Skip to main content
Log in

Carbonyl Reductase 1 Attenuates Ischemic Brain Injury by Reducing Oxidative Stress and Neuroinflammation

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Oxidative stress and neuroinflammatory response after the ischemic injury are important pathophysiologic mechanisms that cause brain tissue loss and neurological deficit. This study aims to observe the expression and role of carbonyl reductase 1 (CBR1), an NADPH-dependent oxidoreductase with specificity for carbonyl compounds such as 4-hydroxynonenal (4-HNE), in the brain after ischemic injury and to investigate the influence of CBR1 on ischemia-induced neuroinflammation. CBR1 expresses in the neurons, astrocyte, and microglia in the normal brain. The expression of CBR1 decreased in the ischemic regions following cerebral ischemia, and also reduced in primary neurons after OGD (oxygen-glucose deprivation); however, the expression of CBR1 significantly increased in microglia in the ischemic penumbra. Furthermore, TAT-CBR1 fusion protein played neuroprotective effects in reducing the infarct volume and improving neurological outcomes after ischemic injury. Mechanistically, CBR1 decreased the levels of 4-HNE in the brain after stroke; it also modulated microglial polarization toward the M2 phenotype, which was well-known to confer neuroprotection after ischemic injury. Our results demonstrate that CBR1 provides neuroprotection against ischemic injury by reducing oxidative stress and neuroinflammation, making a promising agent for cerebral ischemia treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The manuscript has no associated data.

Abbreviations

4-HNE:

4-hydroxynonenal

CBR1:

carbonyl reductase 1

LDH:

lactate dehydrogenase

LPS:

lipopolysaccharide

MCAO:

middle cerebral arteryocclusion

NeuN:

neuronal nuclei

NO:

nitric oxide

OGD:

oxygen-glucose deprivation

rCBF:

regional cortical cerebral blood flow

ROS:

reactive oxygen species

SDR:

the short-chain dehydrogenases/reductase

SERS:

surface-enhanced Raman scattering

TAT-CBR1:

N-tricosanoyltryptamine-CBR1

TTC:

2, 3, 5-triphenyltetrazolium chloride

References

  1. Wong CH, Crack PJ. Modulation of neuro-inflammation and vascular response by oxidative stress following cerebral ischemia-reperfusion injury. Curr Med Chem. 2008;15(1):1–14. https://doi.org/10.2174/092986708783330665.

    Article  CAS  PubMed  Google Scholar 

  2. Chamorro A, Dirnagl U, Urra X, Planas AM. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 2016;15(8):869–81. https://doi.org/10.1016/S1474-4422(16)00114-9.

    Article  CAS  PubMed  Google Scholar 

  3. Cobley JN, Fiorello ML, Bailey DM. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 2018;15:490–503. https://doi.org/10.1016/j.redox.2018.01.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhao SC, Ma LS, Chu ZH, Xu H, Wu WQ, Liu F. Regulation of microglial activation in stroke. Acta Pharmacol Sin. 2017;38(4):445–58. https://doi.org/10.1038/aps.2016.162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hu X, Leak RK, Shi Y, Suenaga J, Gao Y, Zheng P, et al. Microglial and macrophage polarization-new prospects for brain repair. Nat Rev Neurol. 2015;11(1):56–64. https://doi.org/10.1038/nrneurol.2014.207.

    Article  PubMed  Google Scholar 

  6. Lyu J, Jiang X, Leak RK, Shi Y, Hu X, Chen J. Microglial Responses to Brain Injury and Disease: Functional Diversity and New Opportunities. Transl Stroke Res. 2020;12:474–95. https://doi.org/10.1007/s12975-020-00857-2.

