Skip to main content
Log in

Valorization of Expired Passion Fruit Shell by Hydrothermal Conversion into Carbon Quantum Dot: Physical and Optical Properties

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Expired fruits have always been treated as garbage. In this paper, expired passion fruit shells are processed into carbon quantum dots (CQDs) by hydrothermal synthesis method. Expired passion fruit shells based carbon quantum dots were characterized using TEM-EDS, FTIR, PL, XRD, XPS, Raman spectrum and Uv–vis analysis. The morphology of CQDs shows sphere shape with the size below 5 nm. CQDs exhibit a weak graphite phase structure according to Raman spectrum. The photoluminescence of CQDs shows the obvious excitation-dependent property with the quantum yield of 1.8%. In addition, expired passion fruit pulp was treated using hydrothermal method. The final product was analyzed using TEM and GC–MS. The result shows the high content of furandione in the product, which indicates the potential for further extraction by purification. This paper expands new way for the reuse of expired fruits.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hoan, B.T., Van Huan, P., Van, H.N., Nguyen, D.H., Tam, P.D., Nguyen, K.T., Pham, V.-H.: Luminescence of lemon-derived carbon quantum dot and its potential application in luminescent probe for detection of Mo6+ ions. Luminescence 33(3), 545–551 (2018). https://doi.org/10.1002/bio.3444

    Article  Google Scholar 

  2. Xu, Z., Yu, J., Liu, G.: Fabrication of carbon quantum dots and their application for efficient detecting Ru(bpy)32+ in the solution. Sens. Actuators B 181, 209–214 (2013). https://doi.org/10.1016/j.snb.2013.01.043

    Article  Google Scholar 

  3. Picard, M., Thakur, S., Misra, M., Mohanty, A.K.: Miscanthus grass-derived carbon dots to selectively detect Fe3+ ions. RSC Adv. 9(15), 8628–8637 (2019). https://doi.org/10.1039/C8RA10051A

    Article  Google Scholar 

  4. Zheng, M., Wang, C., Wang, Y., Wei, W., Ma, S., Sun, X., He, J.: Green synthesis of carbon dots functionalized silver nanoparticles for the colorimetric detection of phoxim. Talanta 185, 309–315 (2018). https://doi.org/10.1016/j.talanta.2018.03.066

    Article  Google Scholar 

  5. Karpushkin, E.A., Kharochkina, E.S., Klimenko, M.M., Gallyamov, M.O., Sergeyev, V.G.: Synthesis of carbon quantum dots in a Nafion matrix: precursor effect on the ion transport properties. Mendeleev Commun. 28(3), 251–253 (2018). https://doi.org/10.1016/j.mencom.2018.05.007

    Article  Google Scholar 

  6. Singh, V., Rawat, K.S., Mishra, S., Baghel, T., Fatima, S., John, A.A., Kalleti, N., Singh, D., Nazir, A., Rath, S.K., Goel, A.: Biocompatible fluorescent carbon quantum dots prepared from beetroot extract for in vivo live imaging in C. elegans and BALB/c mice. J. Mater. Chem. B 6(20), 3366–3371 (2018). https://doi.org/10.1039/C8TB00503F

    Article  Google Scholar 

  7. Kozyatnyk, I., Latham, K.G., Jansson, S.: Valorization of humic acids by hydrothermal conversion into carbonaceous materials: physical and functional properties. ACS Sustain. Chem. Eng. 7(2), 2585–2592 (2019). https://doi.org/10.1021/acssuschemeng.8b05614

    Article  Google Scholar 

  8. Haidar, F., Maas, M., Piarristeguy, A., Pradel, A., Cavaliere, S., Record, M.-C.: Ultra-thin platinum deposits by surface-limited redox replacement of tellurium. Nanomaterials 8(10), 836 (2018)

    Article  Google Scholar 

  9. Zhou, X., Zhao, G., Tan, X., Qian, X., Zhang, T., Gui, J., Yang, L., Xie, X.: Nitrogen-doped carbon dots with high quantum yield for colorimetric and fluorometric detection of ferric ions and in a fluorescent ink. Microchim. Acta 186(2), 67 (2019). https://doi.org/10.1007/s00604-018-3176-9

