Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

MicroRNA and signaling pathways in gastric cancer

Abstract

MicroRNAs (miRNAs) function as either oncogenes or tumor suppressors by inhibiting the expression of target genes, some of which are either directly or indirectly involved with canonical signaling pathways. The relationship between miRNAs and signaling pathways in gastric cancer is extremely complicated. In this paper, we determined the pathogenic mechanism of gastric cancer related to miRNA expression based on recent high-quality studies and then clarified the regulation network of miRNA expression and the correlated functions of these miRNAs during the progression of gastric cancer. We try to illustrate the correlation between the expression of miRNAs and outcomes of patients with gastric cancer. Understanding this will allow us to take a big step forward in the treatment of gastric cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D . Global cancer statistics. CA Cancer J Clin 2011; 61: 69–90.

    Article  PubMed  Google Scholar 

  2. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM . Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010; 127: 2893–2917.

    Article  CAS  PubMed  Google Scholar 

  3. Ruan K, Fang X, Ouyang G . MicroRNAs: novel regulators in the hallmarks of human cancer. Cancer Lett 2009; 285: 116–126.

    CAS  PubMed  Google Scholar 

  4. Hur K, Toiyama Y, Takahashi M, Balaguer F, Nagasaka T, Koike J et al. MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis. Gut 2012; 62: 1315–1326.

    PubMed  Google Scholar 

  5. Carthew RW, Sontheimer EJ . Origins and mechanisms of miRNAs and siRNAs. Cell 2009; 136: 642–655.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee RC, Feinbaum RL, Ambros V . The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843–854.

    CAS  PubMed  Google Scholar 

  7. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000; 403: 901–906.

    CAS  PubMed  Google Scholar 

  8. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004; 23: 4051–4060.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Borchert GM, Lanier W, Davidson BL . RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 2006; 13: 1097–1101.

    CAS  PubMed  Google Scholar 

  10. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 2004; 432: 235–240.

    CAS  PubMed  Google Scholar 

  11. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U . Nuclear export of microRNA precursors. Science 2004; 303: 95–98.

    CAS  PubMed  Google Scholar 

  12. Bernstein E, Caudy AA, Hammond SM, Hannon GJ . Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001; 409: 363–366.

    CAS  PubMed  Google Scholar 

  13. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005; 436: 740–744.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee Y, Hur I, Park SY, Kim YK, Suh MR, Kim VN . The role of PACT in the RNA silencing pathway. EMBO J 2006; 25: 522–532.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hammond SM, Bernstein E, Beach D, Hannon GJ . An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000; 404: 293–296.

    CAS  PubMed  Google Scholar 

  16. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006; 103: 2257–2261.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol 2009; 24: 652–657.

    CAS  PubMed  Google Scholar 

  18. Katada T, Ishiguro H, Kuwabara Y, Kimura M, Mitui A, Mori Y et al. microRNA expression profile in undifferentiated gastric cancer. Int J Oncol 2009; 34: 537–542.

    CAS  PubMed  Google Scholar 

  19. Kim YK, Yu J, Han TS, Park SY, Namkoong B, Kim DH et al. Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res 2009; 37: 1672–1681.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu T, Tang H, Lang Y, Liu M, Li X . MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer Lett 2009; 273: 233–242.

    CAS  PubMed  Google Scholar 

  21. Luo H, Zhang H, Zhang Z, Zhang X, Ning B, Guo J et al. Down-regulated miR-9 and miR-433 in human gastric carcinoma. J Exp Clin Cancer Res 2009; 28: 82.

    PubMed  PubMed Central  Google Scholar 

  22. Yao Y, Suo AL, Li ZF, Liu LY, Tian T, Ni L et al. MicroRNA profiling of human gastric cancer. Mol Med Rep 2009; 2: 963–970.

    CAS  PubMed  Google Scholar 

  23. Tsukamoto Y, Nakada C, Noguchi T, Tanigawa M, Nguyen LT, Uchida T et al. MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3zeta. Cancer Res 2010; 70: 2339–2349.

    CAS  PubMed  Google Scholar 

  24. Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S et al. Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol 2010; 11: 136–146.

    CAS  PubMed  Google Scholar 

  25. Wu WY, Xue XY, Chen ZJ, Han SL, Huang YP, Zhang LF et al. Potentially predictive microRNAs of gastric cancer with metastasis to lymph node. World J Gastroenterol 2011; 17: 3645–3651.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Oh HK, Tan AL, Das K, Ooi CH, Deng NT, Tan IB et al. Genomic loss of miR-486 regulates tumor progression and the OLFM4 antiapoptotic factor in gastric cancer. Clin Cancer Res 2011; 17: 2657–2667.

    CAS  PubMed  Google Scholar 

  27. Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I et al. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 2008; 13: 272–286.

    Article  CAS  PubMed  Google Scholar 

  28. Ji Q, Hao X, Meng Y, Zhang M, Desano J, Fan D et al. Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer 2008; 8: 266.

    PubMed  PubMed Central  Google Scholar 

  29. Motoyama K, Inoue H, Nakamura Y, Uetake H, Sugihara K, Mori M . Clinical significance of high mobility group A2 in human gastric cancer and its relationship to let-7 microRNA family. Clin Cancer Res 2008; 14: 2334–2340.

    CAS  PubMed  Google Scholar 

  30. Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S et al. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer 2008; 123: 372–379.

    CAS  PubMed  Google Scholar 

  31. Bandres E, Bitarte N, Arias F, Agorreta J, Fortes P, Agirre X et al. microRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells. Clin Cancer Res 2009; 15: 2281–2290.

    CAS  PubMed  Google Scholar 

  32. Wan HY, Guo LM, Liu T, Liu M, Li X, Tang H . Regulation of the transcription factor NF-kappaB1 by microRNA-9 in human gastric adenocarcinoma. Mol Cancer 2010; 9: 16.

    PubMed  PubMed Central  Google Scholar 

  33. Rotkrua P, Akiyama Y, Hashimoto Y, Otsubo T, Yuasa Y . MiR-9 downregulates CDX2 expression in gastric cancer cells. Int J Cancer 2011; 129: 2611–2620.

