Skip to main content
Log in

A Comparative Study on Misorientations to Determine the Extent of Recrystallization in Pure ETP Copper

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

In electron backscatter diffraction (EBSD), kernel average misorientation (KAM), grain average misorientation (GAM), and grain orientation spread (GOS) are considered as the reflection of the extent of recrystallization. This work presents a comparative study of KAM, GAM, and GOS to bring out the best-suited parameter to determine the extent of recrystallization in pure copper. The pure ETP (electrolytic tough pitch) copper samples were characterized through EBSD at three different states: (i) deformed (ii) partially recrystallized and (iii) fully recrystallized. The result shows that the GOS found to be dominating over KAM and GAM in distinguishing the strain-free and deformed grains for pure ETP copper. The cut-off point for delineating the deformed and the strain-free grains has also been determined and applied to low percentage deformation study where higher mechanical strength and electrical conductivity is achieved than the as-received sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena (Pergamon, Oxford, 2004).

    Google Scholar 

  2. M. Segarra, M. Martínez, M. A. Fernández, J. M. Chimenos, F. Espiell, N. Sirvent, and O. Guixà, “Kinetic equation describing the annealing process of copper,” J. Mater. Sci. 40, 4483–4487 (2005).

    Article  CAS  Google Scholar 

  3. R. K. Islamgaliev, K. M. Nesterov, and R. Z. Valiev, “Structure, strength, and electric conductivity of a Cu‒Cr copper-based alloy subjected to severe plastic deformation,” Phys. Met. Metallogr. 116, 209–218 (2015).

    Article  Google Scholar 

  4. H. Jazaeri and F. J. Humphreys, “Quantifying recrystallization by electron backscatter diffraction,” J. Microsc. 213, 241–246 (2004).

    Article  CAS  Google Scholar 

  5. T. N. Kon’kova, S. Y. Mironova, V. N. Danilenko, and A. V. Korznikov, “Effect of Low Temperature Rolling on the Structure of Copper,” Phys. Met. Metallogr. 110, 318–330 (2010).

    Article  Google Scholar 

  6. R. Garg, N. P. Gurao, S. Ranganathan, and S. Suwas, “Evolution of texture and grain boundary microstructure in two-phase (α+β) brass during recrystallization,” Philos. Mag. 91, 4089–4108 (2011).

    Article  CAS  Google Scholar 

  7. R. Yoda, T. Yokomaku, and N. Tsuji, “Plastic deformation and creep damage evaluations of type 316 austenitic stainless steels by EBSD,” Mater. Charact. 61, 913–922 (2010).

    Article  CAS  Google Scholar 

  8. D. N. Githinji, PhD thesis (The Open University, 2014).

  9. S. I. Wright, M. M. Nowell, and D. P. Field, “A review of strain analysis using electron backscatter diffraction. Microsc. Microanal,” 17, 316–329 (2011).

    Article  CAS  Google Scholar 

  10. M. Kamaya, A. J. Wilkinson, and J. M. Titchmarsh, “Quantification of plastic strain of stainless steel and nickel alloy by electron backscatter diffraction,” Acta Mater. 54, 539–548 (2006).

    Article  CAS  Google Scholar 

  11. R. Kakimoto, M. Koyama, and K. Tsuzaki, “EBSD- and ECCI-based assessments of inhomogeneous plastic strain evolution coupled with digital image correlation,” ISIJ Int. 59, 2334–2342 (2019).

    Article  CAS  Google Scholar 

  12. D. P. Field, L. T. Bradford, M. M. Nowell, and T. M. Lillo, “The role of annealing twins during recrystallization of Cu,” Acta Mater. 55, 4233–4241 (2007).

    Article  CAS  Google Scholar 

  13. N. Harshavardhana, M.P. Gururajan, and P. Pant, “Microstructure engineering to optimize hardness and conductivity in electrolytic tough pitch copper,” Metall. Mater. Trans. A 50, 3566–3577 (2019).

    Article  CAS  Google Scholar 

  14. H. Lin, Y. Chen, D. Chen, and J. Kuo, “Effect of cold deformation on the recrystallization behavior of FePd alloy at the ordering temperature using electron backscatter diffraction,” Mater. Charact. 94, 138–148 (2014).

    Article  CAS  Google Scholar 

  15. R. Unnikrishnan, PhD thesis (The Open University, 2019).

  16. S. Mandal, P. V. Sivaprasad, and V. S. Sarma, “Dynamic recrystallization in a Ti modified austenitic stainless steel during high strain rate deformation,” Mater. Manuf. Process. 25, 54–59 (2010).

    Article  CAS  Google Scholar 

  17. M. H. Alvi, S. Cheong, H. Weiland, and A. D. Rollett, “Microstructural evolution during recrystallization in hot rolled aluminum alloy 1050,” Proc. from Mater. Solut. Conf. 2003 1st Int. Symp. Metall. Model. Alum. Alloy (2003), pp. 191–197.

  18. K. Radwański, “Application of FEG-SEM and EBSD methods for the analysis of the restoration processes occurring during continuous annealing of dual-phase steel strips,” Steel Res. Int. 86, 1379–1390 (2015).

    Article  Google Scholar 

  19. T. Konkova, S. Mironova, A. Korznikov, and S. L. Semiatin, “On the room-temperature annealing of cryogenically rolled copper,” Mater. Sci. Eng. A. 528, 7432–7443 (2011).