    Article  Google Scholar 

  10. Chen, Z., Zhao, Z., Wang, Z., Zhang, Y., Sun, X., Hou, L., Yuan, C.: Foxtail millet-derived highly fluorescent multi-heteroatom doped carbon quantum dots towards fluorescent inks and smart nanosensors for selective ion detection. New J. Chem. 42(9), 7326–7331 (2018). https://doi.org/10.1039/C8NJ01072B

    Article  Google Scholar 

  11. Lu, S., Sui, L., Liu, J., Zhu, S., Chen, A., Jin, M., Yang, B.: Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence. Adv. Mater. 29(15), 1603443 (2017). https://doi.org/10.1002/adma.201603443

    Article  Google Scholar 

  12. Li, W., Liu, Y., Wang, B., Song, H., Liu, Z., Lu, S., Yang, B.: Kilogram-scale synthesis of carbon quantum dots for hydrogen evolution, sensing and bioimaging. Chin. Chem. Lett. 30(12), 2323–2327 (2019)

    Article  Google Scholar 

  13. Wang, B., Li, J., Tang, Z., Yang, B., Lu, S.: Near-infrared emissive carbon dots with 33.96% emission in aqueous solution for cellular sensing and light-emitting diodes. Sci. Bull. 64(17), 1285–1292 (2019). https://doi.org/10.1016/j.scib.2019.07.021

    Article  Google Scholar 

  14. Song, H., Liu, X., Wang, B., Tang, Z., Lu, S.: High production-yield solid-state carbon dots with tunable photoluminescence for white/multi-color light-emitting diodes. Sci. Bull. 64(23), 1788–1794 (2019). https://doi.org/10.1016/j.scib.2019.10.006

    Article  Google Scholar 

  15. Xu, Y., Tang, C.-J., Huang, H., Sun, C.-Q., Zhang, Y.-K., Ye, Q.-F., Wang, A.-J.: Green synthesis of fluorescent carbon quantum dots for detection of Hg2+. Chin. J. Anal. Chem. 42(9), 1252–1258 (2014). https://doi.org/10.1016/S1872-2040(14)60765-9

    Article  Google Scholar 

  16. Bano, D., Kumar, V., Singh, V.K., Hasan, S.H.: Green synthesis of fluorescent carbon quantum dots for the detection of mercury(ii) and glutathione. New J. Chem. 42(8), 5814–5821 (2018). https://doi.org/10.1039/C8NJ00432C

    Article  Google Scholar 

  17. Ramezani, Z., Qorbanpour, M., Rahbar, N.: Green synthesis of carbon quantum dots using quince fruit (Cydonia oblonga) powder as carbon precursor: application in cell imaging and As3+ determination. Colloids Surf. Physicochem. Eng. Aspects 549, 58–66 (2018). https://doi.org/10.1016/j.colsurfa.2018.04.006

    Article  Google Scholar 

  18. Selvarathinam, T., Dhesingh, R.S.: Green synthesis of highly fluorescent carbon quantum dots from sugarcane bagasse pulp. Appl. Surf. Sci. 390, 435–443 (2016). https://doi.org/10.1016/j.apsusc.2016.08.106

    Article  Google Scholar 

  19. Atchudan, R., Edison, T.N.J.I., Chakradhar, D., Perumal, S., Shim, J.-J., Lee, Y.R.: Facile green synthesis of nitrogen-doped carbon dots using Chionanthus retusus fruit extract and investigation of their suitability for metal ion sensing and biological applications. Sens. Actuators B 246, 497–509 (2017). https://doi.org/10.1016/j.snb.2017.02.119

    Article  Google Scholar 

  20. Atchudan, R., Edison, T.N.J.I., Lee, Y.R.: Nitrogen-doped carbon dots originating from unripe peach for fluorescent bioimaging and electrocatalytic oxygen reduction reaction. J. Colloid Interface Sci. 482, 8–18 (2016). https://doi.org/10.1016/j.jcis.2016.07.058

    Article  Google Scholar 

  21. Mewada, A., Pandey, S., Shinde, S., Mishra, N., Oza, G., Thakur, M., Sharon, M., Sharon, M.: Green synthesis of biocompatible carbon dots using aqueous extract of Trapa bispinosa peel. Mater. Sci. Eng. C 33(5), 2914–2917 (2013). https://doi.org/10.1016/j.msec.2013.03.018

