Skip to main content
Log in

Caputo–Fabrizio fractional Hermite–Hadamard type and associated results for strongly convex functions

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

The study of fractional integral inequalities has attracted the interests of many researchers due to their potential applications in various fields. Estimates obtained via strongly convex functions produce better and sharper bounds when compared to convex functions. To this end, we establish some new Hermite–Hadamard and Fejér types inequalities by means of the Caputo–Fabrizio fractional integral operators for strongly convex functions. In particular, we prove among other things that if \(\omega :\mathfrak {I}\rightarrow {\mathbb {R}}\) is a strongly convex function with modulus \(c>0\) and \(\alpha ,\beta \in \mathfrak {I}\) with \(\alpha <\beta \), then

$$\begin{aligned} \begin{aligned}&\omega \left( \frac{\alpha +\beta }{2}\right) +\frac{c}{12}(\beta -\alpha )^2\\&\quad \le \frac{B(\mu )}{\mu (\beta -\alpha )}\left[ {^{cf}{\mathcal {I}}}_{\alpha }^{\mu }\omega (s)+^{cf}{\mathcal {I}}_{\beta }^{\mu }\omega (s)-\frac{2(1-\mu )}{B(\mu )}\omega (s)\right] \\&\quad \le \frac{\omega (\alpha )+\omega (\beta )}{2}-\frac{c}{6}(\beta -\alpha )^2, \end{aligned} \end{aligned}$$

where \(\mu \in (0,1]\), \(s\in \mathfrak {I}\) and \(B(\mu )>0\) is a normalization function. Some applications to special means have also been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Polyak, B.T. 1966. Existence theorems and convergence of minimizing sequences in extremum problems with restrictions. Soviet Mathematics-Doklady 7: 72–75.

    Google Scholar 

  2. Azócar, A., K. Nikodem, and G. Roa. 2012. Fejér-type inequalities for strongly convex functions. Annales Mathematicae Silesianae 26: 43–54.

    MATH  Google Scholar 

  3. Azócar, A., J. Giménez, K. Nikodem, and J.L. Sánchez. 2011. On strongly midconvex functions. Opuscula Mathematica 31 (1): 15–26.

    Article  MathSciNet  Google Scholar 

  4. Jovanovič, M.V. 1996. A note on strongly convex and strongly quasiconvex functions. Mathematical Notes 60 (5): 778–779.

    Article  MathSciNet  Google Scholar 

  5. Nikodem, K., and Zs. Páles. 2011. Characterizations of inner product of spaces by strongly convex functions. The Banach Journal of Mathematical Analysis 5 (1): 83–87.

    Article  MathSciNet  Google Scholar 

  6. Merentes, N., and K. Nikodem. 2010. Remarks on strongly convex functions. Aequationes Mathematicae 80: 193–199.

    Article  MathSciNet  Google Scholar 

  7. Almutairi, O., and A. Kılıčman. 2020. New generalized Hermite-Hadamard inequality and related integral inequalities involving Katugampola type fractional integrals. Symmetry 12: 568.

    Article  Google Scholar 

  8. Hu, G., H. Lei, and T. Du. 2019. Some parameterized integral inequalities for \(p\)-convex mappings via the right Katugampola fractional integrals. AIMS Mathematics 5 (2): 1425–1445.

    Article  MathSciNet  Google Scholar 

  9. Kashuri, A. 2021. Hermite-Hadamard type inequalities for the \(ABK\)-fractional integrals. Journal of Computational Analysis and Applications 29 (2): 309–326.

    Google Scholar 

  10. Adil Khan, M., N. Mohammad, E.R. Nwaeze, and Y.-M. Chu. 2020. Quantum Hermite-Hadamard inequality by means of a green function. Advances in Difference Equations 2020: 99.

    Article  MathSciNet  Google Scholar 

  11. Nwaeze, E.R. 2019. Generalized fractional integral inequalities by means of quasiconvexity. Advances in Difference Equations 2019: 262. https://doi.org/10.1186/s13662-019-2204-3.

    Article  MathSciNet  MATH  Google Scholar 

  12. Qiang, X., G. Farid, J. Pecarić, and S.B. Akbar. 2020. Generalized fractional integral inequalities for exponentially \((s, m)\)-convex functions. Journal of Inequalities and Applications 70: 2020.

    MathSciNet  Google Scholar 

  13. Yang, Y., M. S. Saleem, M. Ghafoor and M. I. Qureshi. 2020. Fractional integral inequalities of Hermite–Hadamard type for differentiable generalized-convex functions. Journal of Mathematics 2020. (Art. ID 2301606).

  14. Nwaeze, E. R., D. F. M. Torres, 2018. Novel results on the Hermite–Hadamard kind inequality for \(\eta \)-convex functions by means of the \((k,r)\)-fractional integral operators. In: Advances in Mathematical Inequalities and Applications (AMIA). Trends in Mathematics, eds. Silvestru Sever Dragomir, Praveen Agarwal, Mohamed Jleli and Bessem Samet, 311–321. Singapore: Birkhäuser.

  15. Nwaeze, E.R. 2018. Inequalities of the Hermite-Hadamard type for Quasi-convex functions via the \((k, s)\)-Riemann-Liouville fractional integrals. Fractional Differential Calculus 8 (2): 327–336.

    Article  MathSciNet  Google Scholar 

  16. Adil Khan, M., T. Ali, and T.U. Khan. 2017. Hermite-Hadamard type inequalities with applications. Fasciculi Mathematici 59: 57–74.

