Skip to main content
Log in

Current development of body-centered cubic high-entropy alloys for nuclear applications

  • Review Paper
  • Published:
Tungsten Aims and scope Submit manuscript

A Correction to this article was published on 21 August 2021

This article has been updated

Abstract

High-entropy alloys greatly expand the alloy design range and offer new possibilities for improving material performance. Based on the worldwide research efforts in the last decade, the excellent mechanical properties and promising radiation and corrosion resistance of this group of materials have been demonstrated. High-entropy alloys with body-centered cubic (BCC) structures, especially refractory high-entropy alloys, are considered as promising materials for high-temperature applications in advanced nuclear reactors. However, the extreme reactor conditions including high temperature, high radiation damage, high stress, and complex corrosive environment require a comprehensive evaluation of the material properties for their actual service in nuclear reactors. This review summarizes the current progress on BCC high-entropy alloys from the aspects of neutron economy and activation, mechanical properties, high-temperature stability, radiation resistance, as well as corrosion resistance. Although the current development of BCC high-entropy alloys for nuclear applications is still at an early stage as the large design space of this group of alloys has not been fully explored, the current research findings provide a good basis for the understanding and prediction of material behaviors with different compositions and microstructures. Further in-depth understanding of the degradation mechanisms and characterization of material properties in response to conditions close to reactor environment are necessary. A critical down-selection of potential candidates is also crucial for further comprehensive evaluation and engineering validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Yvon P, Carré F. Structural materials challenges for advanced reactor systems. J Nucl Mater. 2009;385(2):217.

    Article  CAS  Google Scholar 

  2. Chen H, Chen Z, Chen C, Zhang X, Zhang H, Zhao P, Shi K, Li S, Feng J, Zeng Q. Conceptual design of a small modular natural circulation lead cooled fast reactor SNCLFR-100. Int J Hydrogen Energy. 2016;41(17):7158.

    Article  CAS  Google Scholar 

  3. Aoto K, Dufour P, Hongyi Y, Glatz JP, Kim YI, Ashurko Y, Hill R, Uto N. A summary of sodium-cooled fast reactor development. Prog Nucl Energy. 2014;77:247.

    Article  CAS  Google Scholar 

  4. Duffey R. The development and future of the supercritical water reactor. CNL Nucl Rev. 2016;5(2):181.

    Google Scholar 

  5. Smith CF, Halsey WG, Brown NW, Sienicki JJ, Moisseytsev A, Wade DC. Sstar: the US lead-cooled fast reactor (LFR). J Nucl Mater. 2008;376(3):255.

    Article  CAS  Google Scholar 

  6. Stainsby R, Peers K, Mitchell C, Poette C, Mikityuk K, Somers J. Gas cooled fast reactor research in Europe. Nucl Eng Des. 2011;241(9):3481.

    Article  CAS  Google Scholar 

  7. Cinotti L, Smith CF, Sekimoto H. Lead-cooled fast reactor (LFR) overview and perspectives. Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States). Tech. rep. 2009.

  8. Van Rooijen W, Kloosterman J, Van Der Hagen T, Van Dam H. Definition of breeding gain for the closed fuel cycle and application to a gas-cooled fast reactor. Nucl Sci Eng. 2007;157(2):185.

    Article  Google Scholar 

  9. Zinkle SJ, Busby JT. Structural materials for fission & fusion energy. Mater Today. 2009;12(11):12.

    Article  CAS  Google Scholar 

  10. Zheng G, Sridharan K. Corrosion of structural alloys in high-temperature molten fluoride salts for applications in molten salt reactors. JOM. 2018;70(8):1535.

    Article  CAS  Google Scholar 

  11. Ballinger RG, Lim J. An overview of corrosion issues for the design and operation of high-temperature lead-and lead-bismuth-cooled reactor systems. Nucl Technol. 2004;147(3):418.

    Article  CAS  Google Scholar 

  12. Cawthorne C, Fulton E. Voids in irradiated stainless steel. Nature. 1967;216(5115):575.

    Article  CAS  Google Scholar 

  13. Sapundjiev D, Van Dyck S, Bogaerts W. Liquid metal corrosion of T91 and A316L materials in Pb-Bi eutectic at temperatures 400–600 \(^\circ {{\rm C}}\). Corros Sci. 2006;48(3):577.

    Article  CAS  Google Scholar 

  14. Klueh R, Nelson AT. Ferritic/martensitic steels for next-generation reactors. J Nucl Mater. 2007;371(1–3):37.

    Article  CAS  Google Scholar 

  15. Ding Q, Zhang Y, Chen X, Fu X, Chen D, Chen S, Gu L, Wei F, Bei H, Gao Y, Wen M, Li J, Zhang Z, Zhang Z, Zhu T, Ritchie RO, Yu Q. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature. 2019;574(7777):223.

    Article  CAS  Google Scholar 

  16. Li TC, Lv YB, Cao ZJ, Yu TM, Li TJ. Opportunity and challenge of refractory high-entropy alloys in the field of reactor structural materials. Acta Metall Sin. 2020;57:42.

  17. Jin K, Lu C, Wang L, Qu J, Weber W, Zhang Y, Bei H. Effects of compositional complexity on the ion-irradiation induced swelling and hardening in ni-containing equiatomic alloys. Scripta Mater. 2016;119:65.

    Article  CAS  Google Scholar 

  18. Lu C, Niu L, Chen N, Jin K, Yang T, Xiu P, Zhang Y, Gao F, Bei H, Shi S, He MR, Robertson IM, Weber WJ, Wang L. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys. Nat Commun. 2016;7(1):1.

    Article  Google Scholar 

  19. Zhang Y, Stocks GM, Jin K, Lu C, Bei H, Sales BC, Wang L, Béland LK, Stoller RE, Samolyuk GD, Caro M, Caro A, Weber WJ. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat Commun. 2015;6(1):1.

    Article  Google Scholar 

  20. Shi Y, Yang B, Liaw PK. Corrosion-resistant high-entropy alloys: a review. Metals. 2017;7(2):43.

    Article  CAS  Google Scholar 

  21. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299.

    Article  CAS  Google Scholar 

  22. Zhang W, Liaw PK, Zhang Y. Science and technology in high-entropy alloys. Sci China Mater. 2018;61(1):2.

    Article  CAS  Google Scholar 

  23. Hsu CY, Juan CC, Wang WR, Sheu TS, Yeh JW, Chen SK. On the superior hot hardness and softening resistance of AlCoCrxFeMo\(_{0.5}\)Ni high-entropy alloys. Mater Sci Eng A. 2011;528(10–11):3581.

    Article  CAS  Google Scholar 

  24. Senkov ON, Wilks G, Scott J, Miracle DB. Mechanical properties of Nb\(_{25}\)Mo\(_{25}\)Ta\(_{25}\)W\(_{25}\) and V\(_{20}\)Nb\(_{20}\)Mo\(_{20}\)Ta\(_{20}\)W\(_{20}\) refractory high entropy alloys. Intermetallics. 2011;19(5):698.

    Article  CAS  Google Scholar 

  25. Lee C, Song G, Gao MC, Feng R, Chen P, Brechtl J, Chen Y, An K, Guo W, Poplawsky JD, Li S, Samaei A, Chen W, Hu A, Choo H, Liaw PK. Lattice distortion in a strong and ductile refractory high-entropy alloy. Acta Mater. 2018;160:158.

