Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dysfunction of Trio GEF1 involves in excitatory/inhibitory imbalance and autism-like behaviors through regulation of interneuron migration

Abstract

Autism spectrum disorders (ASDs) are a group of highly inheritable neurodevelopmental disorders. Functional mutations in TRIO, especially in the GEF1 domain, are strongly implicated in ASDs, whereas the underlying neurobiological pathogenesis and molecular mechanisms remain to be clarified. Here we characterize the abnormal morphology and behavior of embryonic migratory interneurons (INs) upon Trio deficiency or GEF1 mutation in mice, which are mediated by the Trio GEF1-Rac1 activation and involved in SDF1α/CXCR4 signaling. In addition, the migration deficits are specifically associated with altered neural microcircuit, decreased inhibitory neurotransmission, and autism-like behaviors, which are reminiscent of some features observed in patients with ASDs. Furthermore, restoring the excitatory/inhibitory (E/I) imbalance via activation of GABA signaling rescues autism-like deficits. Our findings demonstrate a critical role of Trio GEF1 mediated signaling in IN migration and E/I balance, which are related to autism-related behavioral phenotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Disruption of Trio in inhibitory progenitors results in abnormal orientation and morphology of leading process in migratory cortical INs and autism-like behaviors.
Fig. 2: Different distribution pattern of various IN subtypes in the mPFC and hippocampus but not SSC between Triofl/fl and Triofl/fl;Dlx5/6-CIE mice.
Fig. 3: Altered microcircuits, excitatory/inhibitory imbalance and increased seizure susceptibility were observed in the postnatal Triofl/fl;Dlx5/6-CIE mice.
Fig. 4: Rac1 activation by the Trio GEF1 domain is involved in SDF1α-CXCR4 signaling-mediated IN migration.
Fig. 5: Trio K1431M mutant mice showed abnormal IN migration, E/I imbalance and autism-like behaviors due to GEF1 dysfunction.

Similar content being viewed by others

Data availability

The data that support the finding of this study are available upon reasonable request from the corresponding author.

References

  1. Jeste, Shafali, S., Geschwind, Daniel, H. Disentangling the heterogeneity of autism spectrum disorder through genetic findings. Nat Rev Neurol. 2014.

  2. Eric C, Tiziano P, Gazestani VH, Lombardo MV, Karen P, Lewis NE. The ASD living biology: from cell proliferation to clinical phenotype. Mol Psychiatry. 2018.

  3. Iakoucheva LM, Muotri AR, Sebat J. Getting to the cores of autism. Cell 2019;178:1287–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Courchesne E, Gazestani VH, Lewis NE. Prenatal origins of ASD: the when, what, and how of ASD development. Trends Neurosci. 2020;43:326–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nelson SB, Valakh V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron. 2015;87:684–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sohal VS, Rubenstein JLR. Excitation-inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders. Mol Psychiatry. 2019;24:1248–57.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rubenstein JLR, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2003;2:255–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ariza J, Rogers H, Hashemi E, Noctor SC, Martínez-Cerdeño V. The number of chandelier and basket cells are differentially decreased in prefrontal cortex in autism. Cereb Cortex. 2018;28:411–20.

    Article  PubMed  Google Scholar 

  9. Lawrence YA, Kemper TL, Bauman ML, Blatt GJ. Parvalbumin-, calbindin-, and calretinin-immunoreactive hippocampal interneuron density in autism. Acta Neurol. Scand. 2010;121:99–108.

    Article  CAS  PubMed  Google Scholar 

  10. Hashemi E, Ariza J, Rogers H, Noctor SC, Martínez-Cerdeño V. The number of parvalbumin-expressing interneurons is decreased in the prefrontal cortex in autism. Cereb Cortex. 2018;28:690.

    Article  PubMed  Google Scholar 

  11. Blatt GJ, Fitzgerald CM, Guptill JT, Booker AB, Kemper TL, Bauman ML. Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study. J Autism Dev Disord. 2001;31:537–43.