    Article  MathSciNet  Google Scholar 

  17. Khan, M.A., Y. Khurshid, and T. Ali. 2017. Hermite-Hadamard inequality for fractional integrals via \(\eta \)-convex functions. Acta Mathematica Universitatis Comenianae LXXXVI (1): 153–164.

    MathSciNet  MATH  Google Scholar 

  18. Iqbal, A., M. Adil Khan, Sana Ullah, and Y.-M. Chu, 2020. Some new Hermite–Hadamard type inequalities associated with conformable fractional integrals and their applications. Journal of Function Spaces, 2020 (Art. ID 9845407).

  19. İşcan, İ, and S. Wu. 2014. Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals. Applied Mathematics and Computation 238: 237–244.

    Article  MathSciNet  Google Scholar 

  20. Gürbüz, M., A.O. Akdemir, S. Rashid, and E. Set. 2020. Hermite-Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities. Journal of Inequalities and Applications 2020: 172.

    Article  MathSciNet  Google Scholar 

  21. Tameru, A.M., E.R. Nwaeze, and S. Kermausuor. 2020. Strongly \((\eta ,\omega )\)-convex functions with nonnegative modulus. Journal of Inequalities and Applications 2020: 165.

    Article  MathSciNet  Google Scholar 

  22. Kermausuor, S. 2021. Simpson’s type inequalities via the Katugampola fractional integrals for \(s\)-convex functions. Kragujevac Journal of Mathematics 45 (5): 709–720.

    Article  Google Scholar 

  23. Kermausuor, S. 2019. Simpson’s type inequalities for \(\eta \)-convex functions via the \(k\)-Riemann-Liouville fractional integral. Acta et Commentationes Universitatis Tartuensis de Matematica 23 (2): 193–200.

    Article  MathSciNet  Google Scholar 

  24. Nwaeze, E.R., S. Kermausuor, and A.M. Tameru. 2018. Some new \(k\)-Riemann-Liouville fractional integral inequalities associated with the strongly \(\eta \)-quasiconvex functions with modulus \(\mu \ge 0\). Journal of Inequalities and Applications 2018: 139.

    Article  MathSciNet  Google Scholar 

  25. Kermausuor, S., E.R. Nwaeze, and A.M. Tameru. 2019. New integral inequalities via the Katugampola fractional integrals for functions whose second derivatives are strongly \(\eta \)-convex. Mathematics 7 (2): 183. https://doi.org/10.3390/math7020183.

    Article  Google Scholar 

  26. Abdeljawad, T., and D. Baleanu. 2017. On fractional derivatives with exponential kernel and their discrete versions. Reports on Mathematical Physics 80 (1): 11–27.

    Article  MathSciNet  Google Scholar 

  27. Chu, Y.-M., M. Adil Khan, T.U. Khan, and T. Ali. 2016. Generalizations of Hermite-Hadamard type inequalities for \(MT\)-convex functions. Journal of Nonlinear Sciences and Applications 9: 4305–4316.

    Article  MathSciNet  Google Scholar 

  28. Chu, Y.-M., M. Adil Khan, T.U. Khan, and J. Khan. 2017. Some new inequalities of Hermite-Hadamard type for \(s\)-convex functions with applications. Open Mathematics 15: 1414–1430.

    Article  MathSciNet  Google Scholar 

  29. Delavar, M.R., and M. De La Sen. 2016. Some generalizations of Hermite-Hadamard type inequalities. SpringerPlus 5: 1661.

    Article  Google Scholar 

  30. Guessab, A., and G. Schmeisser. 2002. Sharp integral inequalities of the Hermite-Hadamard type. Journal of Approximation Theory 115 (2): 260–288.

    Article  MathSciNet  Google Scholar 

  31. İşcan, İ. 2014. Hermite-Hadamard type inequalities for harmonically convex functions. Hacettepe Journal of Mathematics and Statistics 43: 935–942.

    MathSciNet  MATH  Google Scholar 

  32. Sun, J., B.-Y. Xi, and F. Qi. 2019. Some new inequalities of the Hermite-Hadamard type for extended \(s\)-convex functions. Journal of Computational Analysis and Applications 26 (6): 985–996.

    Google Scholar 

  33. Toplu, T., M. Kadakal, and Í. Íşcan. 2020. On \(n\)-Polynomial convexity and some related inequalities. AIMS Mathematics 5 (2): 1304–1318.

    Article  MathSciNet  Google Scholar 

  34. Mohammed, A., Y. Osama, and A. Guessab. 2014. On the approximation of strongly convex functions by an upper or lower operator. Applied Mathematics and Computation 247: 1129–1138.

    Article  MathSciNet  Google Scholar 

  35. Guessab, A., and G. Schmeisser. 2005. Sharp error estimates for interpolatory approximation on convex polytopes. SIAM Journal on Numerical Analysis 43 (3): 909–923.

    Article  MathSciNet  Google Scholar 

  36. Guessab, A., and G. Schmeisser. 2004. Convexity results and sharp error estimates in approximate multivariate integration. Mathematics of Computation 73 (247): 1365–1384.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Many thanks to the referees for their valuable comments and suggestions.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eze R. Nwaeze.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Samy Ponnusamy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nwaeze, E.R., Kermausuor, S. Caputo–Fabrizio fractional Hermite–Hadamard type and associated results for strongly convex functions. J Anal 29, 1351–1365 (2021). https://doi.org/10.1007/s41478-021-00315-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-021-00315-8

Keywords

2010 Mathematics Subject Classification

Navigation