Skip to main content
Log in

Fifth-Order A-WENO Schemes Based on the Adaptive Diffusion Central-Upwind Rankine-Hugoniot Fluxes

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

We construct new fifth-order alternative WENO (A-WENO) schemes for the Euler equations of gas dynamics. The new scheme is based on a new adaptive diffusion central-upwind Rankine-Hugoniot (CURH) numerical flux. The CURH numerical fluxes have been recently proposed in [Garg et al. J Comput Phys 428, 2021] in the context of second-order semi-discrete finite-volume methods. The proposed adaptive diffusion CURH flux contains a smaller amount of numerical dissipation compared with the adaptive diffusion central numerical flux, which was also developed with the help of the discrete Rankine-Hugoniot conditions and used in the fifth-order A-WENO scheme recently introduced in [Wang et al. SIAM J Sci Comput 42, 2020]. As in that work, we here use the fifth-order characteristic-wise WENO-Z interpolations to evaluate the fifth-order point values required by the numerical fluxes. The resulting one- and two-dimensional schemes are tested on a number of numerical examples, which clearly demonstrate that the new schemes outperform the existing fifth-order A-WENO schemes without compromising the robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ben-Artzi, M., Falcovitz, J.: Generalized Riemann problems in computational fluid dynamics. In: Cambridge Monographs on Applied and Computational Mathematics, vol. 11. Cambridge University Press, Cambridge (2003)

  2. Cheng, J., Shu, C.-W.: A high order ENO conservative Lagrangian type scheme for the compressible Euler equations. J. Comput. Phys. 227, 1567–1596 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cheng, J., Shu, C.-W.: A third order conservative Lagrangian type scheme on curvilinear meshes for the compressible Euler equations. Commun. Comput. Phys. 4, 1008–1024 (2008)

    MATH  Google Scholar 

  4. Don, W.S., Li, D.-M., Gao, Z., Wang, B.-S.: A characteristic-wise alternative WENO-Z finite difference scheme for solving the compressible multicomponent non-reactive flows in the overestimated quasi-conservative form. J. Sci. Comput. 82, 27 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fjordholm, U.S., Mishra, S., Tadmor, E.: On the computation of measure-valued solutions. Acta Numer. 25, 567–679 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Garg, N.K., Kurganov, A., Liu, Y.: Semi-discrete central-upwind Rankine-Hugoniot schemes for hyperbolic systems of conservation laws. J. Comput. Phys. 428, 110078 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Garg, N.K., Raghurama Rao, S.V., Sekhar, M.: Weak-strong hyperbolic splitting for simulating conservation laws. Int. J. Adv. Eng. Sci. Appl. Math. 7, 62–69 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Godlewski, E., Raviart, P.-A.: Numerical approximation of hyperbolic systems of conservation laws. In: Applied Mathematical Sciences, vol. 118. Springer-Verlag, New York (1996)

  9. Gottlieb, S., Ketcheson, D., Shu, C.-W.: Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2011)

    Book  MATH  Google Scholar 

  10. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hesthaven, J.S.: Numerical Methods for Conservation Laws. From Analysis to Algorithms. SIAM, Philadelphia, PA (2018)

  12. Jaisankar, S., Raghurama Rao, S.V.: A central Rankine-Hugoniot solver for hyperbolic conservation laws. J. Comput. Phys. 228, 770–798 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jiang, Y., Shu, C.-W., Zhang, M.: An alternative formulation of finite difference weighted ENO schemes with Lax-Wendroff time discretization for conservation laws. SIAM J. Sci. Comput. 35, A1137–A1160 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kröner, D.: Numerical Schemes for Conservation Laws. John Wiley & Sons Ltd., Chichester (1997)

    MATH  Google Scholar 

  15. Kurganov, A.: Central schemes: a powerful black-box solver for nonlinear hyperbolic PDEs. In: Abgrall, R., Shu, C.-W. (eds). Handbook of Numerical Methods for Hyperbolic Problems, vol. 17, Handbook of Numerical Analysis, pp. 525–548. Elsevier/North-Holland, Amsterdam (2016)

