Skip to main content
Log in

Solution-processed silicon/SnCl2-treated Ti3C2Tx MXene Schottky junction solar cells

溶液法制备硅/SnCl2处理的Ti3C2TxMXene肖特基结 太阳电池

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

In this study, a novel photovoltaic cell based on the Ti3C2Tx MXene/n-type silicon (n-Si) Schottky junction is developed by a simple solution-processed method of drop-casting the Ti3C2Tx MXene ethanol suspension onto the surface of n-Si wafers and the subsequent natural drying in air. The demonstration device with a simple configuration of Ag (top electrode)/Ti3C2Tx/n-Si/In:Ga (back electrode) delivers a power conversion efficiency (PCE) of 5.70% with a short-circuit current density (Jsc) of 20.68 mA cm−2, open-circuit voltage (Voc) of 0.530 V and fill factor (FF) of 52.0% under AM 1.5G illumination. After treating the MXene layer with the SnCl2 aqueous solution, an improved PCE to 6.95% (Jsc: 23.04 mA cm−2; Voc: 0.536 V; FF: 56.2%) can be achieved because of the reduced light reflection, improved quality of junction and electrical contact, as well as the increased carrier lifetime/suppressed carrier recombination. Given the simple device configuration, facile preparation and huge potential for performance improvement, this work is believed to provide valuable exploration of developing novel solar cells.

摘要

非掺杂异质结晶硅太阳电池是目前光伏领域的一个研究热点. 本文通过简单的滴涂工艺, 并经自然干燥制备了一种基于Ti3C2Tx MXene/n-Si肖特基结的新型光伏电池. 此非掺杂异质结光伏电池在标 准AM 1.5G模拟太阳光下短路电流密度为20.68 mA cm−2, 开路电压为 0.530 V, 填充因子为52.0%, 光电转换效率达到了5.70%. 新型Ti3C2Tx MXene/n-Si肖特基结光伏电池具有简单的器件结构和简便的制备工 艺. 通过异质结界面改良, 二维材料性能改善等都可大幅提高其光电转 换性能. 经SnCl2水系溶液对MXene层进行处理后, 器件光电转换效率 进一步提升至6.95% (Jsc = 23.04 mA cm−2, Voc = 0.536 V, FF = 56.2%). 经处理后的MXene层, 可以有效减少光反射并提高光吸收. SnCl2水系 溶液的处理, 还能进一步改善异质结质量及MXene层与顶电极的接触, 进而通过抑制载流子复合提高载流子寿命.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang J, Kong N, Uzun S, et al. Scalable manufacturing of freestanding, strong Ti3C2Tx MXene films with outstanding conductivity. Adv Mater, 2020, 32: 2001093

    Article  CAS  Google Scholar 

  2. Li Y, Wang J, Zhang W, et al. A simple and efficient device configuration applicable in high-performance solar cells with limited material requirements. J Phys D-Appl Phys, 2019, 52: 435501

    Article  CAS  Google Scholar 

  3. Qu S, Yu J, Cao J, et al. Highly efficient organic solar cells enabled by a porous ZnO/PEIE electron transport layer with enhanced light trapping. Sci China Mater, 2021, 64: 808–819

    Article  CAS  Google Scholar 

  4. Zhao Y, Han X, Xu B, et al. Enhancing open-circuit voltage of solution-processed Cu2ZnSn(S,Se)4 solar cells with Ag substitution. IEEE J Photovoltaics, 2017, 7: 874–881

    Article  Google Scholar 

  5. Wong SM, Yu HY, Li JS, et al. Si nanopillar array surface-textured thin-film solar cell with radial p-n junction. IEEE Electron Device Lett, 2011, 32: 176–178

    Article  CAS  Google Scholar 

  6. Wu Z, Zhang W, Xie C, et al. Bridging for carriers by embedding metal oxide nanoparticles in the photoactive layer to enhance performance of polymer solar Cells. IEEE J Photovoltaics, 2020, 10: 1353–1358

    Article  Google Scholar 

  7. Wang S, Jiang Z, Shen Z, et al. Promising Cd-free double buffer layer in CZTSSe thin film solar cells. Sci China Mater, 2021, 64: 288–295

    Article  CAS  Google Scholar 

  8. Li Y, Chen Q, He D, et al. Radial junction Si micro/nano-wire array photovoltaics: Recent progress from theoretical investigation to experimental realization. Nano Energy, 2014, 7: 10–24

    Article  CAS  Google Scholar 

  9. Shao P, Chen X, Guo X, et al. Facile embedding of SiO2 nanoparticles in organic solar cells for performance improvement. Org Electron, 2017, 50: 77–81

