Skip to main content

Advertisement

Log in

Coupled Hemodynamics and Oxygen Diffusion in Abdominal Aortic Aneurysm: A Computational Sensitivity Study

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Purpose

Abdominal Aortic Aneurysms (AAA) have extreme medical prevalence as an asymptomatic cause of death in developed countries. The probability of AAA rupture is promoted by the localized oxygen loss in the AAA wall which occurs in part because many AAAs contain a layer called intraluminal thrombus (ILT). Considering this strong clinical association, the purpose of this study is to investigate the key features that constitute to the oxygen diffusion, and therefore hypoxia in AAA.

Methods

A three-dimensional model of AAA containing ILT is created and numerical simulations are performed to simulate blood flow and oxygen distribution within the AAA. The model accounts for blood flow in the lumen and oxygen transport in the lumen, ILT, and arterial wall. The sub-model of the ILT is fully coupled with the wall sub-model as well as with the subdomain of the blood flow. The sensitivity of the oxygen flow with respect to the parameters of the problem is also analyzed.

Results

Model simulations are used to investigate the relation between AAA physical properties, hemodynamics, and oxygen concentration in different geometries of AAA. The results demonstrate that the diameter of the AAA bulge has little effect on the oxygen flow, but that the thickness of the ILT layer has a profound effect. Moreover, a significant sensitivity to the oxygen supply from vasa vasorum and its notable impact on oxygen transport within AAA are observed. The variability of the arterial wall oxygen concentration to the oxygen reaction rate remains however very low.

Conclusion

The presence of an ILT significantly impairs oxygen transport from the lumen to the wall. This study confirms that consideration of ILT size and anatomy may be important in considering the severity of a AAA, however, other parameters can also affect thrombus-mediated oxygen delivery within the aneurysmal wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Adolph, R., D. A. Vorp, D. L. Steed, M. W. Webster, M. V. Kameneva, and S. C. Watkins. Cellular content and permeability of intraluminal thrombus in abdominal aortic aneurysm. J. Vasc. Surg. 25(5):916–926, 1997. https://doi.org/10.1016/S0741-5214(97)70223-4.

    Article  Google Scholar 

  2. Ayyalasomayajula, A., J. P. Vande Geest, and B. R. Simon. Porohyperelastic finite element modeling of abdominal aortic aneurysms. J. Biomech. Eng. 132(10):104502, 2010. https://doi.org/10.1115/1.4002370.

    Article  Google Scholar 

  3. Buerk, D. G., and T. K. Goldstick. Arterial wall oxygen consumption rate varies spatially. Am. J. Physiol. Heart Circ. Physiol. 243(6):H948–H958, 1982.

    Article  Google Scholar 

  4. Buerk, D. G., and T. K. Goldstick. Oxygen tension changes in the outer vascular wall supplied by vasa vasorum following adenosine and epinephrine. J. Vasc. Res. 23(1):9–21, 1986.

    Article  Google Scholar 

  5. Caputo, M., C. Chiastra, C. Cianciolo, E. Cutri, G. Dubini, J. Gunn, et al. Simulation of oxygen transfer in stented arteries and correlation with in-stent restenosis. Int. J. Numer. Method Biomed. Eng. 29(12):1373–1387, 2013. https://doi.org/10.1002/cnm.2588.

    Article  MathSciNet  Google Scholar 

  6. Chaikof, E. L., R. L. Dalman, M. K. Eskandari, B. M. Jackson, W. A. Lee, M. A. Mansour, et al. The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J. Vasc. Surg. 67(1):2–77, 2018.

    Article  Google Scholar 

  7. Fraser, K. H., S. Meagher, J. R. Blake, W. J. Easson, and P. R. Hoskins. Characterization of an abdominal aortic velocity waveform in patients with abdominal aortic aneurysm. Ultrasound Med. Biol. 34(1):73–80, 2008.