  16. Kurganov, A., Lin, C.-T.: On the reduction of numerical dissipation in central-upwind schemes. Commun. Comput. Phys. 2, 141–163 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Kurganov, A., Liu, Y., Zeitlin, V.: Numerical dissipation switch for two-dimensional central-upwind schemes. ESAIM: Math. Model. Num. Anal. 55, 713–734 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kurganov, A., Liu, Y., Zeitlin, V.: Thermal versus isothermal rotating shallow water equations: comparison of dynamical processes by simulations with a novel well-balanced central-upwind scheme. Geophys. Astrophys. Fluid Dyn. 115, 125–154 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kurganov, A., Noelle, S., Petrova, G.: Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 23, 707–740 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kurganov, A., Prugger, M., Wu, T.: Second-order fully discrete central-upwind scheme for two-dimensional hyperbolic systems of conservation laws. SIAM J. Sci. Comput. 39, A947–A965 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kurganov, A., Tadmor, E.: Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers. Numer. Methods Partial Differential Equations 18, 584–608 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)

  23. Li, P., Don, W.S., Gao, Z.: High order well-balanced finite difference WENO interpolation-based schemes for shallow water equations. Computers & Fluids 201, 104476 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liska, R., Wendroff, B.: Comparison of several difference schemes on 1D and 2D test problems for the Euler equations. SIAM J. Sci. Comput. 25, 995–1017 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, H.: A numerical study of the performance of alternative weighted ENO methods based on various numerical fluxes for conservation law. Appl. Math. Comput. 296, 182–197 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Liu, H., Qiu, J.: Finite difference Hermite WENO schemes for conservation laws, II: an alternative approach. J. Sci. Comput. 66, 598–624 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, W., Cheng, J., Shu, C.-W.: High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations. J. Comput. Phys. 228, 8872–8891 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Panuelos, J., Wadsley, J., Kevlahan, N.: Low shear diffusion central schemes for particle methods. J. Comput. Phys. 414, 109454 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Raghurama Rao, S.V., Balakrishna, K.: An accurate shock capturing algorithm with a relaxation system for hyperbolic conservation laws. In: 16th AIAA Computational Fluid Dynamics Conference, AIAA 2003-4115, AIAA, Reston, VA (2003)

  30. Schulz-Rinne, C.W.: Classification of the Riemann problem for two-dimensional gas dynamics. SIAM J. Math. Anal. 24, 76–88 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schulz-Rinne, C.W., Collins, J.P., Glaz, H.M.: Numerical solution of the Riemann problem for two-dimensional gas dynamics. SIAM J. Sci. Comput. 14, 1394 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shi, J., Zhang, Y.-T., Shu, C.-W.: Resolution of high order WENO schemes for complicated flow structures. J. Comput. Phys. 186, 690–696 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shu, C.-W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes II. J. Comput. Phys. 83, 32–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, B.-S., Don, W.S., Garg, N.K., Kurganov, A.: Fifth-order A-WENO finite-difference schemes based on a new adaptive diffusion central numerical flux. SIAM J. Sci. Comput. 42, A3932–A3956 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, B.-S., Li, P., Gao, Z., Don, W.S.: An improved fifth order alternative WENO-Z finite difference scheme for hyperbolic conservation laws. J. Comput. Phys. 374, 469–477 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Woodward, P., Colella, P.: The numerical solution of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1988)

    Article  MATH  Google Scholar 

  38. Zheng, Y.: Systems of Conservation Laws. Two-Dimensional Riemann Problems. In: Brezis, H. (ed). Progress in Nonlinear Differential Equations and Their Applications, vol. 38, Birkhäuser Boston, Inc., Boston, MA (2001)

Download references

Acknowledgements

The work of B. S. Wang and W. S. Don was partially supported by the Ocean University of China through grant 201712011. The work of A. Kurganov was supported in part by NSFC grants 11771201 and 1201101343 and by the fund of the Guangdong Provincial Key Laboratory of Computational Science and Material Design (No. 2019B030301001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kurganov.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Appendix A Adaptive Diffusion Central Flux

