Skip to main content

Advertisement

Log in

A comprehensive review on possibilities of treating psoriasis using dermal cyclosporine

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Psoriasis is an autoimmune, chronic proliferative, inflammatory skin disease with high comorbidity. Psoriasis is not a curable disease; it can only be managed. Cyclosporine A (CyA) is one of the FDA-approved immunosuppressant drug used in severe Psoriasis. Till date only oral route is used for its administration. Administration of CyA by this route causes serious side effects such as hypertension and renal toxicity. Due to these side effects, a number of researches have been done and taking place in the current times for the dermal delivery of CyA for the management of psoriasis. Dermal delivery of CyA is not an easy task because of its physiochemical properties like high molecular weight, lipophilicity and resistance offered by stratum corneum (SC). Because of the above problems in the dermal delivery a number of new approaches such as nanolipid carriers, microemulsion, liposomes, niosomes etc. are explored. To those deep findings for psoriasis management with dermal delivery of CyA have not been discussed. This comprehensive review includes all the studies, advancements and their critical findings which took place in the recent times for the dermal delivery of CyA and along with the suitable modification needed for the efficient dermal delivery of CyA are also suggested.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not Applicable.

Consent for publication

All authors have no conflict of interest and agreed for publication.

References

  1. Ferreira BIRC, et al. Psoriasis and associated psychiatric disorders: a systematic review on etiopathogenesis and clinical correlation. J Clin Aesthet Dermatol. 2016;9(6):36.

    PubMed  PubMed Central  Google Scholar 

  2. Hägg D, et al. The higher proportion of men with psoriasis treated with biologics may be explained by more severe disease in men. PLoS ONE. 2013;8(5):e63619.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Rendon A, Schäkel K. Psoriasis pathogenesis and treatment. Int J Mol Sci. 2019;20(6):1475.

    Article  CAS  PubMed Central  Google Scholar 

  4. Schön MP. Adaptive and innate immunity in psoriasis and other inflammatory disorders. Front Immunol. 2019;10:1764.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Wolf M, Shnyra A. Autoimmune mechanisms of psoriasis: pathogenic role of the IL-23/IL-17 axis. J Autoimmune Disord. 2018;4(1):5.

    Article  Google Scholar 

  6. Schön MP, Boehncke W-H. Psoriasis. N Engl J Med. 2005;352(18):1899–912.

    Article  PubMed  Google Scholar 

  7. Lønnberg AS, et al. Heritability of psoriasis in a large twin sample. Br J Dermatol. 2013;169(2):412–6.

    Article  PubMed  Google Scholar 

  8. Villanova F, Di Meglio P, Nestle FO. Psoriasis. Cold Spring Harb Perspect Med. 2014;4(8):a015354.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Roberson ED, Bowcock AM. Psoriasis genetics: breaking the barrier. Trends Genet. 2010;26(9):415–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tedesco D, Haragsim L. Cyclosporine: a review. J Transplant. 2012;2012:230386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Frank O, et al. Mechanisms of disease: psoriasis. N Engl J Med. 2009;361:496–509.

    Article  Google Scholar 

  12. Griffiths CE, Barker JN. Pathogenesis and clinical features of psoriasis. Lancet. 2007;370(9583):263–71.

    Article  CAS  PubMed  Google Scholar 

  13. Feldman SR, et al. The challenge of managing psoriasis: unmet medical needs and stakeholder perspectives. Am Health Drug Benefits. 2016;9(9):504.

    PubMed  PubMed Central  Google Scholar 

  14. Colombo M, et al. Cyclosporine regimens in plaque psoriasis: an overview with special emphasis on dose, duration, and old and new treatment approaches. Sci World J. 2013;2013:805705.

    Article  CAS  Google Scholar 

  15. Berth-Jones J, et al. British Association of Dermatologists guidelines for the safe and effective prescribing of oral ciclosporin in dermatology 2018. Br J Dermatol. 2019;180(6):1312–38.

    Article  CAS  PubMed  Google Scholar 

  16. Mueller W. Cyclosporin A for psoriasis. New Engl J Med. 1979;301:555.

    Article  CAS  PubMed  Google Scholar 

  17. Taylor M, Ashcroft AT, Messenger AG. Cyclosporin A prolongs human hair growth in vitro. J Investig Dermatol. 1993;100(3):237–9.