    Article  Google Scholar 

  8. Grøndal, N., R. Søgaard, and J. S. Lindholt. Baseline prevalence of abdominal aortic aneurysm, peripheral arterial disease and hypertension in men aged 65–74 years from a population screening study (VIVA trial). Br. J. Surg. 102(8):902–906, 2015.

    Article  Google Scholar 

  9. Haller, S. J., J. D. Crawford, K. M. Courchaine, C. J. Bohannan, G. J. Landry, G. L. Moneta, et al. Intraluminal thrombus is associated with early rupture of abdominal aortic aneurysm. J. Vasc. Surg. 67(4):1051–1058, 2018.

    Article  Google Scholar 

  10. Hirsch, A. T., Z. J. Haskal, N. R. Hertzer, C. W. Bakal, M. A. Creager, J. L. Halperin, et al. ACC/AHA practice guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic). Circulation. 113(11):e463–e654, 2006.

    Article  Google Scholar 

  11. Iannetti, L., G. D’Urso, G. Conoscenti, E. Cutri, R. S. Tuan, M. T. Raimondi, et al. Distributed and lumped parameter models for the characterization of high throughput bioreactors. PLoS ONE. 11(9):e0162774, 2016. https://doi.org/10.1371/journal.pone.0162774.

    Article  Google Scholar 

  12. Kemmerling, E. M. C., and R. A. Peattie. Abdominal aortic aneurysm pathomechanics: current understanding and future directions. Adv. Exp. Med. Biol. 1097:157–179, 2018. https://doi.org/10.1007/978-3-319-96445-4_8.

    Article  Google Scholar 

  13. Kolandavel, M. K., E. T. Fruend, S. Ringgaard, and P. G. Walker. The effects of time varying curvature on species transport in coronary arteries. Ann Biomed Eng. 34(12):1820–1832, 2006. https://doi.org/10.1007/s10439-006-9188-3.

    Article  Google Scholar 

  14. Koole, D., H. J. Zandvoort, A. Schoneveld, A. Vink, J. A. Vos, L. L. van den Hoogen, et al. Intraluminal abdominal aortic aneurysm thrombus is associated with disruption of wall integrity. J. Vasc. Surg. 57(1):77–83, 2013.

    Article  Google Scholar 

  15. Ku, D. N. Blood flow in arteries. Ann. Rev. Fluid Mech. 29(1):399–434, 1997.

    Article  MathSciNet  Google Scholar 

  16. Kuivaniemi, H., E. J. Ryer, J. R. Elmore, and G. Tromp. Understanding the pathogenesis of abdominal aortic aneurysms. Expert Rev. Cardiovasc. Therapy. 13(9):975–987, 2015. https://doi.org/10.1586/14779072.2015.1074861.

    Article  Google Scholar 

  17. Liu, X., Y. Fan, X. Deng, and F. Zhan. Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta. J. Biomech. 44(6):1123–1131, 2011. https://doi.org/10.1016/j.jbiomech.2011.01.024.

    Article  Google Scholar 

  18. Ma, P., X. Li, and D. N. Ku. Heat and mass transfer in a separated flow region for high Prandtl and Schmidt numbers under pulsatile conditions. Int. J. Heat Mass Transf. 37(17):2723–2736, 1994.

    Article  Google Scholar 

  19. Moll, F. L., J. T. Powell, G. Fraedrich, F. Verzini, S. Haulon, M. Waltham, et al. Management of abdominal aortic aneurysms clinical practice guidelines of the European society for vascular surgery. Eur. J. Vasc. Endovasc. Surg. 41:S1–S58, 2011.

    Article  Google Scholar 

  20. Moore, J., and C. Ethier. Oxygen mass transfer calculations in large arteries. J. Biomech Eng. 119:469–475, 1997.

    Article  Google Scholar 

  21. Oliver-Williams, C., M. Sweeting, G. Turton, D. Parkin, D. Cooper, C. Rodd, et al. Lessons learned about prevalence and growth rates of abdominal aortic aneurysms from a 25-year ultrasound population screening programme. Br. J. Surg. 105(1):68–74, 2018.