    Article  CAS  PubMed  Google Scholar 

  12. Fatemi SH, Reutiman TJ, Folsom TD, Rooney RJ, Patel DH, Thuras PD. mRNA and Protein Levels for GABAAα4, α5, β1 and GABABR1 Receptors are Altered in Brains from Subjects with Autism. J Autism Dev Disord. 2010;40:743–50.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Oblak AL, Gibbs TT, Blatt GJ. Decreased GABAB receptors in the cingulate cortex and fusiform gyrus in Autism. J Neurochem. 2010;114:1414–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Oblak AL, Gibbs TT, Blatt GJ. Reduced GABAA receptors and benzodiazepine binding sites in the posterior cingulate cortex and fusiform gyrus in autism. Autism Res. 2010;2:205–19.

    Article  Google Scholar 

  15. Mori T, Mori K, Fujii E, Toda Y, Miyazaki M, Harada M, et al. Evaluation of the GABAergic nervous system in autistic brain: (123)I-iomazenil SPECT study. Brain Dev. 2012;34:648–54.

    Article  PubMed  Google Scholar 

  16. Maria, Andreina, Mendez, and, Jamie, Horder, et al. The brain GABA-benzodiazepine receptor alpha-5 subtype in autism spectrum disorder: a pilot [11C]Ro15-4513 positron emission tomography study. Neuropharmacology. 2013.

  17. Oblak A, Gibbs TT, Blatt GJ. Decreased GABAA receptors and benzodiazepine binding sites in the anterior cingulate cortex in autism. Autism Res. 2009;2:205–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guptill JT, Booker AB, Gibbs TT, Kemper TL, Bauman ML, Blatt GJ. [3H]-flunitrazepam-labeled benzodiazepine binding sites in the hippocampal formation in autism: a multiple concentration autoradiographic study. J Autism Dev Disord. 2007;37:911–20.

    Article  PubMed  Google Scholar 

  19. Jung EM, Moffat JJ, Liu J, Dravid SM, Gurumurthy CB, Kim WY. Arid1b haploinsufficiency disrupts cortical interneuron development and mouse behavior. Nat Neurosci. 2017;20:1694–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Peñagarikano O, Abrahams BS, Herman EI, Winden KD, Gdalyahu A, Dong H, et al. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell. 2011;147:235–46.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Han S, Tai C, Westenbroek RE, Yu FH, Cheah CS, Potter GB, et al. Autistic-like behaviour in Scn1a+/− mice and rescue by enhanced GABA-mediated neurotransmission. Nature. 2012;489:385–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Winkler M, Biswas S, Berger SM, Küchler M, Preisendörfer L, Choo M, et al. Pianp deficiency links GABA(B) receptor signaling and hippocampal and cerebellar neuronal cell composition to autism-like behavior. Mol Psychiatry. 2019.

  23. Nakamura T, Arima-Yoshida F, Sakaue F, Nasu-Nishimura Y, Takeda Y, Matsuura K, et al. PX-RICS-deficient mice mimic autism spectrum disorder in Jacobsen syndrome through impaired GABAA receptor trafficking. Nat Commun. 2016;7:10861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Govek EE, Newey SE, Van Aelst L. The role of the Rho GTPases in neuronal development. Genes Dev. 2005;19:1–49.

    Article  CAS  PubMed  Google Scholar 

  25. Stankiewicz TR, Linseman DA. Rho family GTPases: key players in neuronal development, neuronal survival, and neurodegeneration. Front Cell Neurosci. 2014;8:314.

    Article  PubMed  PubMed Central  Google Scholar 

  26. O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485:246–50.

    Article  PubMed  PubMed Central  Google Scholar 

  27. de Ligt J, Willemsen MH, van Bon BW, Kleefstra T, Yntema HG, Kroes T, et al. Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med. 2012;367:1921–9.

    Article  PubMed  Google Scholar 

  28. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515:209–15.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sadybekov A, Tian C, Arnesano C, Katritch V, Herring BE. An autism spectrum disorder-related de novo mutation hotspot discovered in the GEF1 domain of Trio. Nat Commun. 2017;8:601.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature. 2012;485:237–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fitzgerald TW, Gerety SS, Jones WD, van Kogelenberg M, King DA, McRae J, et al. Large-scale discovery of novel genetic causes of developmental disorders. Nature. 2015;519:223–8.