    Article  CAS  PubMed  Google Scholar 

  18. Patel D, Wairkar S. Recent advances in cyclosporine drug delivery: challenges and opportunities. Drug Deliv Transl Res. 2019;9(6):1–15.

    Article  CAS  Google Scholar 

  19. Aguirre TA, et al. Current status of selected oral peptide technologies in advanced preclinical development and in clinical trials. Adv Drug Deliv Rev. 2016;106:223–41.

    Article  CAS  PubMed  Google Scholar 

  20. DeLouise LA. Applications of nanotechnology in dermatology. J Investig Dermatol. 2012;132(3):964–75.

    Article  CAS  PubMed  Google Scholar 

  21. Fereig SA, et al. Tackling the various classes of nano-therapeutics employed in topical therapy of psoriasis. Drug Deliv. 2020;27(1):662–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jibry N, Zaman A, Murdan S. Amphiphilogels: delivery vehicles for poorly soluble drugs? 2001.

  23. Kumar R, et al. Efficacy of novel topical liposomal formulation of cyclosporine in mild to moderate stable plaque psoriasis: a randomized clinical trial. JAMA Dermatol. 2016;152(7):807–15.

    Article  PubMed  Google Scholar 

  24. Kim WB, Jerome D, Yeung J. Diagnosis and management of psoriasis. Can Fam Physician. 2017;63(4):278–85.

    PubMed  PubMed Central  Google Scholar 

  25. Dopytalska K, et al. Psoriasis in special localizations. Reumatologia. 2018;56(6):392.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Reich A, et al. Psoriasis. Diagnostic and therapeutic recommendations of the Polish Dermatological Society. Part II: moderate to severe psoriasis. Prz Dermatol. 2018;105(3):329.

    Google Scholar 

  27. Prasad V, Kumar N, Mishra PR. Amphiphilic gels as a potential carrier for topical drug delivery. Drug Deliv. 2007;14(2):75–85.

    Article  CAS  PubMed  Google Scholar 

  28. De Rie M, Meinardi M, Bos J. Lack of efficacy of topical cyclosporin A in atopic dermatitis and allergic contact dermatitis. Acta dermato-venereol. 1991;71(5):452.

    Google Scholar 

  29. Choi HK, Flynn GL, Amidon GL. Percutaneous absorption and dermal delivery of cyclosporin A. J Pharm Sci. 1995;84(5):581–3.

    Article  CAS  PubMed  Google Scholar 

  30. Griffiths C, et al. Ciclosporin in psoriasis clinical practice: an international consensus statement. Br J Dermatol. 2004;150:11–23.

    Article  CAS  PubMed  Google Scholar 

  31. Liu JO. Calmodulin-dependent phosphatase, kinases, and transcriptional corepressors involved in T-cell activation. Immunol Rev. 2009;228(1):184–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hua S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front Pharmacol. 2015;6:219.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Nounou MM, et al. Liposomal formulation for dermal and transdermal drug delivery: past, present and future. Recent Pat Drug Deliv Formul. 2008;2(1):9–18.

    Article  CAS  PubMed  Google Scholar 

  34. El Maghraby GM, Williams AC. Vesicular systems for delivering conventional small organic molecules and larger macromolecules to and through human skin. Expert Opin Drug Deliv. 2009;6(2):149–63.

    Article  PubMed  CAS  Google Scholar 

  35. Essaghraoui A, et al. Improved dermal delivery of cyclosporine a loaded in solid lipid nanoparticles. Nanomaterials. 2019;9(9):1204.

    Article  CAS  PubMed Central  Google Scholar 

  36. Verma DD, et al. Particle size of liposomes influences dermal delivery of substances into skin. Int J Pharm. 2003;258(1–2):141–51.

    Article  CAS  PubMed  Google Scholar 

  37. Bouwstra JA, et al. Structure of the skin barrier and its modulation by vesicular formulations. Prog Lipid Res. 2003;42(1):1–36.

    Article  CAS  PubMed  Google Scholar 

  38. Geusens B, et al. Lipid-mediated gene delivery to the skin. Eur J Pharm Sci. 2011;43(4):199–211.

    Article  CAS  PubMed  Google Scholar 

  39. Hashim IIA, et al. Pivotal role of Acitretin nanovesicular gel for effective treatment of psoriasis: ex vivo–in vivo evaluation study. Int J Nanomed. 2018;13:1059.