    Article  CAS  Google Scholar 

  26. Tsai KY, Tsai MH, Yeh JW. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Mater. 2013;61(13):4887.

    Article  CAS  Google Scholar 

  27. Tsai MH, Yeh JW. High-entropy alloys: a critical review. Mater Res Lett. 2014;2(3):107.

    Article  CAS  Google Scholar 

  28. Zhao S, Stocks G.M, Zhang Y. Defect energetics of concentrated solid-solution alloys from ab initio calculations: Ni\(_{0.5}\)Co\(_{0.5}\), Ni\(_{0.5}\)Fe\(_{0.5}\), Ni\(_{0.8}\)Fe\(_{0.2}\) and Ni\(_{0.8}\)Cr\(_{0.2}\). Phys Chem Chem Phys. 2016;18(34):24043.

    Article  CAS  Google Scholar 

  29. Lu C, Yang T, Jin K, Gao N, Xiu P, Zhang Y, Gao F, Bei H, Weber WJ, Sun K, Dong Y, Wang L. Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys. Acta Mater. 2017;127:98.

    Article  CAS  Google Scholar 

  30. Sheikh S, Shafeie S, Hu Q, Ahlström J, Persson C, Veselỳ J, Zỳka J, Klement U, Guo S. Alloy design for intrinsically ductile refractory high-entropy alloys. J Appl Phys. 2016;120(16):164902.

    Article  CAS  Google Scholar 

  31. Senkov O, Wilks G, Miracle D, Chuang C, Liaw P. Refractory high-entropy alloys. Intermetallics. 2010;18(9):1758.

    Article  CAS  Google Scholar 

  32. Senkov O, Scott J, Senkova S, Miracle D, Woodward C. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J Alloy Compd. 2011;509(20):6043.

    Article  CAS  Google Scholar 

  33. Juan CC, Tsai MH, Tsai CW, Lin CM, Wang WR, Yang CC, Chen SK, Lin SJ, Yeh JW. Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys. Intermetallics. 2015;62:76.

    Article  CAS  Google Scholar 

  34. Kang B, Lee J, Ryu HJ, Hong SH. Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process. Mater Sci Eng A. 2018;712:616.

    Article  CAS  Google Scholar 

  35. Senkov ON, Miracle DB, Chaput KJ, Couzinie JP. Development and exploration of refractory high entropy alloys—a review. J Mater Res. 2018;33(19):3092.

    Article  CAS  Google Scholar 

  36. Azevedo C. Selection of fuel cladding material for nuclear fission reactors. Eng Fail Anal. 2011;18(8):1943.

    Article  CAS  Google Scholar 

  37. Backman L, Gild J, Luo J, Opila EJ. Part I: theoretical predictions of preferential oxidation in refractory high entropy materials. Acta Mater. 2020;197:20.

    Article  CAS  Google Scholar 

  38. Han Z, Luan H, Liu X, Chen N, Li X, Shao Y, Yao K. Microstructures and mechanical properties of Ti\(_{x}\)NbMoTaW refractory high-entropy alloys. Mater Sci Eng A. 2018;712:380.

    Article  CAS  Google Scholar 

  39. Zou Y, Maiti S, Steurer W, Spolenak R. Size-dependent plasticity in an Nb\(_{25}\)Mo\(_{25}\)Ta\(_{25}\)W refractory high-entropy alloy. Acta Mater. 2014;65:85.

    Article  CAS  Google Scholar 

  40. Wei S, Kim SJ, Kang J, Zhang Y, Zhang Y, Furuhara T, Park ES, Tasan CC. Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility. Nat Mater. 2020;19(11):1175.

    Article  CAS  Google Scholar 

  41. Miracle D, Majumdar B, Wertz K, Gorsse S. New strategies and tests to accelerate discovery and development of multi-principal element structural alloys. Scripta Mater. 2017;127:195.

    Article  CAS  Google Scholar 

  42. Senkov O, Miller J, Miracle D, Woodward C. Accelerated exploration of multi-principal element alloys with solid solution phases. Nat Commun. 2015;6(1):1.

    Article  CAS  Google Scholar 

  43. Song H, Tian F, Hu QM, Vitos L, Wang Y, Shen J, Chen N. Local lattice distortion in high-entropy alloys. Phys Rev Mater. 2017;1(2):023404.

    Article  Google Scholar 

  44. Barrett K, Bragg-Sitton S. Advanced LWR nuclear fuel cladding system development trade-off study. Idaho National Laboratory (INL). Tech. rep. 2012.

  45. Brown DA, Chadwick MB, R Capote, Kahler AC, A Trkov, Herman MW, Sonzogni AA, Danon Y, Carlson AD, Dunn M, Smith DL, Hale GM, Arbanas G, Arcilla R, Bates CR, Beck B, Becker B, Brown F, Casperson RJ, Conlin J, Cullen DE, Descalle MA, Firestone R, Gaines T, Guber KH, Hawari AI, Holmes J, Johnson TD, Kawano T, Kiedrowski BC, Koning AJ, Kopecky S, Leal L, Lestone JP, Lubitz C, M´arquez Dami´an JI, Mattoon CM, McCutchan EA, Mughabghab S, Navratil P, Neudecker D, Nobre GPA, Noguere G, M Paris, Pigni MT, Plompen AJ, Pritychenko B, Pronyaev VG, Roubtsov D, Rochman D, Romano P, Schillebeeckx P, Simakov S, Sin M, Sirakov I, Sleaford B, Sobes V, Soukhovitskii ES, Stetcu I, Talou P, Thompson I, van der Marck S, Welser-Sherrill L, Wiarda D, White M, Wormald JL, Wright RQ, Zerkle M, Zerovnik G, Zhu Y. ENDF/B-VIII. 0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data. Nucl Data Sheets. 2018;148:1.

    Article  CAS  Google Scholar 

  46. Chadwick MB, Obloˇzinsk´ y P, Herman M, Greene NM, McKnight RD, Smith DL, Young PG, MacFarlane RE, Hale GM, Frankle SC, Kahler AC, Kawano T, Little RC, Madland DG, Moller P, Mosteller RD, Page PR, Talou P, Trellue H, White MC, Wilson WB, Arcilla R, Dunford CL, Mughabghab SF, Pritychenko B, Rochman D, Sonzogni AA, Lubitz CR, Trumbull TH, Weinman JP, Brown DA, Cullen DE, Heinrichs DP, McNabb DP, Derrien H, Dunn ME, Larson NM, Leal LC, Carlson AD, Block RC, Briggs JB, Cheng ET, Huria HC, Zerkle ML, Kozier KS, Courcelle A, Pronyaev V, van der Marck SC. ENDF/B-VII. 0: next generation evaluated nuclear data library for nuclear science and technology. Nucl Data Sheets. 2006;107(12):2931.

    Article  CAS  Google Scholar 

  47. Prince A, Burrows T. Evaluation of natural chromium neutron cross sections for ENDF/BV. Brookhaven National Lab., Upton, NY (USA). Tech. rep. 1979.

  48. Ge Z, Xu R, Wu H, Zhang Y, Chen G, Jin Y, Shu N, Chen Y, Tao X, Tian Y, Liu P, Qian J, Wang JM, Zhang HY, Liu LL, Huang XL. CENDL-3.2: the new version of Chinese general purpose evaluated nuclear data library. In: EPJ Web of Conferences, Vol. 239, EDP Sciences, 2020; p. 09001.