    CAS  PubMed  Google Scholar 

  34. Saito Y, Suzuki H, Tsugawa H, Nakagawa I, Matsuzaki J, Kanai Y et al. Chromatin remodeling at Alu repeats by epigenetic treatment activates silenced microRNA-512-5p with downregulation of Mcl-1 in human gastric cancer cells. Oncogene 2009; 28: 2738–2744.

    CAS  PubMed  Google Scholar 

  35. Takagi T, Iio A, Nakagawa Y, Naoe T, Tanigawa N, Akao Y . Decreased expression of microRNA-143 and -145 in human gastric cancers. Oncology 2009; 77: 12–21.

    CAS  PubMed  Google Scholar 

  36. Wu XL, Cheng B, Li PY, Huang HJ, Zhao Q, Dan ZL et al. MicroRNA-143 suppresses gastric cancer cell growth and induces apoptosis by targeting COX-2. World J Gastroenterol 2013; 19: 7758–7765.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Du Y, Xu Y, Ding L, Yao H, Yu H, Zhou T et al. Down-regulation of miR-141 in gastric cancer and its involvement in cell growth. J Gastroenterol 2009; 44: 556–561.

    CAS  PubMed  Google Scholar 

  38. Chen Y, Song Y, Wang Z, Yue Z, Xu H, Xing C et al. Altered expression of MiR-148a and MiR-152 in gastrointestinal cancers and its clinical significance. J Gastrointest Surg 2010; 14: 1170–1179.

    PubMed  Google Scholar 

  39. Ding L, Xu Y, Zhang W, Deng Y, Si M, Du Y et al. MiR-375 frequently downregulated in gastric cancer inhibits cell proliferation by targeting JAK2. Cell Res 2010; 20: 784–793.

    CAS  PubMed  Google Scholar 

  40. Gao C, Zhang Z, Liu W, Xiao S, Gu W, Lu H . Reduced microRNA-218 expression is associated with high nuclear factor kappa B activation in gastric cancer. Cancer 2010; 116: 41–49.

    CAS  PubMed  Google Scholar 

  41. Tie J, Pan Y, Zhao L, Wu K, Liu J, Sun S et al. MiR-218 inhibits invasion and metastasis of gastric cancer by targeting the Robo1 receptor. PLoS Genet 2010; 6: e1000879.

    PubMed  PubMed Central  Google Scholar 

  42. Guo X, Guo L, Ji J, Zhang J, Chen X, Cai Q et al. miRNA-331-3p directly targets E2F1 and induces growth arrest in human gastric cancer. Biochem Biophys Res Commun 2010; 398: 1–6.

    CAS  PubMed  Google Scholar 

  43. Lang N, Liu M, Tang QL, Chen X, Liu Z, Bi F . Effects of microRNA-29 family members on proliferation and invasion of gastric cancer cell lines. Chin J Cancer 2010; 29: 603–610.

    CAS  PubMed  Google Scholar 

  44. Shen R, Pan S, Qi S, Lin X, Cheng S . Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 in gastric cancer. Biochem Biophys Res Commun 2010; 394: 1047–1052.

    CAS  PubMed  Google Scholar 

  45. Wada R, Akiyama Y, Hashimoto Y, Fukamachi H, Yuasa Y . miR-212 is downregulated and suppresses methyl-CpG-binding protein MeCP2 in human gastric cancer. Int J Cancer 2010; 127: 1106–1114.

    CAS  PubMed  Google Scholar 

  46. Xu L, Wang F, Xu XF, Mo WH, Xia YJ, Wan R et al. Down-regulation of miR-212 expression by DNA hypermethylation in human gastric cancer cells. Med Oncol 2011; 28 (Suppl 1): S189–S196.

    PubMed  Google Scholar 

  47. Wang HJ, Ruan HJ, He XJ, Ma YY, Jiang XT, Xia YJ et al. MicroRNA-101 is down-regulated in gastric cancer and involved in cell migration and invasion. Eur J Cancer 2010; 46: 2295–2303.

    CAS  PubMed  Google Scholar 

  48. Hashimoto Y, Akiyama Y, Otsubo T, Shimada S, Yuasa Y . Involvement of epigenetically silenced microRNA-181c in gastric carcinogenesis. Carcinogenesis 2010; 31: 777–784.

    CAS  PubMed  Google Scholar 

  49. Hu J, Fang Y, Cao Y, Qin R, Chen Q . miR-449a regulates proliferation and chemosensitivity to cisplatin by targeting cyclin D1 and BCL2 in SGC7901 cells. Dig Dis Sci 2014; 59: 336–345.

    CAS  PubMed  Google Scholar 

  50. Bou Kheir T, Futoma-Kazmierczak E, Jacobsen A, Krogh A, Bardram L, Hother C et al. miR-449 inhibits cell proliferation and is down-regulated in gastric cancer. Mol Cancer 2011; 10: 29.

    PubMed  PubMed Central  Google Scholar 

  51. Chen Q, Chen X, Zhang M, Fan Q, Luo S, Cao X . miR-137 is frequently down-regulated in gastric cancer and is a negative regulator of Cdc42. Dig Dis Sci 2011; 56: 2009–2016.

    CAS  PubMed  Google Scholar 

  52. Cui Y, Su WY, Xing J, Wang YC, Wang P, Chen XY et al. MiR-29a inhibits cell proliferation and induces cell cycle arrest through the downregulation of p42.3 in human gastric cancer. PLoS One 2011; 6: e25872.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Liang S, He L, Zhao X, Miao Y, Gu Y, Guo C et al. MicroRNA let-7f inhibits tumor invasion and metastasis by targeting MYH9 in human gastric cancer. PLoS One 2011; 6: e18409.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Nishida N, Mimori K, Fabbri M, Yokobori T, Sudo T, Tanaka F et al. MicroRNA-125a-5p is an independent prognostic factor in gastric cancer and inhibits the proliferation of human gastric cancer cells in combination with trastuzumab. Clin Cancer Res 2011; 17: 2725–2733.

    CAS  PubMed  Google Scholar 

  55. Song YX, Yue ZY, Wang ZN, Xu YY, Luo Y, Xu HM et al. MicroRNA-148b is frequently down-regulated in gastric cancer and acts as a tumor suppressor by inhibiting cell proliferation. Mol Cancer 2011; 10: 1.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sun T, Wang C, Xing J, Wu D . miR-429 modulates the expression of c-myc in human gastric carcinoma cells. Eur J Cancer 2011; 47: 2552–2559.