    Article  Google Scholar 

  40. Kulthe SS, et al. Polymeric micelles: authoritative aspects for drug delivery. Des Monomers Polym. 2012;15(5):465–521.

    Article  CAS  Google Scholar 

  41. An JY, et al. Development of polymeric micelles of oleanolic acid and evaluation of their clinical efficacy. Nanoscale Res Lett. 2020;15(1):1–14.

    Article  CAS  Google Scholar 

  42. Ibrahim MM, et al. Hydrogels and their combination with liposomes, niosomes, or transferosomes for dermal and transdermal drug delivery. In: Liposomes. London: InTech Open; 2017. p. 155.

  43. Pradhan M, et al. Understanding the prospective of nano-formulations towards the treatment of psoriasis. Biomed Pharmacother. 2018;107:447–63.

    Article  CAS  PubMed  Google Scholar 

  44. Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems. J Control Release. 2001;73(2–3):137–72.

    Article  CAS  PubMed  Google Scholar 

  45. Ulbrich W, Lamprecht A. Targeted drug-delivery approaches by nanoparticulate carriers in the therapy of inflammatory diseases. J R Soc Interface. 2010;7(Suppl_1):S55–66.

    Article  CAS  PubMed  Google Scholar 

  46. Lboutounne H, et al. Characterization of transport of chlorhexidine-loaded nanocapsules through hairless and Wistar rat skin. Skin Pharmacol Physiol. 2004;17(4):176–82.

    Article  CAS  PubMed  Google Scholar 

  47. Guterres SS, Alves MP, Pohlmann AR. Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights. 2007;2:117739280700200000.

    Article  Google Scholar 

  48. Uchechi O, Ogbonna JD, Attama AA. Nanoparticles for dermal and transdermal drug delivery. Appl Nanotechnol Drug Deliv. 2014;4:193–227.

    Google Scholar 

  49. Zana R. Introduction to surfactants and surfactant self-assemblies. In: Dynamics of surfactant self-assemblies. Boca Raton: CRC Press; 2005. pp. 18–52.

  50. Miyata K, Christie RJ, Kataoka K. Polymeric micelles for nano-scale drug delivery. React Funct Polym. 2011;71(3):227–34.

    Article  CAS  Google Scholar 

  51. Mourya V, et al. Polymeric micelles: general considerations and their applications. Indian J Pharm Educ Res. 2011;45(2):128–38.

    Google Scholar 

  52. Lapteva M, et al. Targeted cutaneous delivery of ciclosporin A using micellar nanocarriers and the possible role of inter-cluster regions as molecular transport pathways. J Control Release. 2014;196:9–18.

    Article  CAS  PubMed  Google Scholar 

  53. Pradhan M, Singh D, Singh MR. Novel colloidal carriers for psoriasis: current issues, mechanistic insight and novel delivery approaches. J Control Release. 2013;170(3):380–95.

    Article  CAS  PubMed  Google Scholar 

  54. Rawat M, et al. Nanocarriers: promising vehicle for bioactive drugs. Biol Pharm Bull. 2006;29(9):1790–8.

    Article  CAS  PubMed  Google Scholar 

  55. Sabale V, Vora S. Formulation and evaluation of microemulsion-based hydrogel for topical delivery. Int J Pharm Investig. 2012;2(3):140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kawakami K, et al. Microemulsion formulation for enhanced absorption of poorly soluble drugs: II. In vivo study. J Control Release. 2002;81(1–2):75–82.

    Article  CAS  PubMed  Google Scholar 

  57. Benigni M, et al. Development of microemulsions of suitable viscosity for cyclosporine skin delivery. Int J Pharm. 2018;545(1–2):197–205.

    Article  CAS  PubMed  Google Scholar 

  58. Monteiro N, et al. Liposomes in tissue engineering and regenerative medicine. J R Soc Interface. 2014;11(101):20140459.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Gao W, et al. Liposome-like nanostructures for drug delivery. J Mater Chem B. 2013;1(48):6569–85.