    Article  CAS  Google Scholar 

  10. Chen X, Wang J, Qin S, et al. Wedge-shaped semiconductor nanowall arrays with excellent light management. Opt Lett, 2017, 42: 3928–3931

    Article  CAS  Google Scholar 

  11. Wang X, Liu Z, Yang Z, et al. Heterojunction hybrid solar cells by formation of conformal contacts between PEDOT:PSS and periodic silicon nanopyramid arrays. Small, 2018, 14: 1704493

    Article  Google Scholar 

  12. Wang Y, Shao P, Chen Q, et al. Nanostructural optimization of silicon/PEDOT:PSS hybrid solar cells for performance improvement. J Phys D-Appl Phys, 2017, 50: 175105

    Article  Google Scholar 

  13. Lee D, Park H, Han SD, et al. Self-powered chemical sensing driven by graphene-based photovoltaic heterojunctions with chemically tunable built-in potentials. Small, 2019, 15: 1804303

    Google Scholar 

  14. Bivour M, Temmler J, Steinkemper H, et al. Molybdenum and tungsten oxide: High work function wide band gap contact materials for hole selective contacts of silicon solar cells. Sol Energy Mater Sol Cells, 2015, 142: 34–41

    Article  CAS  Google Scholar 

  15. Battaglia C, Yin X, Zheng M, et al. Hole selective MoOx contact for silicon solar cells. Nano Lett, 2014, 14: 967–971

    Article  CAS  Google Scholar 

  16. Bullock J, Hettick M, Geissbühler J, et al. Efficient silicon solar cells with dopant-free asymmetric heterocontacts. Nat Energy, 2016, 1: 15031

    Article  CAS  Google Scholar 

  17. Li F, Zhou Y, Yang Y, et al. Silicon heterojunction solar cells with MoOx hole-selective layer by hot wire oxidation-sublimation deposition. Sol RRL, 2020, 4: 1900514

    Article  CAS  Google Scholar 

  18. Almora O, Gerling LG, Voz C, et al. Superior performance of V2O5 as hole selective contact over other transition metal oxides in silicon heterojunction solar cells. Sol Energy Mater Sol Cells, 2017, 168: 221–226

    Article  CAS  Google Scholar 

  19. Masmitjà G, Gerling LG, Ortega P, et al. V2Ox-based hole-selective contacts for c-Si interdigitated back-contacted solar cells. J Mater Chem A, 2017, 5: 9182–9189

    Article  Google Scholar 

  20. Tom T, Ros E, López-Pintó N, et al. Influence of co-sputtered Ag:Al ultra-thin layers in transparent V2O5/Ag:Al/AZO hole-selective electrodes for silicon solar Cells. Materials, 2020, 13: 4905

    Article  CAS  Google Scholar 

  21. Yang X, Xu H, Liu W, et al. Atomic layer deposition of vanadium oxide as hole-selective contact for crystalline silicon solar cells. Adv Electron Mater, 2020, 6: 2000467

    Article  CAS  Google Scholar 

  22. Fang L, Baik SJ, Lim KS, et al. Tungsten oxide as a buffer layer inserted at the SnO2/p-a-SiC interface of pin-type amorphous silicon based solar cells. Appl Phys Lett, 2010, 96: 193501

    Article  Google Scholar 

  23. Marsen B, Miller EL, Paluselli D, et al. Progress in sputtered tungsten trioxide for photoelectrode applications. Int J Hydrogen Energy, 2007, 32: 3110–3115

    Article  CAS  Google Scholar 

  24. Mews M, Lemaire A, Korte L. Sputtered tungsten oxide as hole contact for silicon heterojunction solar Cells. IEEE J Photovoltaics, 2017, 7: 1209–1215

    Article  Google Scholar 

  25. Dréon J, Jeangros Q, Cattin J, et al. 23.5%-efficient silicon heterojunction silicon solar cell using molybdenum oxide as hole-selective contact. Nano Energy, 2020, 70: 104495

    Article  Google Scholar 

  26. Liu SC, Li Z, Wu J, et al. Boosting the efficiency of GeSe solar cells by low-temperature treatment of p-n junction. Sci China Mater, 2021, 64: 2118–2126

    Article  CAS  Google Scholar 

  27. Xu M, Lei S, Qi J, et al. Opening magnesium storage capability of two-dimensional MXene by intercalation of cationic surfactant. ACS Nano, 2018, 12: 3733–3740

    Article  CAS  Google Scholar 

  28. Agresti A, Pazniak A, Pescetelli S, et al. Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells. Nat Mater, 2019, 18: 1228–1234