    CAS  PubMed  Google Scholar 

  57. Tseng CW, Lin CC, Chen CN, Huang HC, Juan HF . Integrative network analysis reveals active microRNAs and their functions in gastric cancer. BMC Syst Biol 2011; 5: 99.

    PubMed  PubMed Central  Google Scholar 

  58. Zheng B, Liang L, Wang C, Huang S, Cao X, Zha R et al. MicroRNA-148a suppresses tumor cell invasion and metastasis by downregulating ROCK1 in gastric cancer. Clin Cancer Res 2011; 17: 7574–7583.

    CAS  PubMed  Google Scholar 

  59. Wang SH, Li X, Zhou LS, Cao ZW, Shi C, Zhou CZ et al. microRNA-148a suppresses human gastric cancer cell metastasis by reversing epithelial-to-mesenchymal transition. Tumour Biol 2013; 34: 3705–3712.

    CAS  PubMed  Google Scholar 

  60. Sakamoto N, Naito Y, Oue N, Sentani K, Uraoka N, Zarni Oo H et al. MicroRNA-148a is downregulated in gastric cancer, targets MMP7, and indicates tumor invasiveness and poor prognosis. Cancer Sci 2014; 105: 236–243.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang J, Zhang J, Wu J, Luo D, Su K, Shi W et al. MicroRNA-610 inhibits the migration and invasion of gastric cancer cells by suppressing the expression of vasodilator-stimulated phosphoprotein. Eur J Cancer 2011; 48: 1904–1913.

    PubMed  Google Scholar 

  62. Yang Q, Jie Z, Cao H, Greenlee AR, Yang C, Zou F et al. Low-level expression of let-7a in gastric cancer and its involvement in tumorigenesis by targeting RAB40C. Carcinogenesis 2011; 32: 713–722.

    CAS  PubMed  Google Scholar 

  63. Zheng B, Liang L, Huang S, Zha R, Liu L, Jia D et al. MicroRNA-409 suppresses tumour cell invasion and metastasis by directly targeting radixin in gastric cancers. Oncogene 2011; 31: 4509–4516.

    PubMed  Google Scholar 

  64. Li C, Nie H, Wang M, Su L, Li J, Yu B et al. MicroRNA-409-3p regulates cell proliferation and apoptosis by targeting PHF10 in gastric cancer. Cancer Lett 2012; 320: 189–197.

    CAS  PubMed  Google Scholar 

  65. Takei Y, Takigahira M, Mihara K, Tarumi Y, Yanagihara K . The metastasis-associated microRNA miR-516a-3p is a novel therapeutic target for inhibiting peritoneal dissemination of human scirrhous gastric cancer. Cancer Res 2011; 71: 1442–1453.

    CAS  PubMed  Google Scholar 

  66. Kim K, Lee HC, Park JL, Kim M, Kim SY, Noh SM et al. Epigenetic regulation of microRNA-10b and targeting of oncogenic MAPRE1 in gastric cancer. Epigenetics 2011; 6: 740–751.

    CAS  PubMed  Google Scholar 

  67. Zhu W, Zhu D, Lu S, Wang T, Wang J, Jiang B et al. miR-497 modulates multidrug resistance of human cancer cell lines by targeting BCL2. Medical Oncol 2011; 29: 384–391.

    Google Scholar 

  68. He XP, Shao Y, Li XL, Xu W, Chen GS, Sun HH et al. Downregulation of miR-101 in gastric cancer correlates with cyclooxygenase-2 overexpression and tumor growth. FEBS J 2012; 279: 4201–4212.

    CAS  PubMed  Google Scholar 

  69. Akiyoshi S, Fukagawa T, Ueo H, Ishibashi M, Takahashi Y, Fabbri M et al. Clinical significance of miR-144-ZFX axis in disseminated tumour cells in bone marrow in gastric cancer cases. Br J Cancer 2012; 107: 1345–1353.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kang W, Tong JH, Chan AW, Lung RW, Chau SL, Wong QW et al. Stathmin1 plays oncogenic role and is a target of microRNA-223 in gastric cancer. PLoS One 2012; 7: e33919.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu H, Huang M, Cao P, Wang T, Shu Y, Liu P . MiR-135a targets JAK2 and inhibits gastric cancer cell proliferation. Cancer Biol Ther 2012; 13: 281–288.

    CAS  PubMed  Google Scholar 

  72. Shin JY, Kim YI, Cho SJ, Lee MK, Kook MC, Lee JH et al. MicroRNA 135a suppresses lymph node metastasis through down-regulation of ROCK1 in early gastric cancer. PLoS One 2014; 9: e85205.

    PubMed  PubMed Central  Google Scholar 

  73. Wen D, Li S, Ji F, Cao H, Jiang W, Zhu J et al. miR-133b acts as a tumor suppressor and negatively regulates FGFR1 in gastric cancer. Tumour Biol 2013; 34: 793–803.

    CAS  PubMed  Google Scholar 

  74. Zhang L, Liu X, Jin H, Guo X, Xia L, Chen Z et al. MiR-206 inhibits gastric cancer proliferation in part by repressing CyclinD2. Cancer Lett 2013; 332: 94–101.

    CAS  PubMed  Google Scholar 

  75. Gao P, Xing AY, Zhou GY, Zhang TG, Zhang JP, Gao C et al. The molecular mechanism of microRNA-145 to suppress invasion-metastasis cascade in gastric cancer. Oncogene 2013; 32: 491–501.

    CAS  PubMed  Google Scholar 

  76. Li P, Chen X, Su L, Li C, Zhi Q, Yu B et al. Epigenetic silencing of miR-338-3p contributes to tumorigenicity in gastric cancer by targeting SSX2IP. PLoS One 2013; 8: e66782.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Guo B, Liu L, Yao J, Ma R, Chang D, Li Z et al. miR-338-3p suppresses gastric cancer progression through a PTEN-AKT axis by targeting P-REX2a. Mol Cancer Res 2014; 12: 313–321.