    Article  CAS  Google Scholar 

  60. Siler-Marinkovic S. Liposomes as drug delivery systems in dermal and transdermal drug delivery. In: Percutaneous penetration enhancers chemical methods in penetration enhancement. Berlin: Springer; 2016. pp. 15–38.

  61. Pierre MBR, da Costa ISM. Liposomal systems as drug delivery vehicles for dermal and transdermal applications. Arch Dermatol Res. 2011;303(9):607.

    Article  CAS  PubMed  Google Scholar 

  62. Cosco D, et al. Colloidal carriers for the enhanced delivery through the skin. Expert Opin Drug Deliv. 2008;5(7):737–55.

    Article  CAS  PubMed  Google Scholar 

  63. Guo J, et al. Lecithin vesicular carriers for transdermal delivery of cyclosporin A. Int J Pharm. 2000;194(2):201–7.

    Article  CAS  PubMed  Google Scholar 

  64. Subuddhi U, Mishra AK. Effect of sodium deoxycholate and sodium cholate on DPPC vesicles: a fluorescence anisotropy study with diphenylhexatriene. J Chem Sci. 2007;119(2):169–74.

    Article  CAS  Google Scholar 

  65. Mishra V, et al. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics. 2018;10(4):191.

    Article  CAS  PubMed Central  Google Scholar 

  66. Liu J, et al. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int J Pharm. 2007;328(2):191–5.

    Article  CAS  PubMed  Google Scholar 

  67. Madan JR, Khude PA, Dua K. Development and evaluation of solid lipid nanoparticles of mometasone furoate for topical delivery. Int J Pharm Investig. 2014;4(2):60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mei Z, et al. Solid lipid nanoparticle and microemulsion for topical delivery of triptolide. Eur J Pharm Biopharm. 2003;56(2):189–96.

    Article  CAS  PubMed  Google Scholar 

  69. Benson HA, et al. Topical and transdermal drug delivery: from simple potions to smart technologies. Curr Drug Deliv. 2019;16(5):444–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Trombino S, et al. Solid lipid nanoparticles made of trehalose monooleate for cyclosporin-A topic release. J Drug Deliv Sci Technol. 2019;49:563–9.

    Article  CAS  Google Scholar 

  71. Müller R, Radtke M, Wissing S. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm. 2002;242(1–2):121–8.

    Article  PubMed  Google Scholar 

  72. Pople PV, Singh KK. Development and evaluation of colloidal modified nanolipid carrier: application to topical delivery of tacrolimus. Eur J Pharm Biopharm. 2011;79(1):82–94.

    Article  CAS  PubMed  Google Scholar 

  73. Pople PV, Singh KK. Development and evaluation of colloidal modified nanolipid carrier: application to topical delivery of tacrolimus, Part II—in vivo assessment, drug targeting, efficacy, and safety in treatment for atopic dermatitis. Eur J Pharm Biopharm. 2013;84(1):72–83.

    Article  CAS  PubMed  Google Scholar 

  74. Abdullah R, How C, Abbasalipourkabir R. Characterization and stability of nanostructured lipid carriers as drug delivery system. Afr J Biotechnol. 2011;10:1684–9.

    Google Scholar 

  75. Zhai Y, Zhai G. Advances in lipid-based colloid systems as drug carrier for topic delivery. J Control Release. 2014;193:90–9.

    Article  CAS  PubMed  Google Scholar 

  76. Arora R, et al. Solid lipid nanoparticles and nanostructured lipid carrier-based nanotherapeutics in treatment of psoriasis: a comparative study. Expert Opin Drug Deliv. 2017;14(2):165–77.

    Article  CAS  PubMed  Google Scholar 

  77. Touitou E, et al. Ethosomes—novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release. 2000;65(3):403–18.

    Article  CAS  PubMed  Google Scholar 

  78. Ainbinder D, et al. Drug delivery applications with ethosomes. J Biomed Nanotechnol. 2010;6(5):558–68.

    Article  CAS  PubMed  Google Scholar 

  79. Dubey V, et al. Dermal and transdermal delivery of an anti-psoriatic agent via ethanolic liposomes. J Control Release. 2007;123(2):148–54.

    Article  CAS  PubMed  Google Scholar 

  80. Touitou E, Ainbinde D. 7. Ethosomes—an innovative carrier for enhanced delivery into and across the skin: Original Research Article: ethosomes—novel vesicular carriers for enhanced delivery: characterization skin penetration properties, 2000. J Control Release. 2014;190:44–6.

