Skip to main content
Log in

Hydrophobization of Polysulfone Hollow Fiber Membranes

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The effect of the nature of the pore-forming agent (polyethylene glycol, ethylene glycol, diethylene glycol, glycerol) on the structure and performance of hollow fiber membranes spun from polysulfone solutions in N,N-dimethylacetamide was studied. The membranes have been characterized using various methods (determination of gas permeability and water entry pressure, scanning electron microscopy, contact angle measurement). To increase the hydrophobicity of the selective layer of hollow fibers, a procedure for applying a modifying polydimethylsiloxane layer onto the inner surface of the fiber has been developed, which has made it possible to increase the contact angle from 75°–77° to 115°–151° with retaining their gas transport properties. The composite membranes designed hold promise for use in gas–liquid membrane contactors, and hydrophobized membranes with reduced gas permeability can be used for hydrophobic pervaporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Volkov, B. V. Mchedlishvili, V. I. Roldugin, et al., Nanotechnol. Russ. 3, 656 (2008).

    Article  Google Scholar 

  2. A. F. Ismail, I. R. Dunkin, S. L. Gallivan, and S. J. Shilton, Polymer 40, 6499 (1999).

    Article  CAS  Google Scholar 

  3. P. S. T. Machado, A. C. Habert, and C. P. Borges, J. Membr. Sci. 155, 171 (1999).

    Article  CAS  Google Scholar 

  4. H. A. Tsai, J. Membr. Sci. 278, 390 (2006).

    Article  CAS  Google Scholar 

  5. J. J. Qin, F. S. Wong, Y. Li, and Y. T. Liu, J. Membr. Sci. 211, 139 (2003).

    Article  CAS  Google Scholar 

  6. A. K. Pabby and A. M. Sastre, J. Membr. Sci. 430, 263 (2013).

    Article  CAS  Google Scholar 

  7. V. A. Kirsch, V. I. Roldugin, A. V. Bildyukevich, and V. V. Volkov, Sep. Purif. Technol. 167, 63 (2016).

    Article  CAS  Google Scholar 

  8. B. Chakrabarty, A. K. Ghoshal, and M. K. Purkait, J. Membr. Sci. 315, 36 (2008).

    Article  CAS  Google Scholar 

  9. A. V. Bildyukevich, T. V. Plisko, A. S. Liubimova, et al., J. Membr. Sci. 524, 537 (2017).

    Article  CAS  Google Scholar 

  10. E. S. Lyubimova, A. V. Bildyukevich, G. B. Melnikova, and V. V. Volkov, Pet. Chem. 55, 795 (2015).

    Article  Google Scholar 

  11. J. J. Qin and F. S. Wong, Desalination 146, 307 (2002).

    Article  CAS  Google Scholar 

  12. H. I. Kim and S. S. Kim, J. Membr. Sci. 286, 193 (2006).

    Article  CAS  Google Scholar 

  13. I. Borisov, A. Ovcharova, D. Bakhtin, et al., Fibers 5, 6 (2017).

    Article  Google Scholar 

  14. F. Korminouri, M. Rahbari-Sisakht, T. Matsuura, and A. F. Ismail, Chem. Eng. J. 264, 453 (2015).

    Article  CAS  Google Scholar 

  15. A. Figoli, C. Ursino, F. Di Galiano, et al., J. Membr. Sci. 522, 192 (2017).

    Article  CAS  Google Scholar 

  16. L. Eykens, K. de Sitter, C. Dotremont, et al., Sep. Purif. Technol. 182, 36 (2017).

    Article  CAS  Google Scholar 

  17. L. Eykens, K. de Sitter, C. Dotremont, et al., Sep. Purif. Technol. 193, 38 (2018).

    Article  CAS  Google Scholar 

  18. S. Wongchitphimon, W. Rongwong, C. Y. Chuah, et al., J. Membr. Sci. 540, 146 (2017).

    Article  CAS  Google Scholar 

  19. C. A. Scholes, S. E. Kentish, G. W. Stevens, and D. de Montigny, Int. J. Greenhouse Gas Control 55, 195 (2016).

    Article  CAS  Google Scholar 

  20. H. Wu, X. Zhang, D. Xu, et al., J. Membr. Sci. 337, 61 (2009).

    Article  CAS  Google Scholar 

  21. H. Yan, X. Lu, C. Wu, et al., J. Membr. Sci. 533, 130 (2017).

    Article  CAS  Google Scholar 

  22. L.-F. Ren, F. Xia, V. Chen, et al., Desalination 423, 1 (2017).