    CAS  PubMed  Google Scholar 

  78. Zhao X, Dou W, He L, Liang S, Tie J, Liu C et al. MicroRNA-7 functions as an anti-metastatic microRNA in gastric cancer by targeting insulin-like growth factor-1 receptor. Oncogene 2013; 32: 1363–1372.

    CAS  PubMed  Google Scholar 

  79. Xie J, Chen M, Zhou J, Mo MS, Zhu LH, Liu YP et al. miR-7 inhibits the invasion and metastasis of gastric cancer cells by suppressing epidermal growth factor receptor expression. Oncol Rep 2014; 31: 1715–1722.

    CAS  PubMed  Google Scholar 

  80. Guo MM, Hu LH, Wang YQ, Chen P, Huang JG, Lu N et al. miR-22 is down-regulated in gastric cancer, and its overexpression inhibits cell migration and invasion via targeting transcription factor Sp1. Med Oncol 2013; 30: 542.

    PubMed  Google Scholar 

  81. Sacconi A, Biagioni F, Canu V, Mori F, Di Benedetto A, Lorenzon L et al. miR-204 targets Bcl-2 expression and enhances responsiveness of gastric cancer. Cell Death Dis 2012; 3: e423.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Jiang B, Li Z, Zhang W, Wang H, Zhi X, Feng J et al. miR-874 Inhibits cell proliferation, migration and invasion through targeting aquaporin-3 in gastric cancer. J Gastroenterol 2013; 49: 1011–1025.

    PubMed  Google Scholar 

  83. Yu X, Song H, Xia T, Han S, Xiao B, Luo L et al. Growth inhibitory effects of three miR-129 family members on gastric cancer. Gene 2013; 532: 87–93.

    CAS  PubMed  Google Scholar 

  84. Peng W, Chen ZY, Wang L, Wang Z, Li J . MicroRNA-199a-3p is downregulated in gastric carcinomas and modulates cell proliferation. Genet Mole Res 2013; 12: 3038–3047.

    CAS  Google Scholar 

  85. Zhou L, Zhao X, Han Y, Lu Y, Shang Y, Liu C et al. Regulation of UHRF1 by miR-146a/b modulates gastric cancer invasion and metastasis. FASEB J 2013; 27: 4929–4939.

    CAS  PubMed  Google Scholar 

  86. Xie L, Zhang Z, Tan Z, He R, Zeng X, Xie Y et al. microRNA-124 inhibits proliferation and induces apoptosis by directly repressing EZH2 in gastric cancer. Mol Cell Biochem 2014; 392: 153–159.

    CAS  PubMed  Google Scholar 

  87. Hsu KW, Wang AM, Ping YH, Huang KH, Huang TT, Lee HC et al. Downregulation of tumor suppressor MBP-1 by microRNA-363 in gastric carcinogenesis. Carcinogenesis 2014; 35: 208–217.

    CAS  PubMed  Google Scholar 

  88. Jiang Z, Guo J, Xiao B, Miao Y, Huang R, Li D et al. Increased expression of miR-421 in human gastric carcinoma and its clinical association. J Gastroenterol 2010; 45: 17–23.

    CAS  PubMed  Google Scholar 

  89. Chun-Zhi Z, Lei H, An-Ling Z, Yan-Chao F, Xiao Y, Guang-Xiu W et al. MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer 2010; 10: 367.

    PubMed  PubMed Central  Google Scholar 

  90. Zhang Z, Li Z, Gao C, Chen P, Chen J, Liu W et al. miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest 2008; 88: 1358–1366.

    CAS  PubMed  Google Scholar 

  91. Motoyama K, Inoue H, Mimori K, Tanaka F, Kojima K, Uetake H et al. Clinicopathological and prognostic significance of PDCD4 and microRNA-21 in human gastric cancer. Int J Oncol 2010; 36: 1089–1095.

    CAS  PubMed  Google Scholar 

  92. Zhang BG, Li JF, Yu BQ, Zhu ZG, Liu BY, Yan M . microRNA-21 promotes tumor proliferation and invasion in gastric cancer by targeting PTEN. Oncol Rep 2012; 27: 1019–1026.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Yamanaka S, Olaru AV, An F, Luvsanjav D, Jin Z, Agarwal R et al. MicroRNA-21 inhibits Serpini1, a gene with novel tumour suppressive effects in gastric cancer. Dig Liver Dise 2012; 44: 589–596.

    CAS  Google Scholar 

  94. Cho WJ, Shin JM, Kim JS, Lee MR, Hong KS, Lee JH et al. miR-372 regulates cell cycle and apoptosis of ags human gastric cancer cell line through direct regulation of LATS2. Mol Cells 2009; 28: 521–527.

    CAS  PubMed  Google Scholar 

  95. Zhou C, Li X, Zhang X, Liu X, Tan Z, Yang C et al. microRNA-372 maintains oncogene characteristics by targeting TNFAIP1 and affects NFkappaB signaling in human gastric carcinoma cells. Int J Oncol 2013; 42: 635–642.

    CAS  PubMed  Google Scholar 

  96. Sun Q, Gu H, Zeng Y, Xia Y, Wang Y, Jing Y et al. Hsa-mir-27a genetic variant contributes to gastric cancer susceptibility through affecting miR-27a and target gene expression. Cancer Sci 2010; 101: 2241–2247.

    CAS  PubMed  Google Scholar 

  97. Yang Q, Jie Z, Ye S, Li Z, Han Z, Wu J et al. Genetic variations in miR-27a gene decrease mature miR-27a level and reduce gastric cancer susceptibility. Oncogene 2012; 33: 193–202.

    CAS  PubMed  Google Scholar 

  98. Zhang Z, Liu S, Shi R, Zhao G . miR-27 promotes human gastric cancer cell metastasis by inducing epithelial-to-mesenchymal transition. Cancer Genet 2011; 204: 486–491.

    CAS  PubMed  Google Scholar 

  99. Xiao B, Guo J, Miao Y, Jiang Z, Huan R, Zhang Y et al. Detection of miR-106a in gastric carcinoma and its clinical significance. Clin Chim Acta 2009; 400: 97–102.

    CAS  PubMed  Google Scholar 

  100. Zhu W, Shan X, Wang T, Shu Y, Liu P . miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int J Cancer 2010; 127: 2520–2529.