    PubMed  CAS  Google Scholar 

  81. Chen M, et al. Topical delivery of cyclosporine A into the skin using SPACE-peptide. J Control Release. 2015;199:190–7.

    Article  CAS  PubMed  Google Scholar 

  82. Bhardwaj P, et al. Niosomes: a review on niosomal research in the last decade. J Drug Deliv Sci Technol. 2020;56:101581.

    Article  CAS  Google Scholar 

  83. Umbarkar MG. Niosome as a novel pharmaceutical drug delivery: a brief review highlighting formulation, types, composition and application. Indian J Pharm Educ Res. 2021;55:s11–28.

    Article  CAS  Google Scholar 

  84. Pandey SS, et al. Topical delivery of cyclosporine loaded tailored niosomal nanocarriers for improved skin penetration and deposition in psoriasis: optimization, ex vivo and animal studies. J Drug Deliv Sci Technol. 2021;63:102441.

    Article  CAS  Google Scholar 

  85. Elsayed MM, et al. Deformable liposomes and ethosomes: mechanism of enhanced skin delivery. Int J Pharm. 2006;322(1–2):60–6.

    Article  CAS  PubMed  Google Scholar 

  86. Gupta A, et al. Transferosomes: a novel vesicular carrier for enhanced transdermal delivery of sertraline: development, characterization, and performance evaluation. Sci pharm. 2012;80(4):1061–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Donnelly RF. How can microneedles overcome challenges facing transdermal drug delivery? Future Sci. 2017. https://doi.org/10.4155/tde-2017-0028.

    Article  Google Scholar 

  88. Kim Y-C, Park J-H, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64(14):1547–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lee JW, Park J-H, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials. 2008;29(13):2113–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. van der Maaden K, Jiskoot W, Bouwstra J. Microneedle technologies for (trans) dermal drug and vaccine delivery. J Control Release. 2012;161(2):645–55.

    Article  PubMed  CAS  Google Scholar 

  91. Yang J, et al. Recent advances of microneedles for biomedical applications: drug delivery and beyond. Acta Pharm Sin B. 2019;9(3):469–83.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Marshall S, Sahm LJ, Moore AC. The success of microneedle-mediated vaccine delivery into skin. Hum Vaccines Immunother. 2016;12(11):2975–83.

    Article  Google Scholar 

  93. Waghule T, et al. Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 2019;109:1249–58.

    Article  CAS  PubMed  Google Scholar 

  94. Vora LK, et al. Novel bilayer dissolving microneedle arrays with concentrated PLGA nano-microparticles for targeted intradermal delivery: proof of concept. J Control Release. 2017;265:93–101.

    Article  CAS  PubMed  Google Scholar 

  95. Zhao X, et al. Formulation of hydrophobic peptides for skin delivery via coated microneedles. J Control Release. 2017;265:2–13.

    Article  CAS  PubMed  Google Scholar 

  96. Ma Y, Gill HS. Coating solid dispersions on microneedles via a molten dip-coating method: development and in vitro evaluation for transdermal delivery of a water-insoluble drug. J Pharm Sci. 2014;103(11):3621–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jeong H-R, et al. Local dermal delivery of cyclosporin A, a hydrophobic and high molecular weight drug, using dissolving microneedles. Eur J Pharm Biopharm. 2018;127:237–43.

    Article  CAS  PubMed  Google Scholar 

  98. Global cyclosporine market size by type, by application, by geographic scope and forecast. Report ID 63881. Published Date Sep 2020.

  99. Goyal R, Macri L, Kohn J. Formulation strategy for the delivery of cyclosporine A: comparison of two polymeric nanospheres. Sci Rep. 2015;5(1):1–12.

    Article  CAS  Google Scholar 

  100. Walunj M, et al. Preparation, characterization, and in vivo evaluation of cyclosporine cationic liposomes for the treatment of psoriasis. J Liposome Res. 2020;30(1):68–79.

    Article  CAS  PubMed  Google Scholar 

  101. Pandey SS, et al. Cyclosporine laden tailored microemulsion-gel depot for effective treatment of psoriasis: in vitro and in vivo studies. Colloids Surf B. 2020;186:110681.