    Article  CAS  Google Scholar 

  23. B. S. Lalia, I. Janajreh, and R. Hashaikeh, J. Membr. Sci. 539, 144 (2017).

    Article  CAS  Google Scholar 

  24. Korolkov, Y. G. Gorin, A. B. Yeszhanov, et al., Mater. Chem. Phys. 205, 55 (2018).

    Article  Google Scholar 

  25. R. M. Wu, S. Q. Liang, Z. Q., Yuan, et al., Method, Adv. Mater. Res. 160–162, 379 (2010).

    Google Scholar 

  26. M. Ma, Y. Mao, M. Gupta, et al., Macromolecules 38, 9742 (2005).

    Article  CAS  Google Scholar 

  27. L. Liu, F. Shen, X. Chen, et al., J. Membr. Sci. 499, 544 (2016).

    Article  CAS  Google Scholar 

  28. X. Wei, B. Zhao, X. M. Li., et al., J. Membr. Sci. 407/408, 164 (2012).

    Article  Google Scholar 

  29. D. Su, C. Y. Huang, Y. Hu, et al., Appl. Surf. Sci. 258, 928 (2011).

    Article  CAS  Google Scholar 

  30. L. Zhang, H. Chen, J. Sun, and J. Shen, Chem. Mater. 19, 948 (2007).

    Article  CAS  Google Scholar 

  31. M. Essalhi and M. Khayet, J. Membr. Sci. 417, 163 (2012).

    Article  Google Scholar 

  32. G. Bakeri, T. Matsuura, A. F. Ismail, and D. Rana, Sep. Purif. Technol. 89, 160 (2012).

    Article  CAS  Google Scholar 

  33. A. Ovcharova, V. Vasilevsky, I. Borisov, et al., Sep. Purif. Technol. 183, 162 (2017).

    Article  CAS  Google Scholar 

  34. A. Kargari, A. A. Shamsabadi, and M. B. Babaheidari, Int. J. Hydrogen Energy 39, 6588 (2014).

    Article  CAS  Google Scholar 

  35. M. Sadrzadeh, M. Amirilargani, K. Shahidi, and T. Mohammadi, J. Membr. Sci. 342, 236 (2009).

    Article  CAS  Google Scholar 

  36. M. S. Suleman, K. K. Lau, and Y. F. Yeong, Procedia Eng. 148, 176 (2016).

    Article  CAS  Google Scholar 

  37. H. Kim, H.-G. Kim, S. Kim, and S. S. Kim, J. Membr. Sci. 344, 211 (2009).

    Article  CAS  Google Scholar 

  38. H. Zhou, Y. Su., X. Chen, et al., J. Membr. Sci. 520, 779 (2016).

    Article  CAS  Google Scholar 

  39. J. Guo, G. Zhang, W. Wu, et al., Chem. Eng. J. 158, 558 (2010).

    Article  CAS  Google Scholar 

  40. H. Kreulen, C. A. Smolders, G. F. Verstee, and W. P. M. van Swaaij, J. Membr. Sci. 78, 217 (1993).

    Article  CAS  Google Scholar 

  41. T. Papadopoulos and K. K. Sirkar, J. Membr. Sci. 94, 163 (1994).

    Article  CAS  Google Scholar 

  42. D. G. Bessarabov, E. P. Jacobs, R. D. Sanderson, and I. N. Beckman, J. Membr. Sci. 113, 275 (1996).

    Article  CAS  Google Scholar 

  43. D. C. Nymeijer, T. Visser, R. Assen, and M. Wessling, Sep. Purif. Technol. 37, 209 (2004).

    Article  CAS  Google Scholar 

  44. K. Kneifel, S. Nowak, W. Albrecht, et al., J. Membr. Sci. 276, 241 (2006).

    Article  CAS  Google Scholar 

  45. S. A. Hashemifard, A. F. Ismail, T. Matsuura, and M. Rezaei Dasht Arzhandi, RSC Adv. 5, 48442 (2015).

    Article  CAS  Google Scholar 

  46. L. Li, Z. Xiao, S. Tan, et al., J. Membr. Sci. 243, 177 (2004).

    Article  CAS  Google Scholar 

  47. M. B. Hägg, Encyclopedia of Membranes (Springer, Berlin, 2016).

    Google Scholar 

  48. A. V. Bildyukevich, T. V. Plisko, and V. V. Usosky, Pet. Chem. 56, 321 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Plisko.

Additional information

Original Russian Text © A.V. Bildyukevich, T.V. Plisko, V.V. Usosky, A.A. Ovcharova, V.V. Volkov, 2018, published in Membrany i Membrannye Tekhnologii, 2018, Vol. 8, No. 2, pp. 75–84.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bildyukevich, A.V., Plisko, T.V., Usosky, V.V. et al. Hydrophobization of Polysulfone Hollow Fiber Membranes. Pet. Chem. 58, 279–288 (2018). https://doi.org/10.1134/S0965544118040035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544118040035

Keywords

Navigation