Skip to main content
Log in

Existence of periodic, solitary and compacton travelling wave solutions of a \((3+1)\)-dimensional time-fractional nonlinear evolution equations with applications

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we consider the bifurcation method of dynamical systems for solving time fractional nonlinear evolution equations. We adapt and modify the methodology, incorporating new ideas from the conformable fractional derivative, to investigate exact travelling wave solutions and bifurcations of phase transitions for nonlinear evolution equations. In this study, we show the existence of periodic wave solutions, kink and anti-kink wave solutions, a bright and dark solitary wave solution and parabolic solutions. Moreover, numerical simulations method is applied to show the richer dynamical behavior of the spatial and temporal fractional order of nonlinear evolutions systems and verify the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. Roy. Soc. London Ser. A 272(1220), 47–78 (1972)

    MathSciNet  MATH  Google Scholar 

  2. Oustaloup, A., Levron, F., Mathieu, B., Nanot, F.M.: Frequency band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuits Syst. I 47(1), 25–39 (2000)

    Google Scholar 

  3. Deriche, M., Tewfik, A.H.: Maximum likelihood estimation of the parameters of discrete fractionally differenced Gaussian noise process. IEEE Trans. Signal Process. 41(10), 2977–2989 (1993)

    MATH  Google Scholar 

  4. Oldham, K.B., Spanier, J.: The fractional calculus. Theory and applications of differentiation and integration to arbitrary order. With an annotated chronological bibliography by Bertram Ross. Mathematics in Science and Engineering, Vol. 111. Academic Press, New York-London (1974)

  5. West, B.J., Bologna, M., Grigolini, P.: Physics of Fractal Operators. Institute for Nonlinear Science. Springer, New York (2003)

    Google Scholar 

  6. Sabatier, J., Agrawal, O.P., Tenreiro Machado, J.A. (eds.): Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007)

    MATH  Google Scholar 

  7. Caputo, M., Fabrizio, M.: A New Definition of Fractional Derivative Without Singular Kernel. Prog. Fract. Differ. Appl. 1(2), 73–85 (2015)

    Google Scholar 

  8. Riesz, M.: L’intgrale de Riemann–Liouville et le problme de Cauchy. (French) Acta Math. 81, 1–223 (1949)

    MATH  Google Scholar 

  9. Liang, H., Stynes, M.: Collocation methods for general Riemann–Liouville two-point boundary value problems. Adv. Comput. Math. 45(2), 897–928 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Liu, N., Jiang, W.: A numerical method for solving the time fractional Schrödinger equation. Adv. Comput. Math. 44(4), 1235–1248 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm Sci 20(2), 763–769 (2016)

    Google Scholar 

  13. Weyl, H.: Bemerkungen zum Begriff de Differentialquotienten gebrochener Ordnung. (German) Vierteljschr. Naturforsch. Ges. Zúrich 62, 296–302 (1917)

    MathSciNet  Google Scholar 

  14. Podlubny, I.: Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. In: Mathematics in Science and Engineering, vol. 198. Academic Press, San Diego (1999)

  15. Goufo, D., Franc, E.: Application of the Caputo–Fabrizio fractional Derivative without Singular Kernel to Korteweg-de Vries-Bergers Equation. Math. Model. Anal. 21(2), 188–198 (2016)

    MathSciNet  Google Scholar 

  16. Graham, A., Scott Blair, G.W., Withers, R.F.J.: A methodological problem in rheology. British J. Philos. Sci. 11, 265 (1961)

    Google Scholar 

  17. Benson, D., Wheatcraft, S., Meerschaert, M.: Application of a fractional advection dispersion equation. Water Resour. Res. 36, 1403–1412 (2000)

    Google Scholar 

  18. Belavin, V.A., Nigmatullin, R.S., Miroshnikov, A.I., Lutskaya, N.K.: Fractional differentiation of oscillographic polarograms by means of an electrochemical two-terminal network. Tr. Kazan. Aviacion. Inst. 5, 144–145 (1964)

    Google Scholar 

  19. Oldham, K.B.: A new approach to the solution of electrochemical problems involving diffusion. Anal. Chem. 41, 1904 (1969)

    Google Scholar 

  20. Daftardar-Gejji, V.: Fractional Calculus Theory and Applications. Narosa Publishing House, New Delhi (2013)

    MATH  Google Scholar 

  21. El-Ajou, A., Oqielat, M.N., Al-Zhour, Z., Momani, S.: A Class of linear non-homogenous higher order matrix fractional differential equations: analytical solutions and new technique. Fract. Cac. Appl. Anal. 23(2), 356–377 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Oqielat, M., El-Ajou, A., Al-Zhour, Z., et al.: Series solutions for nonlinear time-fractional Schrödinger equations: comparisons between conformable and Caputo derivatives. Alexandria Eng J (2020). https://doi.org/10.1016/j.aej.2020.01.023

    Article  Google Scholar 

  23. Shermergor, T.D.: On the use of fractional differentiation operators for describing the hereditary properties of materials. Z. Prikl. Mech. i Tekhn. Fiz. 6, 118 (1966)