  49. Ge Z, Zhao Z, Xia H, Zhuang Y, Liu T, Zhang J, Wu H. The updated version of Chinese evaluated nuclear data library (CENDL-3.1). J Korean Phys Soc. 2011;59(2):1052.

    Article  CAS  Google Scholar 

  50. Cai D, Liang Q, Liu. Chinese evaluated nuclear data library, version 2 (CENDL-2), HeKexue Yu Gongcheng (Chin J Nucl Sci Eng) 1997;17.

  51. Koning AJ, Bauge E, Dean CJ, Dupont E, Fischer U, Forrest RA, Jacqmin R, Leeb H, Kellett MA, Mills RW, Nordborg C, Pescarini M, Rugama Y, Rullhusen P. Status of the JEFF nuclear data library. J Korean Phys Soc. 2011;59(2):1057.

    Article  Google Scholar 

  52. Nakagawa T, Shibata K, ChibaS, Fukahori T, Nakajima Y, Kikuchi Y, Kawano T, Kanda Y, Ohsawa T, Matsunobu H, Kawai M, Zukeran A, Watanabe T, Igarasi S, Kosako K, Asami T. Japanese evaluated nuclear data library version 3 revision-2: JENDL-3.2. J Nucl Sci Technol. 1995;32(12):1259.

    Article  CAS  Google Scholar 

  53. Blokhin A, Ignatyuk A, Manokhin V, Nikolaev M. Current status of Russian evaluated neutron data libraries. Institute of Physics and Power Engineering: Tech. rep; 1996.

  54. Koning AJ, Rochman D, Sublet JC, Dzysiuk N, Fleming M, Van Der Marck S. TENDL: complete nuclear data library for innovative nuclear science and technology. Nucl Data Sheets. 2019;155:1.

    Article  CAS  Google Scholar 

  55. Forrest R, Tabasso A, Danani C, Jakhar S, Shaw A. Handbook of activation data calculated using EASY-2007. UKAEA FUS. 2009;552:399.

    Google Scholar 

  56. El-Atwani O, Li N, Li M, Devaraj A, Baldwin J, Schneider MM, Sobieraj D, Wróbel JS, Nguyen-Manh D, Maloy SA, Martinez E. Outstanding radiation resistance of tungsten-based high-entropy alloys. Sci Adv. 2019;5(3):eaav2002.

    Article  CAS  Google Scholar 

  57. Kareer A, Waite J, Li B, Couet A, Armstrong D, Wilkinson A. low activation, refractory, high entropy alloys for nuclear applications. J Nucl Mater. 2019;526:151744.

    Article  CAS  Google Scholar 

  58. Zhang W, Liaw PK, Zhang Y. A novel low-activation VCrFeTa\(_{x}\)W\(_{x}\) (x= 0.1, 0.2, 0.3, 0.4, and 1) high-entropy alloys with excellent heat-softening resistance. Entropy. 2018;20(12):951.

    Article  CAS  Google Scholar 

  59. Sun Z, Li X, Wang Z. Microstructure and mechanical properties of low activation Fe-Ti-Cr-V-W multi-principal element alloys. J Nucl Mater. 2020;533:152078.

    Article  CAS  Google Scholar 

  60. Waseem OA, Ryu HJ. Toughening of a low-activation tungsten alloy using tungsten short fibers and particles reinforcement for fusion plasma-facing applications. Nucl Fusion. 2018;59(2):026007.

    Article  CAS  Google Scholar 

  61. Jia N, Li Y, Liu X, Zheng Y, Wang B, Wang J, Xue Y, Jin K. Thermal stability and mechanical properties of low-activation single-phase Ti-V-Ta medium entropy alloys. JOM. 2019;71(10):3490.

    Article  CAS  Google Scholar 

  62. Fazakas E, Zadorozhnyy V, Varga L, Inoue A, Louzguine-Luzgin D, Tian F, Vitos L. Experimental and theoretical study of Ti\(_{20}\)Zr\(_{20}\)Hf\(_{20}\)Nb\(_{20}\)X\(_{20}\) (X= V or Cr) refractory high-entropy alloys. Int J Refract Metal Hard Mater. 2014;47:131.

    Article  CAS  Google Scholar 

  63. Lilensten L, Couzinié J, Perrière L, Bourgon J, Emery N, Guillot I. New structure in refractory high-entropy alloys. Mater Lett. 2014;132:123.

    Article  CAS  Google Scholar 

  64. Fu Z, Chen W, Wen H, Morgan S, Chen F, Zheng B, Zhou Y, Zhang L, Lavernia EJ. Microstructure and mechanical behavior of a novel Co\(_{20}\)Ni\(_{20}\)Fe\(_{20}\)Al\(_{20}\)Ti\(_{20}\) alloy fabricated by mechanical alloying and spark plasma sintering. Mater Sci Eng A. 2015;644:10.

    Article  CAS  Google Scholar 

  65. Dobbelstein H, Thiele M, Gurevich EL, George EP, Ostendorf A. Direct metal deposition of refractory high entropy alloy MoNbTaW. Phys Proc. 2016;83:624.

    Article  CAS  Google Scholar 

  66. Feuerbacher M, Lienig T, Thomas C. A single-phase bcc high-entropy alloy in the refractory Zr-Nb-Ti-V-Hf system. Scripta Mater. 2018;152:40.

    Article  CAS  Google Scholar 

  67. Han Z, Chen N, Zhao S, Fan L, Yang G, Shao Y, Yao K. Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys. Intermetallics. 2017;84:153.

    Article  CAS  Google Scholar 

  68. Gorr B, Azim M, Christ HJ, Mueller T, Schliephake D, Heilmaier M. Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys. J Alloy Compd. 2015;624:270.

    Article  CAS  Google Scholar 

  69. Zhang M, Zhou X, Yu X, Li J. Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding. Surf Coat Technol. 2017;311:321.

    Article  CAS  Google Scholar 

  70. Stepanov N, Yurchenko NY, Panina E, Tikhonovsky M, Zherebtsov S. Precipitation-strengthened refractory Al\(_{0.5}\)CrNbTi\(_{2}\)V\(_{0.5}\) high entropy alloy. Mater Lett. 2017;188:162.

    Article  CAS  Google Scholar 

  71. Wu Y, Cai Y, Wang T, Si J, Zhu J, Wang Y, Hui X. A refractory Hf\(_{25}\)Nb\(_{25}\)Ti\(_{25}\)Zr\(_{25}\) high-entropy alloy with excellent structural stability and tensile properties. Mater Lett. 2014;130:277.

    Article  CAS  Google Scholar 

  72. Maiti S, Steurer W. Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy. Acta Mater. 2016;106:87.

    Article  CAS  Google Scholar 

  73. Senkov O, Scott J, Senkova S, Meisenkothen F, Miracle D, Woodward C. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J Mater Sci. 2012;47(9):4062.

    Article  CAS  Google Scholar 

  74. Guo N, Wang L, Luo L, Li X, Su Y, Guo J, Fu H. Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy. Mater Des. 2015;81:87.