    Article  PubMed  Google Scholar 

  7. Yun M, Choi AJ, Woo SR, Noh JK, Sung JY, Lee JW, et al. Inhibition of Carbonyl Reductase 1 Enhances Metastasis of Head and Neck Squamous Cell Carcinoma through beta-catenin-Mediated Epithelial-Mesenchymal Transition. J Cancer. 2020;11(3):533–41. https://doi.org/10.7150/jca.34303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Breysse DH, Boone RM, Long CM, Merrill ME, Schaupp CM, White CC, et al. Carbonyl Reductase 1 Plays a Significant Role in Converting Doxorubicin to Cardiotoxic Doxorubicinol in Mouse Liver, but the Majority of the Doxorubicinol-Forming Activity Remains Unidentified. Drug Metab Dispos. 2020;48(3):187–97. https://doi.org/10.1124/dmd.119.089326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kwon JH, Lee J, Kim J, Kirchner VA, Jo YH, Miura T, et al. Upregulation of Carbonyl Reductase 1 by Nrf2 as a Potential Therapeutic Intervention for Ischemia/ Reperfusion Injury during Liver Transplantation. Mol Cell. 2019;42(9):672–85. https://doi.org/10.14348/molcells.2019.0003.

    Article  CAS  Google Scholar 

  10. Reed T, Perluigi M, Sultana R, Pierce WM, Klein JB, Turner DM, et al. Redox proteomic identification of 4-hydroxy-2-nonenal-modified brain proteins in amnestic mild cognitive impairment: insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer’s disease. Neurobiol Dis. 2008;30(1):107–20. https://doi.org/10.1016/j.nbd.2007.12.007.

    Article  CAS  PubMed  Google Scholar 

  11. Kim YN, Jung HY, Eum WS, Kim DW, Shin MJ, Ahn EH, et al. Neuroprotective effects of PEP-1-carbonyl reductase 1 against oxidative-stress-induced ischemic neuronal cell damage. Free Radic Biol Med. 2014;69:181–96. https://doi.org/10.1016/j.freeradbiomed.2014.01.006.

    Article  CAS  PubMed  Google Scholar 

  12. Oppermann U. Carbonyl reductases: the complex relationships of mammalian carbonyl- and quinone-reducing enzymes and their role in physiology. Annu Rev PharmacolToxicol. 2007;47:293–322. https://doi.org/10.1146/annurev.pharmtox.47.120505.105316.

    Article  CAS  Google Scholar 

  13. Yun M, Choi AJ, Lee YC, Kong M, Sung JY, Kim SS, et al. Carbonyl reductase 1 is a new target to improve the effect of radiotherapy on head and neck squamous cell carcinoma. J Exp Clin Cancer Res. 2018;37(1):264. https://doi.org/10.1186/s13046-018-0942-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim YN, Kim DW, Jo HS, Shin MJ, Ahn EH, Ryu EJ, et al. Tat-CBR1 inhibits inflammatory responses through the suppressions of NF-kappaB and MAPK activation in macrophages and TPA-induced ear edema in mice. Toxicol Appl Pharmacol. 2015;286(2):124–34. https://doi.org/10.1016/j.taap.2015.03.020.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang M, Li W, Niu G, Leak RK, Chen J, Zhang F. ATP induces mild hypothermia in rats but has a strikingly detrimental impact on focal cerebral ischemia. J Cereb Blood Flow Metab. 2013;33(1). https://doi.org/10.1038/jcbfm.2012.146.

  16. Zhang F, Wang S, Zhang M, Weng Z, Li P, Gan Y, et al. Pharmacological induction of heme oxygenase-1 by a triterpenoid protects neurons against ischemic injury. Stroke. 2012;43(5):1390–7. https://doi.org/10.1161/STROKEAHA.111.647420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang T, Sun Y, Mao L, Zhang M, Li Q, Zhang L, et al. Brain ischemic preconditioning protects against ischemic injury and preserves the blood-brain barrier via oxidative signaling and Nrf2 activation. Redox Biol. 2018;17:323–37. https://doi.org/10.1016/j.redox.2018.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiang X, Pu H, Hu X, Wei Z, Hong D, Zhang W, et al. A Post-stroke Therapeutic Regimen with Omega-3 Polyunsaturated Fatty Acids that Promotes White Matter Integrity and Beneficial Microglial Responses after Cerebral Ischemia. Transl Stroke Res. 2016;7(6):548–61. https://doi.org/10.1007/s12975-016-0502-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang J, Zhang W, Gao X, Zhao Y, Chen D, Xu N, et al. Preconditioning with partial caloric restriction confers long-term protection against grey and white matter injury after transient focal ischemia. J Cereb Blood Flow Metab. 2019;39(7):1394–409. https://doi.org/10.1177/0271678X18785480.