    CAS  PubMed  Google Scholar 

  101. Lai KW, Koh KX, Loh M, Tada K, Subramaniam MM, Lim XY et al. MicroRNA-130b regulates the tumour suppressor RUNX3 in gastric cancer. Eur J Cancer 2010; 46: 1456–1463.

    CAS  PubMed  Google Scholar 

  102. Song G, Zeng H, Li J, Xiao L, He Y, Tang Y et al. miR-199a regulates the tumor suppressor mitogen-activated protein kinase kinase kinase 11 in gastric cancer. Biol Pharmaceut Bull 2010; 33: 1822–1827.

    CAS  Google Scholar 

  103. Zhang Y, Fan KJ, Sun Q, Chen AZ, Shen WL, Zhao ZH et al. Functional screening for miRNAs targeting Smad4 identified miR-199a as a negative regulator of TGF-beta signalling pathway. Nucleic Acids Res 2012; 40: 9286–9297.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Wu Q, Jin H, Yang Z, Luo G, Lu Y, Li K et al. MiR-150 promotes gastric cancer proliferation by negatively regulating the pro-apoptotic gene EGR2. Biochem Biophys Res Commun 2010; 392: 340–345.

    CAS  PubMed  Google Scholar 

  105. Zhang X, Zhu W, Zhang J, Huo S, Zhou L, Gu Z et al. MicroRNA-650 targets ING4 to promote gastric cancer tumorigenicity. Biochem Biophys Res Commun 2010; 395: 275–280.

    CAS  PubMed  Google Scholar 

  106. Zhu LH, Liu T, Tang H, Tian RQ, Su C, Liu M et al. MicroRNA-23a promotes the growth of gastric adenocarcinoma cell line MGC803 and downregulates interleukin-6 receptor. FEBS J 2010; 277: 3726–3734.

    CAS  PubMed  Google Scholar 

  107. Jin Z, Selaru FM, Cheng Y, Kan T, Agarwal R, Mori Y et al. MicroRNA-192 and -215 are upregulated in human gastric cancer in vivo and suppress ALCAM expression in vitro. Oncogene 2011; 30: 1577–1585.

    CAS  PubMed  Google Scholar 

  108. Shi X, Su S, Long J, Mei B, Chen Y . MicroRNA-191 targets N-deacetylase/N-sulfotransferase 1 and promotes cell growth in human gastric carcinoma cell line MGC803. Acta Bioch Biophys Sin 2011; 43: 849–856.

    CAS  Google Scholar 

  109. Xiong X, Ren HZ, Li MH, Mei JH, Wen JF, Zheng CL . Down-regulated miRNA-214 induces a cell cycle G1 arrest in gastric cancer cells by up-regulating the PTEN protein. Pathol Oncol Res 2011; 17: 931–937.

    CAS  PubMed  Google Scholar 

  110. Zhu W, Xu H, Zhu D, Zhi H, Wang T, Wang J et al. miR-200bc/429 cluster modulates multidrug resistance of human cancer cell lines by targeting BCL2 and XIAP. Cancer chemotherapy and pharmacology 2011; 69: 723–731.

    PubMed  Google Scholar 

  111. Guo X, Jing C, Li L, Zhang L, Shi Y, Wang J et al. Down-regulation of VEZT gene expression in human gastric cancer involves promoter methylation and miR-43c. Biochem Biophys Res Commun 2011; 404: 622–627.

    CAS  PubMed  Google Scholar 

  112. Li N, Tang B, Zhu ED, Li BS, Zhuang Y, Yu S et al. Increased miR-222 in H. pylori-associated gastric cancer correlated with tumor progression by promoting cancer cell proliferation and targeting RECK. FEBS Lett 2012; 586: 722–728.

    CAS  PubMed  Google Scholar 

  113. Liu Z, Zhu J, Cao H, Ren H, Fang X . miR-10b promotes cell invasion through RhoC-AKT signaling pathway by targeting HOXD10 in gastric cancer. Int J Oncol 2012; 40: 1553–1560.

    CAS  PubMed  Google Scholar 

  114. Sun M, Liu XH, Li JH, Yang JS, Zhang EB, Yin DD et al. MiR-196a is upregulated in gastric cancer and promotes cell proliferation by downregulating p27(kip1). Mol Cancer Ther 2012; 11: 842–852.

    CAS  PubMed  Google Scholar 

  115. Lin Y, Nie Y, Zhao J, Chen X, Ye M, Li Y et al. Genetic polymorphism at miR-181a binding site contributes to gastric cancer susceptibility. Carcinogenesis 2012; 33: 2377–2383.

    CAS  PubMed  Google Scholar 

  116. Zhang X, Nie Y, Li X, Wu G, Huang Q, Cao J et al. MicroRNA-181a functions as an oncomir in gastric cancer by targeting the tumour suppressor gene ATM. Pathol Oncol Res 2014; 20: 381–389.

    CAS  PubMed  Google Scholar 

  117. Wu W, Takanashi M, Borjigin N, Ohno SI, Fujita K, Hoshino S et al. MicroRNA-18a modulates STAT3 activity through negative regulation of PIAS3 during gastric adenocarcinogenesis. Br J Cancer 2013; 108: 653–661.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang M, Li C, Yu B, Su L, Li J, Ju J et al. Overexpressed miR-301a promotes cell proliferation and invasion by targeting RUNX3 in gastric cancer. J Gastroenterol 2013; 48: 1023–1033.

    CAS  PubMed  Google Scholar 

  119. Kurashige J, Kamohara H, Watanabe M, Hiyoshi Y, Iwatsuki M, Tanaka Y et al. MicroRNA-200b regulates cell proliferation, invasion, and migration by directly targeting ZEB2 in gastric carcinoma. Ann Surg Oncol 2012; 19 (Suppl 3): S656–S664.

    PubMed  Google Scholar 

  120. Li T, Lu YY, Zhao XD, Guo HQ, Liu CH, Li H et al. MicroRNA-296-5p increases proliferation in gastric cancer through repression of Caudal-related homeobox 1. Oncogene 2013; 33: 783–793.

    PubMed  Google Scholar 

  121. Wang M, Gu H, Qian H, Zhu W, Zhao C, Zhang X et al. miR-17-5p/20a are important markers for gastric cancer and murine double minute 2 participates in their functional regulation. Eur J Cancer 2013; 49: 2010–2021.