    Article  CAS  Google Scholar 

  75. Guo N, Wang L, Luo L, Li X, Chen R, Su Y, Guo J, Fu H. Microstructure and mechanical properties of in-situ MC-carbide particulates-reinforced refractory high-entropy Mo\(_{0.5}\)NbHf\(_{0.5}\)ZrTi matrix alloy composite. Intermetallics. 2016;69:74.

    Article  CAS  Google Scholar 

  76. Podolskiy A, Tabachnikova E, Voloschuk V, Gorban V, Krapivka N, Firstov S. Mechanical properties and thermally activated plasticity of the Ti\(_{30}\)Zr\(_{25}\)Hf\(_{15}\)Nb\(_{20}\)Ta\(_{10}\) high entropy alloy at temperatures 4.2-350 K. Mater Sci Eng A. 2018;710:136.

    Article  CAS  Google Scholar 

  77. Liu Y, Zhang Y, Zhang H, Wang N, Chen X, Zhang H, Li Y. Microstructure and mechanical properties of refractory HfMo\(_{0.5}\)NbTiV\(_{0.5}\)Si\(_{x}\) high-entropy composites. J Alloy Compd. 2017;694:869.

    Article  CAS  Google Scholar 

  78. Zhang S, Wang Z, Yang H, Qiao J, Wang Z, Wu Y. Ultra-high strain-rate strengthening in ductile refractory high entropy alloys upon dynamic loading. Intermetallics. 2020;121:106699.

    Article  CAS  Google Scholar 

  79. Yao H, Qiao JW, Gao MC, Hawk JA, Ma SG, Zhou H. MoNbTaV medium-entropy alloy. Entropy. 2016;18(5):189.

    Article  CAS  Google Scholar 

  80. Yao H, Qiao J, Hawk J, Zhou H, Chen M, Gao M. Mechanical properties of refractory high-entropy alloys: experiments and modeling. J Alloy Compd. 2017;696:1139.

    Article  CAS  Google Scholar 

  81. Chen SY, Yang X, Dahmen KA, Liaw PK, Zhang Y. Microstructures and crackling noise of Al\(_{x}\)NbTiMoV high entropy alloys. Entropy. 2014;16(2):870.

    Article  CAS  Google Scholar 

  82. Zhang Y, Yang X, Liaw P. Alloy design and properties optimization of high-entropy alloys. JOM. 2012;64(7):830.

    Article  CAS  Google Scholar 

  83. Wu Y, Cai Y, Chen X, Wang T, Si J, Wang L, Wang Y, Hui X. Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys. Mater Des. 2015;83:651.

    Article  CAS  Google Scholar 

  84. Yang X, Zhang Y, Liaw P. Microstructure and compressive properties of NbTiVTaAl\(_{x}\) high entropy alloys. Proc Eng. 2012;36:292.

    Article  CAS  Google Scholar 

  85. Yao H, Qiao J, Gao M, Hawk J, Ma S, Zhou H, Zhang Y. NbTaV-(Ti, W) refractory high-entropy alloys: experiments and modeling. Mater Sci Eng A. 2016;674:203.

    Article  CAS  Google Scholar 

  86. Chen H, Kauffmann A, Laube S, Choi IC, Schwaiger R, Huang Y, Lichtenberg K, Müller F, Gorr B, Christ HJ, Heilmaier M. Contribution of lattice distortion to solid solution strengthening in a series of refractory high entropy alloys. Metall Mater Trans A. 2018;49(3):772.

    Article  CAS  Google Scholar 

  87. Stepanov N, Shaysultanov D, Salishchev G, Tikhonovsky M. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Mater Lett. 2015;142:153.

    Article  CAS  Google Scholar 

  88. Wang Y, Li B, Ren M, Yang C, Fu H. Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Mater Sci Eng A. 2008;491(1–2):154.

    Article  CAS  Google Scholar 

  89. Kang B, Kong T, Ryu HJ, Hong S. Superior mechanical properties and strengthening mechanisms of lightweight Al\(_{x}\)CrNbVMo refractory high-entropy alloys (x= 0, 0.5, 1.0) fabricated by the powder metallurgy process, J Mater Sci Technol. 2020;31:2363.

  90. Senkov O, Senkova S, Woodward C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater. 2014;68:214.

    Article  CAS  Google Scholar 

  91. Wu Y, Si J, Lin D, Wang T, Wang WY, Wang Y, Liu Z, Hui X. Phase stability and mechanical properties of AlHfNbTiZr high-entropy alloys. Mater Sci Eng A. 2018;724:249.

    Article  CAS  Google Scholar 

  92. Raza A, Kang B, Lee J, Ryu HJ, Hong SH. Transition in microstructural and mechanical behavior by reduction of sigma-forming element content in a novel high entropy alloy. Mater Des. 2018;145:11.

    Article  CAS  Google Scholar 

  93. Chen Y, Xu Z, Wang M, Li Y, Wu C, Yang Y. A single-phase V\(_{0.5}\)Nb\(_{0.5}\)ZrTi refractory high-entropy alloy with outstanding tensile properties. Mater Sci Eng A. 2020;792:139774.

    Article  CAS  Google Scholar 

  94. Huang TD, Wu SY, Jiang H, Lu YP, Wang TM, Li TJ. Effect of Ti content on microstructure and properties of Ti\(_{x}\)ZrVNb refractory high-entropy alloys. Int J Miner Metall Mater. 2020;27(10):1318.

    Article  CAS  Google Scholar 

  95. Qiao DX, Jiang H, Jiao WN, Lu YP, Cao ZQ, Li TJ. A novel series of refractory high-entropy alloys Ti\(_{2}\)ZrHf\(_{0.5}\)VNb\(_{x}\) with high specific yield strength and good ductility. Acta Metall Sin(English Letters). 2019;32(8):925.

    Article  CAS  Google Scholar 

  96. Pan J, Dai T, Lu T, Ni X, Dai J, Li M. Microstructure and mechanical properties of Nb\(_{25}\)Mo\(_{25}\)Ta\(_{25}\)W\(_{25}\) and Ti\(_{8}\)Nb\(_{23}\)Mo\(_{23}\)Ta\(_{23}\)W\(_{23}\) high entropy alloys prepared by mechanical alloying and spark plasma sintering. Mater Sci Eng A. 2018;738:362.

    Article  CAS  Google Scholar 

  97. Xu Z, Ma Z, Wang M, Chen Y, Tan Y, Cheng X. Design of novel low-density refractory high entropy alloys for high-temperature applications. Mater Sci Eng A. 2019;755:318.

    Article  CAS  Google Scholar 

  98. Wang L, Fu C, Wu Y, Li R, Wang Y, Hui X. Ductile Ti-rich high-entropy alloy controlled by stress induced martensitic transformation and mechanical twinning. Mater Sci Eng A. 2019;763:138147.

    Article  CAS  Google Scholar 

  99. Chen Y, Li Y, Cheng X, Wu C, Cheng B, Xu Z. The microstructure and mechanical properties of refractory high-entropy alloys with high plasticity. Materials. 2018;11(2):208.

    Article  CAS  Google Scholar 

  100. Senkov O, Senkova S, Miracle D, Woodward C. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system. Mater Sci Eng A. 2013;565:51.

    Article  CAS  Google Scholar 

  101. Wang SP, Xu J. (TiZrNbTa)-Mo high-entropy alloys: dependence of microstructure and mechanical properties on Mo concentration and modeling of solid solution strengthening. Intermetallics. 2018;95:59.