    Article  CAS  Google Scholar 

  29. Yang L, Dall’Agnese Y, Hantanasirisakul K, et al. SnO2-Ti3C2 MXene electron transport layers for perovskite solar cells. J Mater Chem A, 2019, 7: 5635–5642

    Article  CAS  Google Scholar 

  30. Wang Y, Xiang P, Ren A, et al. MXene-modulated electrode/SnO2 interface boosting charge transport in perovskite solar cells. ACS Appl Mater Interfaces, 2020, 12: 53973–53983

    Article  CAS  Google Scholar 

  31. Yang Y, Zhang D, Fan J, et al. Construction of an ultrathin S-scheme heterojunction based on few-layer g-C3N4 and monolayer Ti3C2Tx MXene for photocatalytic CO2 reduction. Sol RRL, 2021, 5: 2000351

    Article  CAS  Google Scholar 

  32. Ye Y, Yi W, Liu W, et al. Remarkable surface-enhanced Raman scattering of highly crystalline monolayer Ti3C2 nanosheets. Sci China Mater, 2020, 63: 794–805

    Article  CAS  Google Scholar 

  33. Lin H, Chen L, Lu X, et al. Two-dimensional titanium carbide MXenes as efficient non-noble metal electrocatalysts for oxygen reduction reaction. Sci China Mater, 2019, 62: 662–670

    Article  CAS  Google Scholar 

  34. Wu F, Zheng H, Wang W, et al. Rapid eradication of antibiotic-resistant bacteria and biofilms by MXene and near-infrared light through photothermal ablation. Sci China Mater, 2021, 64: 748–758

    Article  CAS  Google Scholar 

  35. Khazaei M, Arai M, Sasaki T, et al. OH-terminated two-dimensional transition metal carbides and nitrides as ultralow work function materials. Phys Rev B, 2015, 92: 075411

    Article  Google Scholar 

  36. Yu Z, Feng W, Lu W, et al. MXenes with tunable work functions and their application as electron- and hole-transport materials in non-fullerene organic solar cells. J Mater Chem A, 2019, 7: 11160–11169

    Article  CAS  Google Scholar 

  37. Yang L, Dall’Agnese C, Dall’Agnese Y, et al. Surface-modified metallic Ti3C2Tx MXene as electron transport layer for planar heterojunction perovskite solar cells. Adv Funct Mater, 2019, 29: 1905694

    Article  CAS  Google Scholar 

  38. Wang Y, Gawryszewska-Wilczynsk P, Zhang X, et al. Photovoltaic efficiency enhancement of polycrystalline silicon solar cells by a highly stable luminescent film. Sci China Mater, 2020, 63: 544–551

    Article  CAS  Google Scholar 

  39. Wu Z, Wang Y, Zhang Y, et al. Enhanced performance of polymer solar cells by adding SnO2 nanoparticles in the photoactive layer. Org Electron, 2019, 73: 7–12

    Article  CAS  Google Scholar 

  40. Song W, Liu Q, Chen J, et al. Interface engineering Ti3C2 MXene/silicon self-powered photodetectors with high responsivity and detectivity for weak light applications. Small, 2021, 17: 2100439

    Article  CAS  Google Scholar 

  41. Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater, 2011, 23: 4248–4253

    Article  CAS  Google Scholar 

  42. Shi M, Xiao P, Lang J, et al. Porous g-C3N4 and MXene dual-confined FeOOH quantum dots for superior energy storage in an ionic liquid. Adv Sci, 2020, 7: 1901975

    Article  CAS  Google Scholar 

  43. Chen X, Xu W, Ding N, et al. Dual interfacial modification engineering with 2D MXene quantum dots and copper sulphide nanocrystals enabled high-performance perovskite solar cells. Adv Funct Mater, 2020, 30: 2003295

    Article  CAS  Google Scholar 

  44. Zhao C, Yang X, Han C, et al. Sacrificial agent-free photocatalytic oxygen evolution from water splitting over Ag3PO4/MXene hybrids. Sol RRL, 2020, 4: 1900434

    Article  CAS  Google Scholar 

  45. Wang C, Xu J, Wang Y, et al. MXene (Ti2NTx): Synthesis, characteristics and application as a thermo-optical switcher for all-optical wavelength tuning laser. Sci China Mater, 2021, 64: 259–265

    Article  Google Scholar 

  46. Yin L, Li Y, Yao X, et al. MXenes for solar cells. Nano-Micro Lett, 2021, 13: 78

    Article  Google Scholar 

  47. Yu LP, Bati ASR, Grace TSL, et al. Ti3C2Tx (MXene)-silicon heterojunction for efficient photovoltaic cells. Adv Energy Mater, 2019, 9: 1901063