    CAS  PubMed  Google Scholar 

  122. Zhang SJ, Feng JF, Wang L, Guo W, Du YW, Ming L et al. miR-1303 targets Claudin-18 gene to modulate proliferation and invasion of gastric cancer cells. Dig Dis Sci 2014 (e-pub ahead of print).

  123. Guo SL, Peng Z, Yang X, Fan KJ, Ye H, Li ZH et al. miR-148a promoted cell proliferation by targeting p27 in gastric cancer cells. Int J Biol Sci 2011; 7: 567–574.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Feng R, Chen X, Yu Y, Su L, Yu B, Li J et al. miR-126 functions as a tumour suppressor in human gastric cancer. Cancer Lett 2010; 298: 50–63.

    CAS  PubMed  Google Scholar 

  125. Otsubo T, Akiyama Y, Hashimoto Y, Shimada S, Goto K, Yuasa Y . MicroRNA-126 inhibits SOX2 expression and contributes to gastric carcinogenesis. PLoS One 2011; 6: e16617.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Feng L, Xie Y, Zhang H, Wu Y . miR-107 targets cyclin-dependent kinase 6 expression, induces cell cycle G1 arrest and inhibits invasion in gastric cancer cells. Med Oncol 2012; 29: 856–863.

    CAS  PubMed  Google Scholar 

  127. Li X, Zhang Y, Shi Y, Dong G, Liang J, Han Y et al. MicroRNA-107, an oncogene microRNA that regulates tumour invasion and metastasis by targeting DICER1 in gastric cancer. J Cell Mol Med 2011; 15: 1887–1895.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Xiao B, Zhu ED, Li N, Lu DS, Li W, Li BS et al. Increased miR-146a in gastric cancer directly targets SMAD4 and is involved in modulating cell proliferation and apoptosis. Oncol Rep 2012; 27: 559–566.

    CAS  PubMed  Google Scholar 

  129. Crone SG, Jacobsen A, Federspiel B, Bardram L, Krogh A, Lund AH et al. microRNA-146a inhibits G protein-coupled receptor-mediated activation of NF-kappaB by targeting CARD10 and COPS8 in gastric cancer. Mol Cancer 2012; 11: 71.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Hou Z, Yin H, Chen C, Dai X, Li X, Liu B et al. microRNA-146a targets the L1 cell adhesion molecule and suppresses the metastatic potential of gastric cancer. Mol Med Rep 2012; 6: 501–506.

    CAS  PubMed  Google Scholar 

  131. Kogo R, Mimori K, Tanaka F, Komune S, Mori M . Clinical significance of miR-146a in gastric cancer cases. Clin Cancer Res 2011; 17: 4277–4284.

    CAS  PubMed  Google Scholar 

  132. Yao Q, Cao Z, Tu C, Zhao Y, Liu H, Zhang S . MicroRNA-146a acts as a metastasis suppressor in gastric cancer by targeting WASF2. Cancer Lett 2013; 335: 219–224.

    CAS  PubMed  Google Scholar 

  133. Yuan TL, Cantley LC . PI3K pathway alterations in cancer: variations on a theme. Oncogene 2008; 27: 5497–5510.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Cantley LC . The phosphoinositide 3-kinase pathway. Science 2002; 296: 1655–1657.

    CAS  PubMed  Google Scholar 

  135. Engelman JA, Luo J, Cantley LC . The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 2006; 7: 606–619.

    CAS  PubMed  Google Scholar 

  136. Kim RH, Mak TW . Tumours and tremors: how PTEN regulation underlies both. Br J Cancer 2006; 94: 620–624.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Li GQ, Xie J, Lei XY, Zhang L . Macrophage migration inhibitory factor regulates proliferation of gastric cancer cells via the PI3K/Akt pathway. World J Gastroenterol 2009; 15: 5541–5548.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Chang F, Steelman LS, Shelton JG, Lee JT, Navolanic PM, Blalock WL et al. Regulation of cell cycle progression and apoptosis by the Ras/Raf/MEK/ERK pathway (Review). Int J Oncol 2003; 22: 469–480.

    CAS  PubMed  Google Scholar 

  139. Seabra MC . Membrane association and targeting of prenylated Ras-like GTPases. Cell Signal 1998; 10: 167–172.

    CAS  PubMed  Google Scholar 

  140. Li W, Chong H, Guan KL . Function of the Rho family GTPases in Ras-stimulated Raf activation. J Biol Chem 2001; 276: 34728–34737.

    CAS  PubMed  Google Scholar 

  141. Okazaki M, Kishida S, Hinoi T, Hasegawa T, Tamada M, Kataoka T et al. Synergistic activation of c-fos promoter activity by Raf and Ral GDP dissociation stimulator. Oncogene 1997; 14: 515–521.

    CAS  PubMed  Google Scholar 

  142. Pritchard C, McMahon M . Raf revealed in life-or-death decisions. Nat Genet 1997; 16: 214–215.

    CAS  PubMed  Google Scholar 

  143. Lee JT Jr., McCubrey JA . The Raf/MEK/ERK signal transduction cascade as a target for chemotherapeutic intervention in leukemia. Leukemia 2002; 16: 486–507.

    CAS  PubMed  Google Scholar 

  144. Malumbres M, Barbacid M . Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 2009; 9: 153–166.

    CAS  PubMed  Google Scholar 

  145. Tomita T . Cyclin-dependent kinase (cdk6) and p16 in pancreatic endocrine neoplasms. Pathology 2004; 36: 566–570.

    CAS  PubMed  Google Scholar 

  146. Kamikubo Y, Takaori-Kondo A, Uchiyama T, Hori T . Inhibition of cell growth by conditional expression of kpm, a human homologue of Drosophila warts/lats tumor suppressor. J Biol Chem 2003; 278: 17609–17614.

    CAS  PubMed  Google Scholar 

  147. Canepa ET, Scassa ME, Ceruti JM, Marazita MC, Carcagno AL, Sirkin PF et al. INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions. IUBMB Life 2007; 59: 419–426.