    Article  CAS  Google Scholar 

  32. O’Brien SP, Seipel K, Medley QG, Bronson R, Segal R, Streuli M. Skeletal muscle deformity and neuronal disorder in Trio exchange factor-deficient mouse embryos. Proc Natl Acad Sci USA. 2000;97:12074–8.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Peng YJ, He WQ, Tang J, Tao T, Chen C, Gao YQ, et al. Trio is a key guanine nucleotide exchange factor coordinating regulation of the migration and morphogenesis of granule cells in the developing cerebellum. J Biol Chem. 2010;285:24834–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zong W, Liu S, Wang X, Zhang J, Zhang T, Liu Z, et al. Trio gene is required for mouse learning ability. Brain Res. 2015;1608:82–90.

    Article  CAS  PubMed  Google Scholar 

  35. Katrancha SM, Shaw JE, Zhao AY, Myers SA, Cocco AR, Jeng AT, et al. Trio haploinsufficiency causes neurodevelopmental disease-associated deficits. Cell Rep. 2019;26:2805–17.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ba W, Yan Y, Reijnders MR, Schuurs-Hoeijmakers JH, Feenstra I, Bongers EM, et al. TRIO loss of function is associated with mild intellectual disability and affects dendritic branching and synapse function. Hum Mol Genet. 2016;25:892–902.

    Article  CAS  PubMed  Google Scholar 

  37. Herring BE, Nicoll RA. Kalirin and Trio proteins serve critical roles in excitatory synaptic transmission and LTP. Proc Natl Acad Sci USA. 2016;113:2264–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lysko DE, Putt M, Golden JA. SDF1 reduces interneuron leading process branching through dual regulation of actin and microtubules. J Neurosci. 2014;34:4941–62.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lysko DE, Putt M, Golden JA. SDF1 regulates leading process branching and speed of migrating interneurons. J Neurosci. 2011;31:1739–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yamagishi S, Kesavamoorthy G, Bastmeyer M, Sato K. Stripe assay to study the attractive or repulsive activity of a protein substrate using dissociated hippocampal neurons. J Visual Exp. 2016.

  41. Li J, Chai A, Wang L, Ma Y, Wu Z, Yu H, et al. Synaptic P-Rex1 signaling regulates hippocampal long-term depression and autism-like social behavior. Proc Natl Acad Sci USA. 2015;112:E6964–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ip JP, Shi L, Chen Y, Itoh Y, Fu WY, Betz A, et al. α2-chimaerin controls neuronal migration and functioning of the cerebral cortex through CRMP-2. Nat Neurosci. 2011;15:39–47.

    Article  PubMed  Google Scholar 

  43. Backer S, Lokmane L, Landragin C, Deck M, Garel S, Bloch-Gallego E. Trio GEF mediates RhoA activation downstream of Slit2 and coordinates telencephalic wiring. Development. 2018;145:dev153692.

    Article  PubMed  Google Scholar 

  44. Oblak AL, Rosene DL, Kemper TL, Bauman ML, Blatt GJ. Altered posterior cingulate cortical cyctoarchitecture, but normal density of neurons and interneurons in the posterior cingulate cortex and fusiform gyrus in autism. Autism Res. 2011;4:200–11.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Selby L, Zhang C, Sun QQ. Major defects in neocortical GABAergic inhibitory circuits in mice lacking the fragile X mental retardation protein. Neurosci Lett. 2007;412:227–32.

    Article  CAS  PubMed  Google Scholar 

  46. Kobayashi M, Hayashi Y, Fujimoto Y, Matsuoka I. Decreased parvalbumin and somatostatin neurons in medial prefrontal cortex in BRINP1-KO mice. Neurosci Lett. 2018;683:82–8.

    Article  CAS  PubMed  Google Scholar 

  47. Vogt D, Cho KKA, Shelton SM, Paul A, Huang ZJ, Sohal VS, et al. Mouse Cntnap2 and human CNTNAP2 ASD alleles cell autonomously regulate PV+ cortical interneurons. Cereb Cortex. 2018;28:3868–79.