    Article  CAS  Google Scholar 

  102. Musa SH, et al. Enhancement of physicochemical properties of nanocolloidal carrier loaded with cyclosporine for topical treatment of psoriasis: in vitro diffusion and in vivo hydrating action. Int J Nanomed. 2017;12:2427.

    Article  CAS  Google Scholar 

  103. Carreras JJ, et al. Ultraflexible lipid vesicles allow topical absorption of cyclosporin A. Drug Deliv Transl Res. 2019;10(2):1–12.

    Google Scholar 

  104. Frušić-Zlotkin M, et al. Penetration and biological effects of topically applied cyclosporin A nanoparticles in a human skin organ culture inflammatory model. Exp Dermatol. 2012;21(12):938–43.

    Article  PubMed  CAS  Google Scholar 

  105. Silva MI, et al. Freeze-dried Softisan® 649-based lipid nanoparticles for enhanced skin delivery of cyclosporine a. Nanomaterials. 2020;10(5):986.

    Article  CAS  PubMed Central  Google Scholar 

  106. Alvarez-Figueroa MJ, Abarca-Riquelme JM, González-Aramundiz JV. Influence of protamine shell on nanoemulsions as a carrier for cyclosporine-A skin delivery. Pharm Dev Technol. 2019;24(5):630–8.

    Article  CAS  PubMed  Google Scholar 

  107. Romero GB, et al. Amorphous cyclosporin A nanoparticles for enhanced dermal bioavailability. Int J Pharm. 2016;498(1–2):217–24.

    Article  CAS  PubMed  Google Scholar 

  108. Jain S, Mittal A, Jain AK. Enhanced topical delivery of cyclosporin-A using PLGA nanoparticles as carrier. Curr Nanosci. 2011;7(4):524–30.

    Article  CAS  Google Scholar 

  109. Liu H, et al. Bicontinuous cyclosporin A loaded water-AOT/Tween 85-isopropylmyristate microemulsion: structural characterization and dermal pharmacokinetics in vivo. J Pharm Sci. 2009;98(3):1167–76.

    Article  CAS  PubMed  Google Scholar 

  110. Liu H, et al. Effect of vehicles and enhancers on the topical delivery of cyclosporin A. Int J Pharm. 2006;311(1–2):182–6.

    Article  CAS  PubMed  Google Scholar 

  111. Liu H, et al. Gelatin-stabilised microemulsion-based organogels facilitates percutaneous penetration of cyclosporin A in vitro and dermal pharmacokinetics in vivo. J Pharm Sci. 2007;96(11):3000–9.

    Article  CAS  PubMed  Google Scholar 

  112. Lopes LB, et al. Liquid crystalline phases of monoolein and water for topical delivery of cyclosporin A: characterization and study of in vitro and in vivo delivery. Eur J Pharm Biopharm. 2006;63(2):146–55.

    Article  CAS  PubMed  Google Scholar 

  113. Lopes LB, et al. Reverse hexagonal phase nanodispersion of monoolein and oleic acid for topical delivery of peptides: in vitro and in vivo skin penetration of cyclosporin A. Pharm Res. 2006;23(6):1332–42.

    Article  CAS  PubMed  Google Scholar 

  114. Verma D, Fahr A. Synergistic penetration enhancement effect of ethanol and phospholipids on the topical delivery of cyclosporin A. J Control Release. 2004;97(1):55–66.

    Article  CAS  PubMed  Google Scholar 

  115. Lopes LB, Collett JH, Bentley MVL. Topical delivery of cyclosporin A: an in vitro study using monoolein as a penetration enhancer. Eur J Pharm Biopharm. 2005;60(1):25–30.

    Article  CAS  PubMed  Google Scholar 

  116. Batheja P, et al. Topical drug delivery by a polymeric nanosphere gel: formulation optimization and in vitro and in vivo skin distribution studies. J Control Release. 2011;149(2):159–67.

    Article  CAS  PubMed  Google Scholar 

  117. Todo H, et al. Permeation pathway of macromolecules and nanospheres through skin. Biol Pharm Bull. 2010;33(8):1394–9.