    Article  CAS  Google Scholar 

  102. Ge S, Fu H, Zhang L, Mao H, Li H, Wang A, Li W, Zhang H. Effects of Al addition on the microstructures and properties of MoNbTaTiV refractory high entropy alloy. Mater Sci Eng A. 2020;784:139275.

  103. Waseem OA, Lee J, Lee HM, Ryu HJ. The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy Ti\(_{x}\)WTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials. Mater Chem Phys. 2018;210:87.

    Article  CAS  Google Scholar 

  104. Gao X, Wang L, Guo N, Luo L, Zhu G, Shi C, Su Y, Guo J. Microstructure characteristics and mechanical properties of Hf\(_{0.5}\)Mo\(_{0.5}\)NbTiZr refractory high entropy alloy with Cr addition, Int J Refract Metals Hard Mater. 2020;95:105405.

  105. Zhou Y, Zhang Y, Wang Y, Chen G. Solid solution alloys of AlCoCrFeNiTi\(_{x}\) with excellent room-temperature mechanical properties. Appl Phys Lett. 2007;90(18):181904.

    Article  CAS  Google Scholar 

  106. Yurchenko NY, Stepanov N, Zherebtsov S, Tikhonovsky M, Salishchev G. Structure and mechanical properties of B2 ordered refractory AlNbTiVZr\(_{x}\) (x= 0–1.5) high-entropy alloys. Mater Sci Eng A. 2017;704:82.

    Article  CAS  Google Scholar 

  107. Huang H, Wu Y, He J, Wang H, Liu X, An K, Wu W, Lu Z. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv Mater. 2017;29(30):1701678.

    Article  CAS  Google Scholar 

  108. Guo N, Wang L, Luo L, Li X, Chen R, Su Y, Guo J, Fu H. Microstructure and mechanical properties of refractory high entropy (Mo\(_{0.5}\)NbHf\(_{0.5}\)ZrTi) BCC/M\(_{5}\)Si\(_{3}\) in-situ compound. J Alloy Compd. 2016;660:197.

    Article  CAS  Google Scholar 

  109. Zhang Y, Liu Y, Li Y, Chen X, Zhang H. Microstructure and mechanical properties of a refractory HfNbTiVSi\(_{0.5}\) high-entropy alloy composite. Mater Lett. 2016;174:82.

    Article  CAS  Google Scholar 

  110. Ma Y, Jiang B, Li C, Wang Q, Dong C, Liaw PK, Xu F, Sun L. The BCC/B2 morphologies in Al\(_{x}\)NiCoFeCr high-entropy alloys. Metals. 2017;7(2):57.

    Article  CAS  Google Scholar 

  111. Senkov O, Woodward C, Miracle D. Microstructure and properties of aluminum-containing refractory high-entropy alloys. JOM. 2014;66(10):2030.

    Article  CAS  Google Scholar 

  112. Zhou Y, Jin X, Zhang L, Du X, Li B. A hierarchical nanostructured Fe\(_{34}\)Cr\(_{34}\)Ni\(_{14}\)Al\(_{14}\)Co\(_{4}\) high-entropy alloy with good compressive mechanical properties. Mater Sci Eng A. 2018;716:235.

    Article  CAS  Google Scholar 

  113. Soni V, Senkov O, Couzinie JP, Zheng Y, Gwalani B, Banerjee R. Phase stability and microstructure evolution in a ductile refractory high entropy alloy Al\(_{10}\)Nb\(_{15}\)Ta\(_{5}\)Ti\(_{30}\)Zr\(_{40}\). Materialia. 2020;9:100569.

    Article  CAS  Google Scholar 

  114. Wang Q, Ma Y, Jiang B, Li X, Shi Y, Dong C, Liaw PK. A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al\(_{0.7}\)CoCrFe\(_{2}\)Ni with prominent tensile properties. Scripta Mater. 2016;120:85.

    Article  CAS  Google Scholar 

  115. Gong X, Xiang C, Auger T, Chen J, Liang X, Yu Z, Short MP, Song M, Yin Y. Liquid metal embrittlement of a dual-phase Al\(_{0.7}\)CoCrFeNi high-entropy alloy exposed to oxygen-saturated lead-bismuth eutectic. Scripta Mater. 2021;194:113652.

    Article  CAS  Google Scholar 

  116. Ng C, Guo S, Luan J, Wang Q, Lu J, Shi S, Liu C. Phase stability and tensile properties of Co-free Al\(_{0.5}\)CrCuFeNi\(_{2}\) high-entropy alloys. J Alloy Compd. 2014;584:530.

    Article  CAS  Google Scholar 

  117. Kuznetsov AV, Shaysultanov DG, Stepanov ND, Salishchev GA, Senkov ON. Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions. Mater Sci Eng A. 2012;533:107.

    Article  CAS  Google Scholar 

  118. Senkov O, Jensen J, Pilchak A, Miracle D, Fraser H. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo\(_{0.5}\)NbTa\(_{0.5}\)TiZr. Mater Des. 2018;139:498.

    Article  CAS  Google Scholar 

  119. Lin CM, Juan CC, Chang CH, Tsai CW, Yeh JW. Effect of Al addition on mechanical properties and microstructure of refractory Al\(_{x}\)HfNbTaTiZr alloys. J Alloy Compd. 2015;624:100.

    Article  CAS  Google Scholar 

  120. Senkov ON, Senkova SV, Woodward C, Miracle DB. Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: Microstructure and phase analysis. Acta Mater. 2013;61(5):1545.

    Article  CAS  Google Scholar 

  121. Jiang H, Jiang L, Lu YP, Wang TM, Cao ZQ, Li TJ. Microstructure and mechanical properties of the W-Ni-Co system refractory high-entropy alloys. In: Materials Science Forum, Vol. 816, Trans Tech Publ, 2015; p. 324.

  122. Wen L, Kou H, Li J, Chang H, Xue X, Zhou L. Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy. Intermetallics. 2009;17(4):266.

    Article  CAS  Google Scholar 

  123. Xiang C, Zhang Z, Fu H, Han EH, Zhang H, Wang J. Microstructure and corrosion behavior of AlCoCrFeNiSi\(_{0.1}\) high-entropy alloy. Intermetallics. 2019;114:106599.

    Article  CAS  Google Scholar 

  124. Yang CC, Chau JLH, Weng CJ, Chen CS, Chou YH. Preparation of high-entropy AlCoCrCuFeNiSi alloy powders by gas atomization process. Mater Chem Phys. 2017;202:151.

    Article  CAS  Google Scholar 

  125. Munitz A, Meshi L, Kaufman M. Heat treatments’ effects on the microstructure and mechanical properties of an equiatomic Al-Cr-Fe-Mn-Ni high entropy alloy. Mater Sci Eng A. 2017;689:384.

    Article  CAS  Google Scholar 

  126. Alshataif YA, Sivasankaran S, Al-Mufadi FA, Alaboodi AS, Ammar HR. Manufacturing methods, microstructural and mechanical properties evolutions of high-entropy alloys: a review. Metals Mater Int. 2019;26:1.

  127. Vaidya M, Muralikrishna GM, Murty BS. High-entropy alloys by mechanical alloying: a review. J Mater Res. 2019;34(5):664.