    CAS  PubMed  Google Scholar 

  148. Shou W, Dunphy WG . Cell cycle control by Xenopus p28Kix1, a developmentally regulated inhibitor of cyclin-dependent kinases. Mol Biol Cell 1996; 7: 457–469.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Pateras IS, Apostolopoulou K, Niforou K, Kotsinas A, Gorgoulis VG . p57KIP2: "Kip"ing the cell under control. Mol Cancer Res 2009; 7: 1902–1919.

    CAS  PubMed  Google Scholar 

  150. Shen HM, Tergaonkar V . NFkappaB signaling in carcinogenesis and as a potential molecular target for cancer therapy. Apoptosis 2009; 14: 348–363.

    CAS  PubMed  Google Scholar 

  151. Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ . Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 1996; 87: 619–628.

    CAS  PubMed  Google Scholar 

  152. Weston CR, Balmanno K, Chalmers C, Hadfield K, Molton SA, Ley R et al. Activation of ERK1/2 by deltaRaf-1:ER* represses Bim expression independently of the JNK or PI3K pathways. Oncogene 2003; 22: 1281–1293.

    CAS  PubMed  Google Scholar 

  153. Ley R, Balmanno K, Hadfield K, Weston C, Cook SJ . Activation of the ERK1/2 signaling pathway promotes phosphorylation and proteasome-dependent degradation of the BH3-only protein, Bim. J Biol Chem 2003; 278: 18811–18816.

    CAS  PubMed  Google Scholar 

  154. Harada H, Quearry B, Ruiz-Vela A, Korsmeyer SJ . Survival factor-induced extracellular signal-regulated kinase phosphorylates BIM, inhibiting its association with BAX and proapoptotic activity. Proc Natl Acad Sci USA 2004; 101: 15313–15317.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Majewski M, Nieborowska-Skorska M, Salomoni P, Slupianek A, Reiss K, Trotta R et al. Activation of mitochondrial Raf-1 is involved in the antiapoptotic effects of Akt. Cancer Res 1999; 59: 2815–2819.

    CAS  PubMed  Google Scholar 

  156. Kauffmann-Zeh A, Rodriguez-Viciana P, Ulrich E, Gilbert C, Coffer P . Downward J et al. Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature 1997; 385: 544–548.

    CAS  PubMed  Google Scholar 

  157. Ohgushi M, Kuroki S, Fukamachi H, O'Reilly LA, Kuida K, Strasser A et al. Transforming growth factor beta-dependent sequential activation of Smad, Bim, and caspase-9 mediates physiological apoptosis in gastric epithelial cells. Mol Cell Biol 2005; 25: 10017–10028.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Wong K, Park HT, Wu JY, Rao Y . Slit proteins: molecular guidance cues for cells ranging from neurons to leukocytes. Cur Opin Genet Dev 2002; 12: 583–591.

    CAS  Google Scholar 

  159. Dickson BJ, Gilestro GF . Regulation of commissural axon pathfinding by slit and its Robo receptors. Annu Rev Cell Dev Biol 2006; 22: 651–675.

    CAS  PubMed  Google Scholar 

  160. Wu W, Wong K, Chen J, Jiang Z, Dupuis S, Wu JY et al. Directional guidance of neuronal migration in the olfactory system by the protein Slit. Nature 1999; 400: 331–336.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Prasad A, Qamri Z, Wu J, Ganju RK . Slit-2/Robo-1 modulates the CXCL12/CXCR4-induced chemotaxis of T cells. J Leukoc Biol 2007; 82: 465–476.

    CAS  PubMed  Google Scholar 

  162. Wang B, Xiao Y, Ding BB, Zhang N, Yuan X, Gui L et al. Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell 2003; 4: 19–29.

    PubMed  Google Scholar 

  163. Yuasa-Kawada J, Kinoshita-Kawada M, Rao Y, Wu JY . Deubiquitinating enzyme USP33/VDU1 is required for Slit signaling in inhibiting breast cancer cell migration. Proc Natl Acad Sci USA 2009; 106: 14530–14535.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Ghoreschi K, Laurence A, O'Shea JJ . Janus kinases in immune cell signaling. Immunol Rev 2009; 228: 273–287.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Levine RL, Pardanani A, Tefferi A, Gilliland DG . Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders. Nat Rev Cancer 2007; 7: 673–683.

    CAS  PubMed  Google Scholar 

  166. Klaus A, Birchmeier W . Wnt signalling and its impact on development and cancer. Nat Rev Cancer 2008; 8: 387–398.

    CAS  PubMed  Google Scholar 

  167. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT et al. Identification of c-MYC as a target of the APC pathway. Science 1998; 281: 1509–1512.

    CAS  PubMed  Google Scholar 

  168. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R et al. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 1999; 96: 5522–5527.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Koh TJ, Bulitta CJ, Fleming JV, Dockray GJ, Varro A, Wang TC . Gastrin is a target of the beta-catenin/TCF-4 growth-signaling pathway in a model of intestinal polyposis. J Clin Invest 2000; 106: 533–539.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Kolligs FT, Nieman MT, Winer I, Hu G, Van Mater D, Feng Y et al. ITF-2, a downstream target of the Wnt/TCF pathway, is activated in human cancers with beta-catenin defects and promotes neoplastic transformation. Cancer Cell 2002; 1: 145–155.

    CAS  PubMed  Google Scholar 

  171. Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC . Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res 2006; 66: 1277–1281.

    CAS  PubMed  Google Scholar 

  172. Wang L, Wei D, Huang S, Peng Z, Le X, Wu TT et al. Transcription factor Sp1 expression is a significant predictor of survival in human gastric cancer. Clinical Cancer Res 2003; 9: 6371–6380.

    CAS  Google Scholar 

  173. Liu M, Yang S, Wang Y, Zhu H, Yan S, Zhang W et al. EB1 acts as an oncogene via activating beta-catenin/TCF pathway to promote cellular growth and inhibit apoptosis. Mol Carcinog 2009; 48: 212–219.

    CAS  PubMed  Google Scholar 

  174. Mishra PJ, Banerjee D, Bertino JR . MiRSNPs or MiR-polymorphisms, new players in microRNA mediated regulation of the cell: Introducing microRNA pharmacogenomics. Cell Cycle 2008; 7: 853–858.