Appendix A Adaptive Diffusion Central Flux

In this section, we describe the adaptive diffusion central numerical flux for the 1-D Euler equations of gas dynamics (10) and (11). According to [35], the flux is

$$\begin{aligned} \varvec{{{\mathcal {F}}}}_{{j+\frac{1}{2}}}^{\,\mathrm{FV}}={\frac{1}{2}}\left[ \varvec{F}(\varvec{U}_{{j+\frac{1}{2}}}^-)+\varvec{F}(\varvec{U}_{{j+\frac{1}{2}}}^+)\right] -{\frac{1}{2}}\alpha _{{j+\frac{1}{2}}}\Delta \varvec{U}_{{j+\frac{1}{2}}},\quad \Delta \varvec{U}_{{j+\frac{1}{2}}}:=\varvec{U}_{{j+\frac{1}{2}}}^+-\varvec{U}_{{j+\frac{1}{2}}}^-, \end{aligned}$$

where

$$\begin{aligned} \alpha _{{j+\frac{1}{2}}}=\left\{ \begin{aligned}&\min \left\{ \alpha _{{j+\frac{1}{2}}}^{\mathrm{min}},\kappa \alpha _{{j+\frac{1}{2}}}^{\mathrm{max}}\right\} ,&\theta _{{j+\frac{1}{2}}}\leqslant ({\Delta {x}})^2,\\&\max \left\{ \alpha _{{j+\frac{1}{2}}}^{\mathrm{min}},\min \big (\widehat{\alpha }_{{j+\frac{1}{2}}},\alpha _{{j+\frac{1}{2}}}^{\mathrm{max}}\big )\right\} ,&\text{ otherwise}. \end{aligned}\right. \end{aligned}$$
(A1)

In (A1), \(\theta _{{j+\frac{1}{2}}}\) is given by (12),

$$\begin{aligned} \alpha _{{j+\frac{1}{2}}}^{\mathrm{min}}=\min \left\{ \big |u_{{j+\frac{1}{2}}}^-\big |,\big |u_{{j+\frac{1}{2}}}^+\big |\right\} ,\quad \alpha _{{j+\frac{1}{2}}}^{\mathrm{max}}=\max \left\{ \big |u_{{j+\frac{1}{2}}}^-\big |+c_{{j+\frac{1}{2}}}^-,\big |u_{{j+\frac{1}{2}}}^+\big |+c_{{j+\frac{1}{2}}}^+\right\} , \end{aligned}$$
(A2)

and

$$\begin{aligned} \widehat{\alpha }_{{j+\frac{1}{2}}}=\frac{2\big |\Delta F_{{j+\frac{1}{2}}}^{(3)}\big |}{\big |\Delta E_{{j+\frac{1}{2}}}\big |+\max \left\{ \big |\Delta E_{{j+\frac{1}{2}}}\big |,\varepsilon \right\} }. \end{aligned}$$
(A3)

In (A2), \(c_{{j+\frac{1}{2}}}^\pm =\sqrt{\gamma p_{{j+\frac{1}{2}}}^\pm /\rho _{{j+\frac{1}{2}}}^\pm }\) with \(p_{{j+\frac{1}{2}}}^\pm =(\gamma -1)\left[ E_{{j+\frac{1}{2}}}^\pm -\big ((\rho u)_{{j+\frac{1}{2}}}^\pm \big )^2/(2\rho _{{j+\frac{1}{2}}}^\pm )\right]\). In (A3), \(\Delta E_{{j+\frac{1}{2}}}=E_{{j+\frac{1}{2}}}^+-E_{{j+\frac{1}{2}}}^-\) and \(\Delta F_{{j+\frac{1}{2}}}^{(3)}=F^{(3)}\big (U_{{j+\frac{1}{2}}}^+\big )-F^{(3)}\big (U_{{j+\frac{1}{2}}}^-\big )\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, BS., Don, W.S., Kurganov, A. et al. Fifth-Order A-WENO Schemes Based on the Adaptive Diffusion Central-Upwind Rankine-Hugoniot Fluxes. Commun. Appl. Math. Comput. 5, 295–314 (2023). https://doi.org/10.1007/s42967-021-00161-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-021-00161-2

Keywords

Mathematics Subject Classification

Navigation