    Article  PubMed  Google Scholar 

  20. Wang G, Jiang X, Pu H, Zhang W, An C, Hu X, et al. Scriptaid, a novel histone deacetylase inhibitor, protects against traumatic brain injury via modulation of PTEN and AKT pathway : scriptaid protects against TBI via AKT. Neurotherapeutics. 2013;10(1):124–42. https://doi.org/10.1007/s13311-012-0157-2.

    Article  CAS  PubMed  Google Scholar 

  21. Mao L, Li P, Zhu W, Cai W, Liu Z, Wang Y, et al. Regulatory T cells ameliorate tissue plasminogen activator-induced brain haemorrhage after stroke. Brain. 2017;140(7):1914–31. https://doi.org/10.1093/brain/awx111.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ferguson DC, Cheng Q, Blanco JG. Characterization of the Canine Anthracycline-Metabolizing Enzyme Carbonyl Reductase 1 (cbr1) and the Functional Isoform cbr1 V218. Drug Metab Dispos. 2015;43(7):922–7. https://doi.org/10.1124/dmd.115.064295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang F, Xing J, Liou AK, Wang S, Gan Y, Luo Y, et al. Enhanced Delivery of Erythropoietin Across the Blood-Brain Barrier for Neuroprotection against Ischemic Neuronal Injury. Transl Stroke Res. 2010;1(2):113–21. https://doi.org/10.1007/s12975-010-0019-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang G, Zhang J, Hu X, Zhang L, Mao L, Jiang X, et al. Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. J Cereb Blood Flow Metab. 2013;33(12):1864–74. https://doi.org/10.1038/jcbfm.2013.146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li P, Gan Y, Sun BL, Zhang F, Lu B, Gao Y, et al. Adoptive regulatory T-cell therapy protects against cerebral ischemia. Ann Neurol. 2013;74(3):458–71. https://doi.org/10.1002/ana.23815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang M, Wang S, Mao L, Leak RK, Shi Y, Zhang W, et al. Omega-3 fatty acids protect the brain against ischemic injury by activating Nrf2 and upregulating heme oxygenase 1. J Neurosci. 2014;34(5):1903–15. https://doi.org/10.1523/JNEUROSCI.4043-13.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao P, Li HX, Li DW, Hou YJ, Mao L, Yang M, et al. A SERS nano-tag-based magnetic-separation strategy for highly sensitive immunoassay in unprocessed whole blood. Talanta. 2019;198:527–33. https://doi.org/10.1016/j.talanta.2019.02.040.

    Article  CAS  PubMed  Google Scholar 

  28. Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke. 2012;43(11):3063–70. https://doi.org/10.1161/STROKEAHA.112.659656.

    Article  CAS  PubMed  Google Scholar 

  29. Rashid MA, Lee S, Tak E, Lee J, Choi TG, Lee JW, et al. Carbonyl reductase 1 protects pancreatic beta-cells against oxidative stress-induced apoptosis in glucotoxicity and glucolipotoxicity. Free Radic Biol Med. 2010;49(10):1522–33. https://doi.org/10.1016/j.freeradbiomed.2010.08.015.

    Article  CAS  PubMed  Google Scholar 

  30. Rashid MA, Haque M, Akbar M. Detoxification of Carbonyl Compounds by Carbonyl Reductase in Neurodegeneration. Adv Neurobiol. 2016;12:355–65. https://doi.org/10.1007/978-3-319-28383-8_19.

    Article  PubMed  Google Scholar 

  31. Jin MM, Wang F, Qi D, Liu WW, Gu C, Mao CJ, et al. A Critical Role of Autophagy in Regulating Microglia Polarization in Neurodegeneration. Front Aging Neurosci. 2018;10:378. https://doi.org/10.3389/fnagi.2018.00378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shi SM, Di L. The role of carbonyl reductase 1 in drug discovery and development. Expert Opin Drug Metab Toxicol. 2017;13(8):859–70. https://doi.org/10.1080/17425255.2017.1356820.