    Article  CAS  Google Scholar 

  20. Aashranth B, M. A. Davinci, D. Samantaray, U. Borah, S. K. Albert, “A new critical point on the stress-strain curve : Delineation of dynamic recrystallization from grain growth,” Mater. Des. 116, 495–503 (2017).

    Article  CAS  Google Scholar 

  21. A. Hadadzadeh, F. Mokdad, M. A. Wells, and D. L. Chen, “A new grain orientation spread approach to analyze the dynamic recrystallization behavior of a cast-homogenized Mg–Zn–Zr alloy using electron backscattered diffraction,” Mater. Sci. Eng., A 709, 285–289 (2018).

    Article  CAS  Google Scholar 

  22. M. H. Alvi, S. W. Cheong, H. Weiland, and A. D. Rollett, “Recrystallization and texture development in hot rolled 1050 aluminum,” Mater. Sci. Forum 467, 357–362 (2004).

    Article  Google Scholar 

  23. Sepideh Abolghasem, S. Basu, and M. R. Shankar, “Quantifying the progression of dynamic recrystallization in severe shear deformation at high strain rates,” J. Mater. Res. 28, 2056–2069 (2013).

    Article  Google Scholar 

  24. M. V. Degtyarev, V. P. Pilyugin, T. I. Chashchukhina, and L. M. Voronova, “Structure of iron deformed at 250°C by torsion under a pressure,” Phys. Met. Metallogr. 120, 1193–1199 (2019).

    Article  CAS  Google Scholar 

  25. F. M. Castro Cerda, F. Vercruysse, T. N. Minh, L. Kestens, A. Monsalve, and R. Petrov, “The effect of heating rate on the recrystallization behavior in cold rolled ultra low carbon steel,” Steel Res. Int. 88, 1–9 (2017).

    Article  Google Scholar 

  26. J. Cho, H. Ha, and K. Oh, “Recrystallization and grain growth of cold-rolled gold sheet,” Metall. Mater. Trans. A 36, 3415–3425 (2005).

    Article  Google Scholar 

  27. H. Mirzadeh, J. M. Cabrera, A. Najafizadeh, and P. R. Calvillo, “EBSD study of a hot deformed austenitic stainless steel,” Mater. Sci. Eng., A 538, 236–245 (2012).

    Article  CAS  Google Scholar 

  28. Y. Zhong, F. Yin, T. Sakaguchi, K. Nagai, and K. Yang, “Dislocation structure evolution and characterization in the compression deformed Mn-Cu alloy,” Acta Mater. 55, 2747–2756 (2007).

    Article  CAS  Google Scholar 

  29. Y. H. Jo, S. Jung, W. M. Choi, S. S. Sohn, H. S. Kim, B. J. Lee, N. J. Kim, and S. Lee, “Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy,” Nat. Commun. 8, 1–8 (2017).

    Article  CAS  Google Scholar 

  30. S. Zaefferer, P. Romano, and F. Friedel, “EBSD as a tool to identify and quantify bainite and ferrite in low-alloyed Al-TRIP steels,” J. Microsc. 230, 499–508 (2008).

    Article  CAS  Google Scholar 

  31. R. James, A. Walter, D. Robert, K. Diederik, and I. Jane, “Microstructure effects on the recrystallization of low-symmetry alpha-uranium,” J. Nucl. Mater. 465, 189–195 (2015).

    Article  Google Scholar 

  32. T. B. Britton, S. Birosca, M. Preuss, and A. J. Wilkinson, “Electron backscatter diffraction study of dislocation content of a macrozone in hot-rolled Ti – 6Al – 4V alloy,” Scr. Mater. 62, 639–642 (2010).

    Article  CAS  Google Scholar 

  33. M. Eskandari, M. A. Mohtadi-Bonab, A. Zarei-Hanzaki, J. A. Szpunar, and R. Basu, “Texture and microstructure development of tensile deformed high-mn steel during early stage of recrystallization,” Phys. Met. Metallogr. 120, 32–40 (2019).

    Article  CAS  Google Scholar 

  34. M. Rout, R. Ranjan, S. K. Pal, and S. B. Singh, “EBSD study of microstructure evolution during axisymmetric hot compression of 304LN stainless steel,” Mater. Sci. Eng., A 711, 378–388 (2018).

    Article  CAS  Google Scholar 

  35. J. Bouquerel, B. Diawara, A. Dubois, M. Dubar, J. Vogt, and D. Najjar, “Investigations of the microstructural response to a cold forging process of the 6082-T6 alloy,” Mater. Des. 68, 245–258 (2014).

    Article  Google Scholar 

  36. F. Cruz-Gandarilla, A. M. Salcedo-Garrido, R. E. Bolmaro, T. Baudin, N. S. De Vincentis, M. Avalos, J. G. Cabañas-Moreno, and H. Mendoza-Leon, “Microstructural evolution and mechanical properties on an ARB processed if steel studied by X‑ray diffraction and EBSD,” Mater. Charact. 118, 332–339 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Crompton Greaves Company (CG)TM for supplying the ETP copper samples and Dr. JanamejayNemade, formerly (CG)TM for discussions. The EBSD was done at OIM-a DST-IRPHA facility, IIT Bombay.

Funding

We thank Crompton Greaves Company (CG)TM for funding this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Harshavardhana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harshavardhana, N., Sivam, S.P., Kumar, G. et al. A Comparative Study on Misorientations to Determine the Extent of Recrystallization in Pure ETP Copper. Phys. Metals Metallogr. 122, 1279–1287 (2021). https://doi.org/10.1134/S0031918X20140094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20140094

Keywords:

Navigation