    Article  Google Scholar 

  48. Fu HC, Ramalingam V, Kim H, et al. MXene-contacted silicon solar cells with 11.5% efficiency. Adv Energy Mater, 2019, 9: 1900180

    Article  Google Scholar 

  49. Jia R, Shen G, Chen D. Recent progress and future prospects of sodium-ion capacitors. Sci China Mater, 2020, 63: 185–206

    Article  CAS  Google Scholar 

  50. Lin Z, Sun D, Huang Q, et al. Carbon nanofiber bridged two-dimensional titanium carbide as a superior anode for lithium-ion batteries. J Mater Chem A, 2015, 3: 14096–14100

    Article  CAS  Google Scholar 

  51. Xu J, Zhu J, Gong C, et al. Achieving high yield of Ti3C2T MXene few-layer flakes with enhanced pseudocapacior performance by decreasing precursor size. Chin Chem Lett, 2020, 31: 1039–1043

    Article  CAS  Google Scholar 

  52. Deng Y, Shang T, Wu Z, et al. Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv Mater, 2019, 31: 1902432

    Article  CAS  Google Scholar 

  53. Alhabeb M, Maleski K, Anasori B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater, 2017, 29: 7633–7644

    Article  CAS  Google Scholar 

  54. Hegedus SS, Shafarman WN. Thin-film solar cells: device measurements and analysis. Prog Photovolt-Res Appl, 2004, 12: 155–176

    Article  CAS  Google Scholar 

  55. Zhu J, Yang X, Yang Z, et al. Achieving a record fill factor for silicon-organic hybrid heterojunction solar cells by using a full-area metal polymer nanocomposite top electrode. Adv Funct Mater, 2018, 28: 1705425

    Article  Google Scholar 

  56. Islam ATMS, Karim ME, Rajib A, et al. Chemical mist deposition of organic for efficient front- and back-PEDOT:PSS/crystalline Si heterojunction solar cells. Appl Phys Lett, 2019, 114: 193901

    Article  Google Scholar 

  57. Nam YH, Kim DH, Shinde SS, et al. Planar n-Si/PEDOT:PSS hybrid heterojunction solar cells utilizing functionalized carbon nanoparticles synthesized via simple pyrolysis route. Nanotechnology, 2017, 28: 475402

    Article  Google Scholar 

  58. Wu H, Zhao X, Sun Y, et al. Improving carbon nanotube-silicon solar cells by solution processable metal chlorides. Sol RRL, 2019, 3: 1900147

    Article  Google Scholar 

  59. Yamamoto Y, Ishikawa Y, Hatayama T, et al. Numerical analysis of bulk diffusion length in thin-film c-Si solar cells. Sol Energy Mater Sol Cells, 2004, 75: 433–438

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Gansu (20JR10RA611).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Yao X participated in the design of this study, conducted the experiments, performed data analysis and drafted the manuscript. Yin L participated in the part of the experiments and collected important background information. Wang Y, Liu W and Xie C participated in the literature search, data acquisition and analysis, and manuscript preparation. Liu Q and Fu Y provided assistance for data acquisition and analysis. Li Y proposed the idea, supervised the research and revised the manuscript. Li J supervised the research and revised the manuscript. He D performed the manuscript review. All authors have read and approved the content of the manuscript.

Corresponding authors

Correspondence to Yali Li  (李亚丽) or Junshuai Li  (栗军帅).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Xincheng Yao is currently a master student at the School of Materials & Energy, Lanzhou University. His research interest focuses on the development of novel 2D MXene materials and the related Ti3C2Tx MXene/n-Si Schottky junction solar cells.

Yali Li received her bachelor and master degrees of science both from Lanzhou University and doctor degree of engineering from Saitama University, Japan. From 2009.01 to 2012.03, she worked at Nanyang Technological University, Singapore as a research fellow. Now, she holds a faculty position at the School of Materials & Energy, Lanzhou University. Her current research focuses on energy-harvesting and storage devices.

Junshuai Li is currently a professor at the School of Materials & Energy, Lanzhou University. Prior to holding this position, he performed the research on preparation of high-quality photovoltaic (PV) materials and structures, design and fabrication of advanced Si nanostructure-based PV devices at Saitama University, Japan (2006.10–2008.09) and Nanyang Technological University, Singapore (2008.09-2012.03). Now his main research interest focuses on the optical and electrical behaviors in subwavelength semiconductor structures, and renewable energy devices.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, X., Yin, L., Wang, Y. et al. Solution-processed silicon/SnCl2-treated Ti3C2Tx MXene Schottky junction solar cells. Sci. China Mater. 65, 896–903 (2022). https://doi.org/10.1007/s40843-021-1829-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1829-3

Keywords

Navigation