    Article  CAS  Google Scholar 

  128. Joseph J, Imran M, Hodgson P, Barnett M, Fabijanic D. Towards the large-scale production and strength prediction of near-eutectic Al\(_{x}\)CoCrFeNi\(_{2.1}\) alloys by additive manufacturing. Manuf Lett. 2020;25:16.

    Article  Google Scholar 

  129. Lu Y, Dong Y, Guo S, Jiang L, Kang H, Wang T, Wen B, Wang Z, Jie J, Cao Z, Ruan H, Li T. A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep. 2014;4(1):1.

    Article  Google Scholar 

  130. Lu Y, Gao X, Jiang L, Chen Z, Wang T, Jie J, Kang H, Zhang Y, Guo S, Ruan H, Zhao Y, Cao Z, Li T. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 2017;124:143.

    Article  CAS  Google Scholar 

  131. Xu S, Amirkhiz BS. Mechanical properties of fuel cladding candidate alloys for Canadian SCWR concept. JOM. 2016;68(2):469.

    Article  Google Scholar 

  132. Zheng W, Guzonas D, Boyle KP, Li J, Xu S. Materials assessment for the Canadian SCWR core concept. JOM. 2016;68(2):456.

    Article  CAS  Google Scholar 

  133. Zinkle SJ. Opportunities and challenges for materials innovation in nuclear energy. In: EPJ Web of Conferences, Vol. 51, EDP Sciences, 2013; p. 01001.

  134. Zinkle SJ, Ghoniem NM. Prospects for accelerated development of high performance structural materials. J Nucl Mater. 2011;417(1–3):2.

    Article  CAS  Google Scholar 

  135. Song M, Sun C, Fan Z, Chen Y, Zhu R, Yu K, Hartwig K, Wang H, Zhang X. A roadmap for tailoring the strength and ductility of ferritic/martensitic T91 steel via thermo-mechanical treatment. Acta Mater. 2016;112:361.

    Article  CAS  Google Scholar 

  136. Kim SH, Ryu WS, Kuk IH. Microstructure and mechanical properties of Cr-Mo steels for nuclear industry applications. Nucl Eng Technol. 1999;31(6):561.

    Google Scholar 

  137. Gupta G, Jiao Z, Ham A, Busby J, Was G. Microstructural evolution of proton irradiated T91. J Nucl Mater. 2006;351(1–3):162.

    Article  CAS  Google Scholar 

  138. Pugh S. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond Edinb Philos Mag J Sci. 1954;45(367):823.

    Article  CAS  Google Scholar 

  139. Pettifor D. Theoretical predictions of structure and related properties of intermetallics. Mater Sci Technol. 1992;8(4):345.

    Article  CAS  Google Scholar 

  140. Senkov ON, Isheim D, Seidman DN, Pilchak AL. Development of a refractory high entropy superalloy. Entropy. 2016;18(3):102.

    Article  CAS  Google Scholar 

  141. Chen H, Kauffmann A, Gorr B, Schliephake D, Seemüller C, Wagner J, Christ HJ, Heilmaier M. Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al. J Alloy Compd. 2016;661:206.

    Article  CAS  Google Scholar 

  142. Labusch R. Statistical theories of solid solution hardening (concentration of solute atoms, interaction range between solute atoms and distortion, and interaction strength of solid solution hardening). Acta Met (London). 1972;20:917.

    Article  Google Scholar 

  143. Toda-Caraballo I, Rivera-Díaz-del Castillo PE. Modelling solid solution hardening in high entropy alloys. Acta Mater. 2015;85:14.

    Article  CAS  Google Scholar 

  144. Juan CC, Tseng KK, Hsu WL, Tsai MH, Tsai CW, Lin CM, Chen SK, Lin SJ, Yeh JW. Solution strengthening of ductile refractory HfMo\(_{x}\)NbTaTiZr high-entropy alloys. Mater Lett. 2016;175:284.

    Article  CAS  Google Scholar 

  145. George EP, Curtin W, Tasan CC. High entropy alloys: a focused review of mechanical properties and deformation mechanisms. Acta Mater. 2020;188:435.

    Article  CAS  Google Scholar 

  146. Rao S, Varvenne C, Woodward C, Parthasarathy T, Miracle D, Senkov O, Curtin W. Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy. Acta Mater. 2017;125:311.

    Article  CAS  Google Scholar 

  147. Rao S, Akdim B, Antillon E, Woodward C, Parthasarathy T, Senkov O. Modeling solution hardening in BCC refractory complex concentrated alloys: NbTiZr, Nb\(_{1.5}\)TiZr\(_{0.5}\) and Nb\(_{0.5}\)TiZr\(_{1.5}\). Acta Mater. 2019;168:222.

    Article  CAS  Google Scholar 

  148. Rao S, Antillon E, Woodward C, Akdim B, Parthasarathy T, Senkov O. Solution hardening in body-centered cubic quaternary alloys interpreted using Suzuki’s kink-solute interaction model. Scripta Mater. 2019;165:103.

    Article  CAS  Google Scholar 

  149. Chen Y, Li Y, Cheng X, Xu Z, Wu C, Cheng B, Wang M. Interstitial strengthening of refractory ZrTiHfNb\(_{0.5}\)Ta\(_{0.5}\)O\(_{x}\) (x= 0.05, 0.1, 0.2) high-entropy alloys. Mater Lett. 2018;228:145.

    Article  CAS  Google Scholar 

  150. Juan CC, Tsai MH, Tsai CW, Hsu WL, Lin CM, Chen SK, Lin SJ, Yeh JW. Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining. Mater Lett. 2016;184:200.

    Article  CAS  Google Scholar 

  151. Yang D, Liu Y, Jiang H, Liao M, Qu N, Han T, Lai Z, Zhu J. A novel FeCrNiAlTi-based high entropy alloy strengthened by refined grains. J Alloy Compd. 2020;823:153729.

    Article  CAS  Google Scholar 

  152. Baldan A. Review progress in Ostwald ripening theories and their applications to the \(\gamma\)’-precipitates in nickel-base superalloys part II nickel-base superalloys. J Mater Sci. 2002;37(12):2379.

    Article  CAS  Google Scholar 

  153. Stepanov N, Yurchenko NY, Zherebtsov S, Tikhonovsky M, Salishchev G. Aging behavior of the HfNbTaTiZr high entropy alloy. Mater Lett. 2018;211:87.

    Article  CAS  Google Scholar 

  154. Wang Q, Han J, Liu Y, Zhang Z, Dong C, Liaw PK. Coherent precipitation and stability of cuboidal nanoparticles in body-centered-cubic Al\(_{0.4}\)Nb\(_{0.5}\)Ta\(_{0.5}\)TiZr\(_{0.8}\) refractory high entropy alloy. Scripta Mater. 2020;190:40.

    Article  CAS  Google Scholar 

  155. Soni V, Gwalani B, Senkov ON, Viswanathan B, Alam T, Miracle DB, Banerjee R. Phase stability as a function of temperature in a refractory high-entropy alloy. J Mater Res. 2018;33(19):3235.

    Article  CAS  Google Scholar 

  156. Chen ST, Tang WY, Kuo YF, Chen SY, Tsau CH, Shun TT, Yeh JW. Microstructure and properties of age-hardenable Al\(_{x}\)CrFe\(_{1.5}\)MnNi\(_{0.5}\) alloys. Mater Sci Eng A. 2010;527(21–22):5818.