    CAS  PubMed  Google Scholar 

  175. Peng S, Kuang Z, Sheng C, Zhang Y, Xu H, Cheng Q . Association of microRNA-196a-2 gene polymorphism with gastric cancer risk in a Chinese population. Dig Dis Sci 2010; 55: 2288–2293.

    CAS  PubMed  Google Scholar 

  176. Yang Q, Jie Z, Ye S, Li Z, Han Z, Wu J et al. Genetic variations in miR-27a gene decrease mature miR-27a level and reduce gastric cancer susceptibility. Oncogene 2014; 33: 193–202.

    CAS  PubMed  Google Scholar 

  177. Wang W, Li F, Mao Y, Zhou H, Sun J, Li R et al. A miR-570 binding site polymorphism in the B7-H1 gene is associated with the risk of gastric adenocarcinoma. Hum Genet 2013; 132: 641–648.

    CAS  PubMed  Google Scholar 

  178. Li Y, Nie Y, Cao J, Tu S, Lin Y, Du Y. G-A . variant in miR-200c binding site of EFNA1 alters susceptibility to gastric cancer. Mol Carcinog 2014; 53: 219–229.

    PubMed  Google Scholar 

  179. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008; 105: 10513–10518.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Tsujiura M, Ichikawa D, Komatsu S, Shiozaki A, Takeshita H, Kosuga T et al. Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer 2010; 102: 1174–1179.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Cai H, Yuan Y, Hao YF, Guo TK, Wei X, Zhang YM . Plasma microRNAs serve as novel potential biomarkers for early detection of gastric cancer. Med Oncol 2013; 30: 452.

    PubMed  Google Scholar 

  182. Liu R, Zhang C, Hu Z, Li G, Wang C, Yang C et al. A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis. Eur J Cancer 2011; 47: 784–791.

    CAS  PubMed  Google Scholar 

  183. Zhu C, Ren C, Han J, Ding Y, Du J, Dai N et al. A five-microRNA panel in plasma was identified as potential biomarker for early detection of gastric cancer. Br J Cancer 2014; 110: 2291–2299.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Liu H, Zhu L, Liu B, Yang L, Meng X, Zhang W et al. Genome-wide microRNA profiles identify miR-378 as a serum biomarker for early detection of gastric cancer. Cancer Lett 2012; 316: 196–203.

    CAS  PubMed  Google Scholar 

  185. Wang JL, Hu Y, Kong X, Wang ZH, Chen HY, Xu J et al. Candidate microRNA biomarkers in human gastric cancer: a systematic review and validation study. PLoS One 2013; 8: e73683.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Hashiguchi Y, Nishida N, Mimori K, Sudo T, Tanaka F, Shibata K et al. Down-regulation of miR-125a-3p in human gastric cancer and its clinicopathological significance. Int J Oncol 2012; 40: 1477–1482.

    CAS  PubMed  Google Scholar 

  187. Yang Q, Zhang C, Huang B, Li H, Zhang R, Huang Y et al. Downregulation of microRNA-206 is a potent prognostic marker for patients with gastric cancer. Eur J Gastroenterol Hepatol 2013; 25: 953–957.

    CAS  PubMed  Google Scholar 

  188. Wang W, Li F, Zhang Y, Tu Y, Yang Q, Gao X . Reduced expression of miR-22 in gastric cancer is related to clinicopathologic characteristics or patient prognosis. Diagn Pathol 2013; 8: 102.

    PubMed  PubMed Central  Google Scholar 

  189. Li X, Zhang Y, Zhang Y, Ding J, Wu K, Fan D . Survival prediction of gastric cancer by a seven-microRNA signature. Gut 2010; 59: 579–585.

    CAS  PubMed  Google Scholar 

  190. Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci USA 2008; 105: 5166–5171.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Trang P, Wiggins JF, Daige CL, Cho C, Omotola M, Brown D et al. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther 2011; 19: 1116–1122.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Piao L, Zhang M, Datta J, Xie X, Su T, Li H et al. Lipid-based nanoparticle delivery of Pre-miR-107 inhibits the tumorigenicity of head and neck squamous cell carcinoma. Mol Ther 2012; 20: 1261–1269.

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Sunayama J, Matsuda K, Sato A, Tachibana K, Suzuki K, Narita Y et al. Crosstalk between the PI3K/mTOR and MEK/ERK pathways involved in the maintenance of self-renewal and tumorigenicity of glioblastoma stem-like cells. Stem Cells 2010; 28: 1930–1939.

    CAS  PubMed  Google Scholar 

  194. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Franklin RA, Montalto G et al. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget 2012; 3: 1068–1111.

    PubMed  PubMed Central  Google Scholar 

  195. Migliardi G, Sassi F, Torti D, Galimi F, Zanella ER, Buscarino M et al. Inhibition of MEK and PI3K/mTOR suppresses tumor growth but does not cause tumor regression in patient-derived xenografts of RAS-mutant colorectal carcinomas. Clin Cancer Res 2012; 18: 2515–2525.

    CAS  PubMed  Google Scholar 

  196. Harrison DA . The Jak/STAT pathway. Cold Spring Harb Perspect Biol 2012; 4: a011205.

    PubMed  PubMed Central  Google Scholar 

  197. Zoncu R, Efeyan A, Sabatini DM . mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011; 12: 21–35.

    CAS  PubMed  Google Scholar 

  198. Di Nicolantonio F, Arena S, Tabernero J, Grosso S, Molinari F, Macarulla T et al. Deregulation of the PI3K and KRAS signaling pathways in human cancer cells determines their response to everolimus. J Clin Invest 2010; 120: 2858–2866.

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 2010; 363: 809–819.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Villanueva J, Vultur A, Lee JT, Somasundaram R, Fukunaga-Kalabis M, Cipolla AK et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 2010; 18: 683–695.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L, Johnson LA et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 2010; 468: 968–972.

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 2010; 468: 973–977.

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Kinkade CW, Castillo-Martin M, Puzio-Kuter A, Yan J, Foster TH, Gao H et al. Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. J Clin Invest 2008; 118: 3051–3064.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 2008; 14: 1351–1356.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Zang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Li, Z., Li, Y. et al. MicroRNA and signaling pathways in gastric cancer. Cancer Gene Ther 21, 305–316 (2014). https://doi.org/10.1038/cgt.2014.37

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2014.37

This article is cited by

Search

Quick links