    Article  Google Scholar 

  22. Olsen, P. S., T. Schroeder, K. Agerskov, O. Røder, S. Sørensen, M. Perko, et al. Surgery for abdominal aortic aneurysms: A survey of 656 patients. J. Cardiovasc. Surg. 32(5):636–642, 1991.

    Google Scholar 

  23. Polzer, S., and J. Bursa (eds.). Poroelastic model of intraluminal thrombus in FEA of aortic aneurysm: 6th World Congress of Biomechanics (WCB 2010). Singapore: Springer, 2010.

    Google Scholar 

  24. Polzer, S., T. C. Gasser, B. Markert, J. Bursa, and P. Skacel. Impact of poroelasticity of intraluminal thrombus on wall stress of abdominal aortic aneurysms. Biomed. Eng. Online. 11:62, 2012. https://doi.org/10.1186/1475-925X-11-62.

    Article  Google Scholar 

  25. Polzer, S., T. C. Gasser, J. Swedenborg, and J. Bursa. The impact of intraluminal thrombus failure on the mechanical stress in the wall of abdominal aortic aneurysms. Eur.J. Vasc. Endovasc. Surg. 41(4):467–473, 2011.

    Article  Google Scholar 

  26. Rappitsch, G., and K. Perktold. Computer simulation of convective diffusion processes in large arteries. J. Biomech. 29(2):207–215, 1996.

    Article  Google Scholar 

  27. Raptis, A., M. Xenos, S. Dimas, A. Giannoukas, N. Labropoulos, D. Bluestein, et al. Effect of macroscale formation of intraluminal thrombus on blood flow in abdominal aortic aneurysms. Comput. Methods Biomech. Biomed. Eng. 19(1):84–92, 2016. https://doi.org/10.1080/10255842.2014.989389.

    Article  Google Scholar 

  28. Riveros F, Martufi G, Gasser TC, Rodriguez JF, editors. Influence of intraluminal thrombus topology on AAA passive mechanics. Comput. Cardiol. 2013; 2013: IEEE.

  29. Sakalihasan, N., J.-B. Michel, A. Katsargyris, H. Kuivaniemi, J.-O. Defraigne, A. Nchimi, et al. Abdominal aortic aneurysms. Nat. Rev. Dis. Prim. 4(1):1–22, 2018.

    Google Scholar 

  30. Salman, H. E., B. Ramazanli, M. M. Yavuz, and H. C. Yalcin. Biomechanical investigation of disturbed hemodynamics-induced tissue degeneration in abdominal aortic aneurysms using computational and experimental techniques. Front. Bioeng. Biotechnol. 7:111, 2019. https://doi.org/10.3389/fbioe.2019.00111.

    Article  Google Scholar 

  31. Sonesson, B., T. Länne, F. Hansen, and T. Sandgren. Infrarenal aortic diameter in the healthy person. Eur.J. Vasc. Surg. 8(1):89–95, 1994.

    Article  Google Scholar 

  32. Sun, N., J. H. Leung, N. B. Wood, A. D. Hughes, S. A. Thom, N. J. Cheshire, et al. Computational analysis of oxygen transport in a patient-specific model of abdominal aortic aneurysm with intraluminal thrombus. Br. J. Radiol. 821:S18–S23, 2009. https://doi.org/10.1259/bjr/89466318.

    Article  Google Scholar 

  33. Swedenborg, J., M. I. Mäyränpää, and P. T. Kovanen. Mast cells: important players in the orchestrated pathogenesis of abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 31(4):734–740, 2011.