    Article  CAS  PubMed  Google Scholar 

  33. Zhou S, Cao H, Zhao Y, Li X, Zhang J, Hou C, et al. RACK1 promotes hepatocellular carcinoma cell survival via CBR1 by suppressing TNF-alpha-induced ROS generation. Oncol Lett. 2016;12(6):5303–8. https://doi.org/10.3892/ol.2016.5339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rotondo R, Moschini R, Renzone G, Tuccinardi T, Balestri F, Cappiello M, et al. Human carbonyl reductase 1 as efficient catalyst for the reduction of glutathionylated aldehydes derived from lipid peroxidation. Free Radic Biol Med. 2016;99:323–32. https://doi.org/10.1016/j.freeradbiomed.2016.08.015.

    Article  CAS  PubMed  Google Scholar 

  35. Wang J, Xia J, Zhang F, Shi Y, Wu Y, Pu H, et al. Galectin-1-secreting neural stem cells elicit long-term neuroprotection against ischemic brain injury. Sci Rep. 2015;5:9621. https://doi.org/10.1038/srep09621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu X, Liu J, Zhao S, Zhang H, Cai W, Cai M, et al. Interleukin-4 Is Essential for Microglia/Macrophage M2 Polarization and Long-Term Recovery After Cerebral Ischemia. Stroke. 2016;47(2):498–504. https://doi.org/10.1161/STROKEAHA.115.012079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee JY, Castelli V, Bonsack B, Coats AB, Navarro-Torres L, Garcia-Sanchez J, et al. A Novel Partial MHC Class II Construct, DRmQ, Inhibits Central and Peripheral Inflammatory Responses to Promote Neuroprotection in Experimental Stroke. Transl Stroke Res. 2020;11(4):831–6. https://doi.org/10.1007/s12975-019-00756-1.

    Article  CAS  PubMed  Google Scholar 

  38. Lei X, Li H, Li M, Dong Q, Zhao H, Zhang Z, et al. The novel Nrf2 activator CDDO-EA attenuates cerebral ischemic injury by promoting microglia/macrophage polarization toward M2 phenotype in mice. CNS Neurosci Ther. 2020;27:82–91. https://doi.org/10.1111/cns.13496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors disclosed receipt of the following financial supports for the research, authorship, and publication of this article: This work was supported by grants from the Natural Science Foundation of China (No. 81701179 to L.M. and No. 81870938 to BS), the Fund of Taishan Scholar Project and Fund of Academic Promotion Program of Shandong First Medical University & Shandong Academy of Medical Sciences (No. 2019QL016, No. 2019PT007), and the American Heart Association under the Award Number 10DSG2560122 and internal funds from the PIBDR and Department of Neurology of the University of Pittsburgh to FZ. Leilei Mao was a student at Fudan University and a visiting research scholar at the University of Pittsburgh (2012–2014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leilei Mao or Baoliang Sun.

Ethics declarations

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Sepplementary Information

Supplementary Figure 1.

The expression of CBR1 decreases in primary neurons by oxygen-glucose deprivation (OGD) treatment. Primary rat cortical neurons were subjected to 60 minutes OGD. A. Western blots showing the time course of CBR1 expression in neurons after OGD. n=3 per group. Data are mean ± S.E. **p <0.01 versus control. B. Representative immunohistochemical images of CBR1 expression in neurons after OGD treatment (20X). C. Quantification of CBR1 expression in primary neurons after OGD. n=3 per group. Data are mean ± S.E. *p<0.05, ***p<0.001vs. control. D. Representative images of the normal or dead neurons after OGD (100X). (PNG 15722 kb)

High Resolution (TIF 2217 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, L., Wang, K., Zhang, P. et al. Carbonyl Reductase 1 Attenuates Ischemic Brain Injury by Reducing Oxidative Stress and Neuroinflammation. Transl. Stroke Res. 12, 711–724 (2021). https://doi.org/10.1007/s12975-021-00912-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-021-00912-6

Keywords

Navigation