    Article  CAS  PubMed  Google Scholar 

  118. Zhang Z, et al. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5(3):205–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ghasemiyeh P, Mohammadi-Samani S. Potential of nanoparticles as permeation enhancers and targeted delivery options for skin: advantages and disadvantages. Drug Des Dev Ther. 2020;14:3271.

    Article  CAS  Google Scholar 

  120. Makhmalzade BS, Chavoshy F. Polymeric micelles as cutaneous drug delivery system in normal skin and dermatological disorders. J Adv Pharm Technol Res. 2018;9(1):2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Alvarez-Román R, et al. Skin penetration and distribution of polymeric nanoparticles. J Control Release. 2004;99(1):53–62.

    Article  PubMed  CAS  Google Scholar 

  122. Chen J, et al. Development and evaluation of resveratrol, vitamin E, and epigallocatechin gallate loaded lipid nanoparticles for skin care applications. Eur J Pharm Biopharm. 2017;117:286–91.

    Article  CAS  PubMed  Google Scholar 

  123. Fang J-Y, et al. Lipid nanoparticles as vehicles for topical psoralen delivery: solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur J Pharm Biopharm. 2008;70(2):633–40.

    Article  CAS  PubMed  Google Scholar 

  124. Maghraby GME, Williams AC, Barry BW. Can drug-bearing liposomes penetrate intact skin? J Pharm Pharmacol. 2006;58(4):415–29.

    Article  PubMed  CAS  Google Scholar 

  125. Sakdiset P, et al. High-throughput screening of potential skin penetration-enhancers using stratum corneum lipid liposomes: preliminary evaluation for different concentrations of ethanol. J Pharm. 2017. https://doi.org/10.1155/2017/7409420.

    Article  Google Scholar 

  126. El-Menshawe SF, Hussein AK. Formulation and evaluation of meloxicam niosomes as vesicular carriers for enhanced skin delivery. Pharm Dev Technol. 2013;18(4):779–86.

    Article  CAS  PubMed  Google Scholar 

  127. Eid RK, Essa EA, El Maghraby GM. Essential oils in niosomes for enhanced transdermal delivery of felodipine. Pharm Dev Technol. 2019;24(2):157–65.

    Article  CAS  PubMed  Google Scholar 

  128. Sivakranth M, et al. Ethosomes: a novel vesicular drug delivery system. Int J Adv Pharm Res. 2012;2(1):16–27.

    Google Scholar 

  129. Witika BA, et al. Vesicular drug delivery for the treatment of topical disorders: current and future perspectives. J Pharm Pharmacol. 2021. https://doi.org/10.1093/jpp/rgab082.

    Article  PubMed  Google Scholar 

  130. Natsheh H, Touitou E. Phospholipid vesicles for dermal/transdermal and nasal administration of active molecules: the effect of surfactants and alcohols on the fluidity of their lipid bilayers and penetration enhancement properties. Molecules. 2020;25(13):2959.

    Article  CAS  PubMed Central  Google Scholar 

  131. Kazi KM, et al. Niosome: a future of targeted drug delivery systems. J Adv Pharm Technol Res. 2010;1(4):374.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Song CK, et al. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: characterization and in vitro/in vivo evaluation. Colloids Surf B. 2012;92:299–304.

    Article  CAS  Google Scholar 

  133. Hussain A, et al. Elastic liposomes as novel carriers: recent advances in drug delivery. Int J Nanomed. 2017;12:5087.

    Article  CAS  Google Scholar 

  134. Gupta M, Agrawal U, Vyas SP. Nanocarrier-based topical drug delivery for the treatment of skin diseases. Expert Opin Drug Deliv. 2012;9(7):783–804.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Maliba Pharmacy College, Uka Tarsadia University, for providing necessary facility and support.

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

SP has conceptualized, drafted, searched and written the manuscript. PT has reviewed and edited the manuscript. AG has edited and designed the graphical abstract and figure. JSY has reviewed and edited the manuscript.

Corresponding author

Correspondence to Sonia Pandey.

Ethics declarations

Conflict of interest

There are no potential conflicts of interest to disclose for this work.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, S., Tripathi, P., Gupta, A. et al. A comprehensive review on possibilities of treating psoriasis using dermal cyclosporine. Drug Deliv. and Transl. Res. 12, 1541–1555 (2022). https://doi.org/10.1007/s13346-021-01059-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-021-01059-5

Keywords

Navigation