    Article  CAS  Google Scholar 

  157. Ren B, Liu Z, Cai B, Wang M, Shi L. Aging behavior of a CuCr\(_{2}\)Fe\(_{2}\)NiMn high-entropy alloy. Mater Des. 2012;33:121.

    Article  CAS  Google Scholar 

  158. Zhang Y, Jin K, Xue H, Lu C, Olsen RJ, Beland LK, Ullah MW, Zhao S, Bei H, Aidhy DS, Samolyuk GD, Wang L, Caro M, Caro A, Stocks GM, Larson BC, Robertson IM, Correa AA, Weber WJ. Influence of chemical disorder on energy dissipation and defect evolution in advanced alloys, JMater Res. 31(16):2363.

  159. Jin K, Bei H, Zhang Y. Ion irradiation induced defect evolution in Ni and Ni-based FCC equiatomic binary alloys. J Nucl Mater. 2016;471:193.

    Article  CAS  Google Scholar 

  160. Granberg F, Nordlund K, Ullah MW, Jin K, Lu C, Bei H, Wang L, Djurabekova F, Weber W, Zhang Y. Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys. Phys Rev Lett. 2016;116(13):135504.

    Article  CAS  Google Scholar 

  161. He MR, Wang S, Jin K, Bei H, Yasuda K, Matsumura S, Higashida K, Robertson IM. Enhanced damage resistance and novel defect structure of FeCoNi under in situ electron irradiation. Scripta Mater. 2016;125:5.

    Article  CAS  Google Scholar 

  162. Chen D, Tong Y, Li H, Wang J, Zhao Y, Hu A, Kai J. Helium accumulation and bubble formation in FeCoNiCr alloy under high fluence He\(^+\) implantation. J Nucl Mater. 2018;501:208.

    Article  CAS  Google Scholar 

  163. Yan Z, Liu S, Xia S, Zhang Y, Wang Y, Yang T. He behavior in Ni and Ni-based equiatomic solid solution alloy. J Nucl Mater. 2018;505:200.

    Article  CAS  Google Scholar 

  164. Fukumoto K, Kimura A, Matsui H. Swelling behavior of V-Fe binary and V-Fe-Ti ternary alloys. J Nucl Mater. 1998;258:1431.

    Article  Google Scholar 

  165. Yoshiie T, Xu Q, Satoh Y, Ohkubo H, Kiritani M. The effect of alloying elements on the defect structural evolution in neutron irradiated Ni alloys. J Nucl Mater. 2000;283:229.

    Article  Google Scholar 

  166. Li QJ, Sheng H, Ma E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways. Nat Commun. 2019;10(1):1.

    CAS  Google Scholar 

  167. Senkov O, Miracle D. Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. Mater Res Bull. 2001;36(12):2183.

    Article  CAS  Google Scholar 

  168. Chen B, Li S, Zong H, Ding X, Sun J, Ma E. Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys. Proc Nat Acad Sci. 2020;117(28):16199.

    Article  CAS  Google Scholar 

  169. Ma E. Unusual dislocation behavior in high-entropy alloys. Scripta Mater. 2020;181:127.

    Article  CAS  Google Scholar 

  170. Zhao S. Defect properties in a VTaCrW equiatomic high entropy alloy (HEA) with the body centered cubic (bcc) structure. J Mater Sci Technol. 2020;44:133.

    Article  Google Scholar 

  171. Parkin C, Moorehead M, Elbakhshwan M, Hu J, Chen W-Y, Li M, He L, Sridharan K, Couet A. In situ microstructural evolution in face-centered and body-centered cubic complex concentrated solid-solution alloys under heavy ion irradiation. Acta Mater. 2020;198:85.

    Article  CAS  Google Scholar 

  172. Nagase T, Takeuchi A, Amiya K, Egami T. Solid state amorphization of metastable Al\(_{0.5}\)TiZrPdCuNi high entropy alloy investigated by high voltage electron microscopy. Mater Chem Phys. 2018;210:291.

    Article  CAS  Google Scholar 

  173. Sadeghilaridjani M, Ayyagari A, Muskeri S, Hasannaeimi V, Salloom R, Chen WY, Mukherjee S. Ion irradiation response and mechanical behavior of reduced activity high entropy alloy. J Nucl Mater. 2020;529:151955.

    Article  CAS  Google Scholar 

  174. Lu Y, Huang H, Gao X, Ren C, Gao J, Zhang H, Zheng S, Jin Q, Zhao Y, Lu C, Wang T, Li T. A promising new class of irradiation tolerant materials: high-entropy alloy Ti\(_{2}\)ZrHfV\(_{0.5}\)Mo\(_{0.2}\). J Mater Sci Technol. 2019;35(3):369.

    Article  Google Scholar 

  175. Patel D, Richardson MD, Jim B, Akhmadaliev S, Goodall R, Gandy AS. Radiation damage tolerance of a novel metastable refractory high entropy alloy V\(_{2.5}\)Cr\(_{1.2}\)WMoCo\(_{0.04}\). J Nucl Mater. 2020;531:152005.

    Article  CAS  Google Scholar 

  176. Chang S, Tseng KK, Yang TY, Chao DS, Yeh JW, Liang JH. Irradiation-induced swelling and hardening in HfNbTaTiZr refractory high-entropy alloy. Mater Lett. 2020;272:127832.

  177. Odbadrakh K, Enkhtor L, Amartaivan T, Nicholson D, Stocks GM, Egami T. Electronic structure and atomic level complexity in Al\(_{0.5}\)TiZrPdCuNi high-entropy alloy in glass phase. J Appl Phys. 2019;126(9):095104.

    Article  CAS  Google Scholar 

  178. Nagase T, Anada S, Rack PD, Noh JH, Yasuda H, Mori H, Egami T. Electron-irradiation-induced structural change in Zr-Hf-Nb alloy. Intermetallics. 2012;26:122.

    Article  CAS  Google Scholar 

  179. Xu C, Chen WY, Chen Y, Yang Y. Microstructural evolution of NF709 austenitic stainless steel under in-situ ion irradiations at room temperature, 300, 400, 500 and 600 \(^\circ {{\rm C}}\). J Nucl Mater. 2018;509:644.

    Article  CAS  Google Scholar 

  180. El-Atwani O, Esquivel E, Aydogan E, Martinez E, Baldwin J, Li M, Uberuaga BP, Maloy SA. Unprecedented irradiation resistance of nanocrystalline tungsten with equiaxed nanocrystalline grains to dislocation loop accumulation. Acta Mater. 2019;165:118.

    Article  CAS  Google Scholar 

  181. Wang Z, Liu C, Dou P. Thermodynamics of vacancies and clusters in high-entropy alloys. Phys Rev Mater. 2017;1(4):043601.

    Article  Google Scholar 

  182. Xia S, Yang X, Yang T, Liu S, Zhang Y. Irradiation resistance in Al\(_{x}\)CoCrFeNi high entropy alloys. JOM. 2015;67(10):2340.