    Google Scholar 

  24. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. In: North-Holland Mathematics Studies, vol. 204. Elsevier Science B.V., Amsterdam (2006)

  25. Wang, H., Zheng, X.: Analysis and numerical solution of a nonlinear variable-order fractional differential equation. Adv. Comput. Math. 45(5–6), 2647–2675 (2019)

    MathSciNet  Google Scholar 

  26. Liu, C.: Counterexamples on Jumarie’s two basic fractional calculus formulae. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 92–94 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Jumarie, G.: Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 51(9–10), 1367–1376 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Abdeljawad, T., AL Horani, M., Khalil, R.: Conformable fractional semigroups of operators. J. Semigroup Theory Appl. 2015, 7 (2015)

    Google Scholar 

  30. Chung, W.S.: Fractional Newton mechanics with conformable fractional derivative. J. Comput. Appl. Math. 290, 150–158 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Eslami, M.: Exact traveling wave solutions to the fractional coupled nonlinear Schrödinger equations. Appl. Math. Comput. 285, 141–148 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Hammad, M.A., Khalil, R.: Conformable fractional Heat differential equation. Internat. J. Pure Appl. Math. 94, 215–221 (2014)

    Google Scholar 

  33. Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Ayati, Z., Biazar, J., Ilei, M.: General solution of Bernoulli and Riccati fractional differential equations based on conformable fractional derivative. Internat. J. Appl. Math. Res. 6(2), 49–51 (2017)

    Google Scholar 

  35. Guebbai, H., Ghiat, M.: New conformable fractional derivative definition for positive and increasing functions and its generalization. Adv. Dyn. Syst. Appl. 11(2), 105–111 (2016)

    MathSciNet  Google Scholar 

  36. Kareem, A.: Conformable fractional derivatives and it is applications for solving fractional differential equations. IOSR J. Math 13, 81–87 (2017)

    Google Scholar 

  37. Khader, A.H.: The conformable Laplace transform of the fractional Chebyshev and Legendre polynnomials. Thesis Zarqa University, M.Sc. (2017)

  38. Wang, L., Fu, J.: Non-Noether symmetries of Hamiltonian systems with conformable fractional derivatives. Chin. Phys. B 25(1), 4501 (2016)

    Google Scholar 

  39. Ahuja, P., Zulfeqarr, F., Ujlayan, A.: Deformable fractional derivative and its applications. In: Advancement in mathematical sciences: Proceedings of the 2nd International Conference on Recent Advances in Mathematical Sciences and its Applications (RAMSA-2017), AIP Conference Proceedings, 1897(1), 020008. https://doi.org/10.1063/1.5008687(2017)

  40. Guzman, P.M., Langton, G., Lugo Motta Bittencurt, L.M., Medina, J., Napoles Valdes, J.E.: A new definition of a fractional derivative of local type. J. Math. Anal 9(2), 88–98 (2018)

    MathSciNet  Google Scholar 

  41. da Vanterler, C., Sousa, J., de Capelas, O.E.: A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties. Internat. J. Anal. Appl 16(1), 83–96 (2018)

    MATH  Google Scholar 

  42. Harir, Atimad, Melliani, Said, Chadli, Lalla Saadia: Fuzzy generalized conformable fractional derivative. Adv. Fuzzy Syst. 2020, Art. ID 1954975, 7 pp (2020)

  43. Anderson, D.R., Ulness, D.J.: Newly defined conformable derivatives. Adv. Dyn. Syst. Appl. 10(2), 109–137 (2015)

    MathSciNet  Google Scholar 

  44. Atangana, A., Baleanu, D., Alsaedi, A.: New properties of conformable derivative. Open Math. 13(1), 889–898 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Ekici, M., Mirzazadeh, M., Eslami, M., et al.: Optical soliton perturbation with fractional-temporal evolution by first integral method with conformable fractional derivatives. Optik 127(22), 10659–10669 (2016)

    Google Scholar 

  46. Abdalla, B.: Oscillation of differential equations in the frame of nonlocal fractional derivatives generated by conformable derivatives. Adv. Differ. Equ. 2018(107), 15 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Rezazadeh, H., Kumar, D., Sulaiman, T.A., Bulut, H.: New complex hyperbolic and trigonometric solutions for the generalized conformable fractional Gardner equation. Modern Phys. Lett. B 33(17), 1950196 (2019). 15 PP

    MathSciNet  Google Scholar 

  48. Li, J., Chen, G.: On a class of singular nonlinear traveling wave equations. Internat. J. Bifur. Chaos 17(11), 4049–4065 (2007)

    MathSciNet  MATH  Google Scholar 

  49. Li, J.: Singular nonlinear travelling wave equations: bifurcations and exact solutions. Science Press, Beijing (2013)

    Google Scholar 

  50. Leta, T.D., Li, J.: Various exact soliton solutions and bifurcations of a generalized Dullin–Gottwald–Holm equation with a power law nonlinearity. Internat. J. Bifur. Chaos 27(8), 1750129 (2017)

