholar 

  17. A. V. Kasimtsev and Yu. V. Levinskii, Calcium Hydride Powders of Metals, Intermetallics, Refractories, and Composites (Izd. MITKhT, Moscow, 2012).

    Google Scholar 

  18. Zh. I. Dzneladze, R. P. Shchegoleva, L. S. Golubeva, et al., Powder Metallurgy of Steels and Alloys (Metallurgiya, Moscow, 1978).

    Google Scholar 

  19. B. A. Kolachev, Hydrogen Embrittlement of Nonferrous Metals (Metallurgiya, Moscow, 1966).

    Google Scholar 

  20. I. Obinata, Y. Takeuchi, and S. Saikawa, “The system titanium–calcium,” Trans. Amer. Soc. Met. 52, 10721083 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kasimtsev.

Additional information

Original Russian Text © A.V. Kasimtsev, A.V. Shuitsev, S.N. Yudin, Yu.V. Levinskii, T.A. Sviridova, A.V. Alpatov, E.E. Novosvetlova, 2017, published in Metally, 2017, No. 5, pp. 52–63.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasimtsev, A.V., Shuitsev, A.V., Yudin, S.N. et al. Calcium hydride synthesis of Ti–Nb-based alloy powders. Russ. Metall. 2017, 724–734 (2017). https://doi.org/10.1134/S0036029517090075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029517090075

Keywords

Navigation