    Article  CAS  Google Scholar 

  183. Jiang L, Hu YJ, Sun K, Xiu P, Song M, Zhang Y, Boldman WL, Crespillo ML, Rack PD, Qi L, Weber WJ, Lumin W. Irradiation-induced extremes create hierarchical face-/body-centered-cubic phases in nanostructured high entropy alloys. Adv Mater. 2020;32(39):2002652.

    Article  CAS  Google Scholar 

  184. Egami T, Guo W, Rack P, Nagase T. Irradiation resistance of multicomponent alloys. Metall Mater Trans A. 2014;45(1):180.

    Article  CAS  Google Scholar 

  185. Murty K, Charit I. Structural materials for Gen-IV nuclear reactors: challenges and opportunities. J Nucl Mater. 2008;383(1–2):189.

    Article  CAS  Google Scholar 

  186. Allen T, Crawford D. Lead-cooled fast reactor systems and the fuels and materials challenges. Sci Technol Nucl Install. 2007;2007:1.

  187. Kurata Y, Futakawa M. Excellent corrosion resistance of 18Cr-20Ni-5Si steel in liquid Pb-Bi. J Nucl Mater. 2004;325(2–3):217.

    Article  CAS  Google Scholar 

  188. Short M, Ballinger R, Hänninen H. Corrosion resistance of alloys F91 and Fe-12Cr-2Si in lead-bismuth eutectic up to 715 \(^\circ {{\rm C}}\). J Nucl Mater. 2013;434(1–3):259.

    Article  CAS  Google Scholar 

  189. Zhang W, Tang R, Yang Z, Liu C, Chang H, Yang J, Liao J, Yang Y, Liu N. Preparation, structure, and properties of an AlCrMoNbZr high-entropy alloy coating for accident-tolerant fuel cladding. Surf Coat Technol. 2018;347:13.

    Article  CAS  Google Scholar 

  190. Tao Z, Wang P, Wang C, Ma Z, Zhang Y, Xue F, Bai G, Yuan Y, Lan R. Design and characterisation of AlCrFeCuNb\(_{x}\) alloys for accident-tolerant fuel cladding. JAlloys Compd. 2020;859:157805.

  191. Taylor C. D, Lu P, Saal J, Frankel G, Scully J. Integrated computational materials engineering of corrosion resistant alloys. npj Mater Degrad. 2018;2(2):1.

    Google Scholar 

  192. Zhou Q, Sheikh S, Ou P, Chen D, Hu Q, Guo S. Corrosion behavior of Hf\(_{0.5}\)Nb\(_{0.5}\)Ta\(_{0.5}\)Ti\(_{1.5}\)Zr refractory high-entropy in aqueous chloride solutions. Electrochem Commun. 2019;98:63.

    Article  CAS  Google Scholar 

  193. Li M, Chen Q, Cui X, Peng X, Huang G. Evaluation of corrosion resistance of the single-phase light refractory high entropy alloy TiCrVNb\(_{05}\)Al\(_{05}\) in chloride environment. J Alloys Compdd. 2020;857:158278.

    Article  CAS  Google Scholar 

  194. Patel NS, Pavlík V, Boča M. High-temperature corrosion behavior of superalloys in molten salts-a review. Crit Rev Solid State Mater Sci. 2017;42(1):83.

    Article  CAS  Google Scholar 

  195. Bachani SK, Wang CJ, Lou BS, Chang LC, Lee JW. Microstructural characterization, mechanical property and corrosion behavior of VNbMoTaWAl refractory high entropy alloy coatings: Effect of Al content. Surf Coat Technol. 2020;403:126351.

    Article  CAS  Google Scholar 

  196. Hung SB, Wang CJ, Chen YY, Lee JW, Li CL. Thermal and corrosion properties of V-Nb-Mo-Ta-W and V-Nb-Mo-Ta-W-Cr-B high entropy alloy coatings. Surf Coat Technol. 2019;375:802.

    Article  CAS  Google Scholar 

  197. Li J, Yang X, Zhu R. Corrosion and serration behaviors of TiZr\(_{0.5}\)NbCr\(_{0.5}\)V\(_{x}\)Mo\(_{y}\) high entropy alloys in aqueous environments. Metals. 2014;4(4):597.

    Article  Google Scholar 

  198. Shi Y, Yang B, Xie X, Brechtl J, Dahmen KA, Liaw PK. Corrosion of Al\(_{x}\)CoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corros Sci. 2017;119:33.

    Article  CAS  Google Scholar 

  199. Kao YF, Lee TD, Chen SK, Chang YS. Electrochemical passive properties of Al\(_{x}\)CoCrFeNi (x= 0, 0.25, 0.50, 1.00) alloys in sulfuric acids. Corros Sci. 2010;52(3):1026.

    Article  CAS  Google Scholar 

  200. Lee C, Chang C, Chen Y, Yeh J, Shih H. Effect of the aluminium content of Al\(_{x}\)CrFe\(_{1.5}\)MnNi\(_{0.5}\) high-entropy alloys on the corrosion behaviour in aqueous environments. Corros Sci. 2008;50(7):2053.

    Article  CAS  Google Scholar 

  201. Shih H. C, Lee C. P, Chen Y, Wu C, Hsu C, Yeh J. Effect of boron on the corrosion properties of Al\(_{0.5}\)CoCrCuFeNiB\(_{x}\) high entropy alloys in 1N sulfuric acid. ECS Trans. 2007;2(26):15.

    Article  Google Scholar 

  202. Frankel G. Pitting corrosion of metals: a review of the critical factors. J Electrochem Soc. 1998;145(6):2186.

    Article  CAS  Google Scholar 

  203. Jayaraj J, Thinaharan C, Ningshen S, Mallika C, Mudali UK. Corrosion behavior and surface film characterization of tanbhfzrti high entropy alloy in aggressive nitric acid medium. Intermetallics. 2017;89:123.

    Article  CAS  Google Scholar 

  204. Li Q, Yue T, Guo Z, Lin X. Microstructure and corrosion properties of AlCoCrFeNi high entropy alloy coatings deposited on AISI 1045 steel by the electrospark process. Metall Mater Trans A. 2013;44(4):1767.

    Article  CAS  Google Scholar 

  205. Yang Y, Fan X, Wang F, Qi H, Yue Y, Ma M, Zhang X, Li G, Liu R. Effect of Nb content on corrosion behavior of Ti-based bulk metallic glass composites in different solutions. Appl Surf Sci. 2019;471:108.

    Article  CAS  Google Scholar 

  206. Lee C, Chen Y, Hsu C, Yeh J, Shih H. The effect of boron on the corrosion resistance of the high entropy alloys \(\text{ Al}_{0.5}\text{ CoCrCuFeNiB}_{{\rm x}}\). J Electrochem Soc. 2007;154(8):C424.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant Nos. 2019YFA0209900 and 2017YFB0304403); the National Natural Science Foundation of China (Grant No. 12075179); the Nuclear Material Technology Innovation Center Project (Grant No. ICNM 2020 ZH05); and the Continuous Basic Scientific Research Project (Grant No. WDJC-2019-10). We would like to thank Prof. Shao-Qiang Guo for the suggestion on the corrosion section of this review.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tan Shi or Chen-Yang Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, T., Lei, PH., Yan, X. et al. Current development of body-centered cubic high-entropy alloys for nuclear applications. Tungsten 3, 197–217 (2021). https://doi.org/10.1007/s42864-021-00086-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-021-00086-6

Keywords

Navigation