    MathSciNet  MATH  Google Scholar 

  51. Wang, Y., Guo, Y.: Exact traveling wave solutions and \(L^1\) stability for the shallow water wave model of moderate amplitude. Anal. Math. Phys. 7(3), 245–254 (2017)

    MathSciNet  MATH  Google Scholar 

  52. Wang, H., Zheng, S.: A note on bifurcations and travelling wave solutions of a \((2+1)\)-dimensional nonlinear Schrödinger equation. Anal. Math. Phys. 9(1), 251–261 (2019)

    MathSciNet  MATH  Google Scholar 

  53. Lu, S., Jia, X.: Homoclinic solutions for a second-order singular differential equation. J. Fixed Point Theory Appl. 20(3), Paper No. 101, 13 pp (2018)

  54. Seadawy, A.R., Ali, K.K., Nuruddeen, R.I.: A variety of soliton solutions for the fractional Wazwaz–Benjamin–Bona–Mahony equations. Results Phys. 12, 2234–2241 (2019)

    Google Scholar 

  55. Wazwaz, A.M.: Exact soliton and kink solutions for new (3+1)-dimensional nonlinear modified equations of wave propagation. Open Eng. 7(1), 169–174 (2017)

    Google Scholar 

  56. Xiao, J.Z., Lu, Y.: Some fixed point theorems for \(s\)-convex subsets in \(p\)-normed spaces based on measures of noncompactness. J. Fixed Point Theory Appl. 20(2), Paper No. 83, 22 pp (2018)

  57. Byrd, P.F., Friedman, M.D.: Handbook of Elliptic Integrals for Engineers and Scientists. Springer, Berlin (1971)

    MATH  Google Scholar 

  58. Borah, M., Roy, B.K.: Dynamics of the fractional-order chaotic PMSG, its stabilization using predictive control and circuit validation. IET Electric Power Appl. 11(5), 707–71 (2017)

    Google Scholar 

  59. Fu, C., Lu, C.N., Yang, H.W.: Time-space fractional \((2+1)\) dimensional nonlinear Schrödinger equation for envelope gravity waves in baroclinic atmosphere and conservation laws as well as exact solutions. Adv. Differ. Equ. 2018(56), 20 (2018)

    MATH  Google Scholar 

  60. Chen, Z., Liu, W.: Dynamical behavior of fractional-order energy-saving and emission-reduction system and its discretization. Nat. Resour. Model. 32(2), e12203, 21 pp (2019)

  61. Teschl, G.: Ordinary differential equations and dynamical systems. In: Graduate Studies in Mathematics, vol. 140. American Mathematical Society, Providence, RI (2012)

  62. Kang, Y.M., Xie, Y., Lu, J.C., Jiang, J.: On the nonexistence of non-constant exact periodic solutions in a class of the Caputo fractional-order dynamical systems. Nonlinear Dyn. 82(3), 1259–1267 (2015)

    MathSciNet  MATH  Google Scholar 

  63. Kaslik, E., Sivasundaram, S.: Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions. Nonlinear Anal. Real World Appl. 13(3), 1489–1497 (2012)

    MathSciNet  MATH  Google Scholar 

  64. Tavazoei, M.S., Haeri, M.: A proof for non existence of periodic solutions in time invariant fractional order systems. Autom. J. IFAC 45(8), 1886–1890 (2009)

    MathSciNet  MATH  Google Scholar 

  65. Tavazoei, M.S.: A note on fractional-order derivatives of periodic functions. Autom. J. IFAC 46(5), 945–948 (2010)

    MathSciNet  MATH  Google Scholar 

  66. Wang, J., Fećkan, M., Zhou, Y.: Nonexistence of periodic solutions and asymptotically periodic solutions for fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 18(2), 246–256 (2013)

    MathSciNet  MATH  Google Scholar 

  67. Ahmad, B., Nieto, J.J.: Anti-periodic fractional boundary value problems. Comput. Math. Appl. 62(3), 1150–1156 (2011)

    MathSciNet  MATH  Google Scholar 

  68. Ahmad, B., Otero-Espinar, V.: Existence of solutions for fractional differential inclusions with antiperiodic boundary conditions. Bound. Value Probl. 2009, Art. ID 625347, 11 pp (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Temesgen Desta Leta: supported by Talented Young Scientist Program of Ministry of Science and Technology of China (Ethiopia-18-010) and National Natural Science Foundation of China [Grant Number 1191101161]. Wenjun Liu: supported by the National Natural Science Foundation of China [Grant Number 11771216], the Key Research and Development Program of Jiangsu Province (Social Development) [Grant Number BE2019725], and the Six Talent Peaks Project in Jiangsu Province [Grant Number 2015-XCL-020].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leta, T.D., Liu, W. & Ding, . Existence of periodic, solitary and compacton travelling wave solutions of a \((3+1)\)-dimensional time-fractional nonlinear evolution equations with applications. Anal.Math.Phys. 11, 34 (2021). https://doi.org/10.1007/s13324-020-00458-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-020-00458-0

Keywords

Mathematics Subject Classification

Navigation