    Article  Google Scholar 

  34. Takayama, T., and D. Yamanouchi. Aneurysmal disease: the abdominal aorta. Surg. Clin. 93(4):877–891, 2013.

    Article  Google Scholar 

  35. Tanaka, H., N. Zaima, T. Sasaki, T. Hayasaka, N. Goto-Inoue, K. Onoue, et al. Adventitial vasa vasorum arteriosclerosis in abdominal aortic aneurysm. PLoS ONE. 8(2):e57398, 2013.

    Article  Google Scholar 

  36. Tanaka, H., N. Zaima, T. Sasaki, M. Sano, N. Yamamoto, T. Saito, et al. Hypoperfusion of the adventitial vasa vasorum develops an abdominal aortic aneurysm. PLoS ONE 10(8):e0134386, 2015.

    Article  Google Scholar 

  37. Virag, L., J. S. Wilson, J. D. Humphrey, and I. Karsaj. A computational model of biochemomechanical effects of intraluminal thrombus on the enlargement of abdominal aortic aneurysms. Ann. Biomed. Eng. 43(12):2852–2867, 2015. https://doi.org/10.1007/s10439-015-1354-z.

    Article  Google Scholar 

  38. Vorp, D. A. Biomechanics of abdominal aortic aneurysm. J. Biomech. 40(9):1887–1902, 2007. https://doi.org/10.1016/j.jbiomech.2006.09.003.

    Article  Google Scholar 

  39. Vorp, D. A., P. C. Lee, D. H. Wang, M. S. Makaroun, E. M. Nemoto, S. Ogawa, et al. Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J. Vasc. Surg. 34(2):291–299, 2001. https://doi.org/10.1067/mva.2001.114813.

    Article  Google Scholar 

  40. Vorp, D., W. Mandarino, M. Webster, and J. Gorcsan, III. Potential influence of intraluminal thrombus on abdominal aortic aneurysm as assessed by a new non-invasive method. Cardiovasc. Surg. 4(6):732–739, 1996.

    Article  Google Scholar 

  41. Vorp, D., D. Wang, M. Webster, and W. Federspiel. Effect of intraluminal thrombus thickness and bulge diameter on the oxygen diffusion in abdominal aortic aneurysm. J. Biomech. Eng. 120(5):579–583, 1998.

    Article  Google Scholar 

  42. Wang, D. H., M. S. Makaroun, M. W. Webster, and D. A. Vorp. Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J. Vasc. Surg. 36(3):598–604, 2002.

    Article  Google Scholar 

  43. Wolinsky, H., and S. Glagov. Comparison of abdominal and thoracic aortic medial structure in mammals. Circ. Res. 25(6):677–686, 1969.

    Article  Google Scholar 

  44. Zakerzadeh, R., T. Cupac, and M. Durka. Oxygen transport in a permeable model of abdominal aortic aneurysm. Comput: Methods Biomech. Biomed. Eng, 2020. https://doi.org/10.1080/10255842.2020.1821193.

    Book  Google Scholar 

  45. Zakerzadeh, R., and P. Zunino. A computational framework for fluid–porous structure interaction with large structural deformation. Meccanica. 54(1–2):101–121, 2019.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The Duquesne University departmental support and Faculty Development Fund for RZ is gratefully acknowledged. This research was supported in part by the University of Pittsburgh Center for Research Computing through the resources provided.

Author information

Authors and Affiliations

Authors

Contributions

RZ was responsible for project administration and designed the numerical simulations and methodology, wrote the first draft and revised the manuscript. TC, ND, and AG helped with data curation and visualization. All authors read and approved the submitted version of the manuscript.

Corresponding author

Correspondence to Rana Zakerzadeh.

Additional information

Associate Editor Kerem Pekkan oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakerzadeh, R., Cupac, T., Dorfner, N. et al. Coupled Hemodynamics and Oxygen Diffusion in Abdominal Aortic Aneurysm: A Computational Sensitivity Study. Cardiovasc Eng Tech 12, 166–182 (2021). https://doi.org/10.1007/s13239-020-00508-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-020-00508-5

Keywords

Navigation