    Article  PubMed  Google Scholar 

  48. Kamigaki T. Dissecting executive control circuits with neuron types. Neurosci Res. 2019;141:13–22.

    Article  PubMed  Google Scholar 

  49. Vogt D, Cho KKA, Lee AT, Sohal VS, Rubenstein JLR. The parvalbumin/somatostatin ratio is increased in Pten mutant mice and by human PTEN ASD alleles. Cell Rep. 2015;11:944–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Artinian J, Lacaille JC. Disinhibition in learning and memory circuits: new vistas for somatostatin interneurons and long-term synaptic plasticity. Brain Res Bull. 2018;141:20–6.

    Article  CAS  PubMed  Google Scholar 

  51. Dichter GS. Functional magnetic resonance imaging of autism spectrum disorders. Dialogues Clin Neurosci. 2012;14:319–51.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Li D, Karnath HO, Xu X. Candidate biomarkers in children with autism spectrum disorder: a review of MRI studies. Neurosci Bull. 2017;33:219–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kobayashi M, Nakatani T, Koda T, Matsumoto K, Ozaki R, Mochida N, et al. Absence of BRINP1 in mice causes increase of hippocampal neurogenesis and behavioral alterations relevant to human psychiatric disorders. Mol Brain. 2014;7:12

    Article  PubMed  PubMed Central  Google Scholar 

  54. Marín O, Rubenstein JL. A long, remarkable journey: tangential migration in the telencephalon. Nat Rev Neurosci. 2001;2:780–90.

    Article  PubMed  Google Scholar 

  55. Lim L, Mi D, Llorca A, Marín O. Development and Functional Diversification of Cortical Interneurons. Neuron. 2018;100:294–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pengelly RJ, Greville-Heygate S, Schmidt S, Seaby EG, Baralle D. Mutations specific to the Rac-GEF domain of TRIO cause intellectual disability and microcephaly. J Med Genet. 2016;53:735–42.

    Article  CAS  PubMed  Google Scholar 

  57. Barbosa S, Greville-Heygate S, Bonnet M, Godwin A, Fagotto-Kaufmann C, Kajava AV, et al. Opposite modulation of RAC1 by mutations in TRIO is associated with distinct, domain-specific neurodevelopmental disorders - ScienceDirect. 2020.

  58. Chen L, Melendez J, Campbell K, Kuan CY, Zheng Y. Rac1 deficiency in the forebrain results in neural progenitor reduction and microcephaly. Dev Biol. 2009;325:162–70.

    Article  CAS  PubMed  Google Scholar 

  59. Katrancha SM, Wu Y, Zhu M, Eipper BA, Koleske AJ, Mains RE. Neurodevelopmental disease-associated de novo mutations and rare sequence variants affect TRIO GDP/GTP exchange factor activity. Hum Mol Genet. 2017;26:4728–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vaghi V, Pennucci R, Talpo F, Corbetta S, Montinaro V, Barone C, et al. Rac1 and rac3 GTPases control synergistically the development of cortical and hippocampal GABAergic interneurons. Cereb Cortex. 2014;24:1247–58.

    Article  PubMed  Google Scholar 

  61. Chen L, Liao G, Waclaw RR, Burns KA, Linquist D, Campbell K, et al. Rac1 controls the formation of midline commissures and the competency of tangential migration in ventral telencephalic neurons. J Neurosci. 2007;27:3884–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tivodar S, Kalemaki K, Kounoupa Z, Vidaki M, Theodorakis K, Denaxa M, et al. Rac-GTPases regulate microtubule stability and axon growth of cortical GABAergic interneurons. Cereb Cortex. 2015;25:2370–82.

    Article  PubMed  Google Scholar 

  63. Kawaguchi N, Zhang TT, Nakanishi T. Involvement of CXCR4 in normal and abnormal development. Cells. 2019;8:185.

    Article  CAS  PubMed Central  Google Scholar 

  64. Sanematsu F, Hirashima M, Laurin M, Takii R, Fukui Y. DOCK180 Is a Rac activator that regulates cardiovascular development by acting downstream of CXCR4. Circ Res. 2010;107:1102–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Struckhoff AP, Rana MK, Kher SS, Burow ME, Hagan JL, Del Valle L, et al. PDZ-RhoGEF is essential for CXCR4-driven breast tumor cell motility through spatial regulation of RhoA. J Cell Sci. 2013;126:4514–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Carretero-Ortega J, Walsh CT, Hernandez-Garcia R, Reyes-Cruz G, Heller Brown J, Vazquez-Prado J. Phosphatidylinositol 3,4,5-Triphosphate-Dependent Rac Exchanger 1 (P-Rex-1), a guanine nucleotide exchange factor for Rac, mediates angiogenic responses to stromal cell-derived factor-1/chemokine Stromal Cell Derived Factor-1 (SDF-1/CXCL-12) linked to Rac activation, endothelial cell migration, and in vitro angiogenesis. Mol Pharmacol. 2010;77:435–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hynes NE, Gattelli A. P-Rex1, a guanine exchange factor that is overexpressed in breast cancer, is a convergence node for ErbB and CXCR4 signaling. Mol Cell 2011;41:5–7.

    Article  CAS  PubMed  Google Scholar 

  68. Abe P, Mueller W, Schutz D, Mackay F, Thelen M, Zhang P, et al. CXCR7 prevents excessive CXCL12-mediated downregulation of CXCR4 in migrating cortical interneurons. Develpment. 2014;141:1857–63.

    CAS  Google Scholar 

  69. Kumar A, Kremer KN, Dominguez D, Tadi M, Hedin KE. Gα13 and Rho mediate endosomal trafficking of CXCR4 into Rab11+ vesicles upon stromal cell-derived factor-1 stimulation. J Immunol. 2011;186:951–8.

    Article  CAS  PubMed  Google Scholar 

  70. Dongsheng C, Chunlian W, Meiyi L, Xinyu S, Yonggui Y, Huanxin C, et al. Loss of Foxg1 impairs the development of cortical SST-interneurons leading to abnormal emotional and social behaviors. Cerebral Cortex. 2019(8):8.

  71. Chua HC, Chebib M. GABA A receptors and the diversity in their structure and pharmacology. Adv Pharmacol. 2017;79:1–34.

    Article  CAS  PubMed  Google Scholar 

  72. Sigel E, Ernst M. The benzodiazepine binding Sites of GABA(A) receptors. Trends Pharmacol Sci. 2018;39:659–71.

    Article  CAS  PubMed  Google Scholar 

  73. Verhoeven JS, De Cock P, Lagae L, Sunaert S. Neuroimaging of autism. Neuroradiology. 2010;52:3–14.

    Article  PubMed  Google Scholar 

  74. Mori K, Toda Y, Ito H, Mori T, Mori K, Goji A, et al. Neuroimaging in autism spectrum disorders: 1H-MRS and NIRS study. J Med Investig. 2015;62:29–36.

    Article  Google Scholar 

  75. Ha S, Sohn IJ, Kim N, Sim HJ, Cheon KA. Characteristics of brains in autism spectrum disorder: structure, function and connectivity across the lifespan. Exp Neurobiol. 2015;24:273–84.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Key Realm R&D Program of Guangdong Province (2019B030335001), the National Key R&D Program of China (2016YFC1307000), and the National Natural Science Foundation of China (81730037, 81871077, 81971283, and 82071541). We are thankful to Prof. Xiang Yu for her valuable help in suggesting the experimental design.

Author information

Authors and Affiliations

Authors

Contributions

JL and DZ designed the research; JL, XS, LW, CW, MS, QL, and HM performed the research and analyzed the data; MS, CW, XS, WY, JL, and DZ wrote and refined the article.

Corresponding author

Correspondence to Jun Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Wang, L., Wei, C. et al. Dysfunction of Trio GEF1 involves in excitatory/inhibitory imbalance and autism-like behaviors through regulation of interneuron migration. Mol Psychiatry 26, 7621–7640 (2021). https://doi.org/10.1038/s41380-021-01109-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01109-x

This article is cited by

Search

Quick links