    Article  Google Scholar 

  22. Motojima, F., Nuylert, A., Asano, Y.: The crystal structure and catalytic mechanism of hydroxynitrile lyase from passion fruit Passiflora edulis. FEBS J. 285(2), 313–324 (2018). https://doi.org/10.1111/febs.14339

    Article  Google Scholar 

  23. Vaillant, F., Jeanton, E., Dornier, M., O’Brien, G.M., Reynes, M., Decloux, M.: Concentration of passion fruit juice on an industrial pilot scale using osmotic evaporation. J. Food Eng. 47(3), 195–202 (2001). https://doi.org/10.1016/S0260-8774(00)00115-1

    Article  Google Scholar 

  24. Liu, P., Zhang, C., Liu, X., Cui, P.: Preparation of carbon quantum dots with a high quantum yield and the application in labeling bovine serum albumin. Appl. Surf. Sci. 368, 122–128 (2016). https://doi.org/10.1016/j.apsusc.2016.01.278

    Article  Google Scholar 

  25. Feng, X.T., Zhang, F., Wang, Y.L., Zhang, Y., Yang, Y.Z., Liu, X.G.: Luminescent carbon quantum dots with high quantum yield as a single white converter for white light emitting diodes. Appl. Phys. Lett. 107(21), 213102 (2015). https://doi.org/10.1063/1.4936234

    Article  Google Scholar 

  26. Guo, R., Li, T., Shi, S.: Aggregation-induced emission enhancement of carbon quantum dots and applications in light emitting devices. J. Mater. Chem. C 7(17), 5148–5154 (2019). https://doi.org/10.1039/C9TC01138B

    Article  Google Scholar 

  27. Liang, Z., Kang, M., Payne, G.F., Wang, X., Sun, R.: Probing energy and electron transfer mechanisms in fluorescence quenching of biomass carbon quantum dots. ACS Appl. Mater. Interfaces 8(27), 17478–17488 (2016). https://doi.org/10.1021/acsami.6b04826

    Article  Google Scholar 

  28. Hu, L., Sun, Y., Li, S., Wang, X., Hu, K., Wang, L., Liang, X.-J., Wu, Y.: Multifunctional carbon dots with high quantum yield for imaging and gene delivery. Carbon 67, 508–513 (2014). https://doi.org/10.1016/j.carbon.2013.10.023

    Article  Google Scholar 

  29. Cheng, C., Shi, Y., Li, M., Xing, M., Wu, Q.: Carbon quantum dots from carbonized walnut shells: structural evolution, fluorescence characteristics, and intracellular bioimaging. Mater. Sci. Eng. C 79, 473–480 (2017). https://doi.org/10.1016/j.msec.2017.05.094

    Article  Google Scholar 

  30. Prasannan, A., Imae, T.: One-pot synthesis of fluorescent carbon dots from orange waste peels. Ind. Eng. Chem. Res. 52(44), 15673–15678 (2013). https://doi.org/10.1021/ie402421s

    Article  Google Scholar 

  31. Canevari, T.C., Nakamura, M., Cincotto, F.H., de Melo, F.M., Toma, H.E.: High performance electrochemical sensors for dopamine and epinephrine using nanocrystalline carbon quantum dots obtained under controlled chronoamperometric conditions. Electrochim. Acta 209, 464–470 (2016). https://doi.org/10.1016/j.electacta.2016.05.108

    Article  Google Scholar 

  32. Wu, M., Wang, Y., Wu, W., Hu, C., Wang, X., Zheng, J., Li, Z., Jiang, B., Qiu, J.: Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke. Carbon 78, 480–489 (2014). https://doi.org/10.1016/j.carbon.2014.07.029

    Article  Google Scholar 

  33. Campos, B.B., Contreras-Cáceres, R., Bandosz, T.J., Jiménez-Jiménez, J., Rodríguez-Castellón, E., da Silva Esteves, J.C.G., Algarra, M.: Carbon dots as fluorescent sensor for detection of explosive nitrocompounds. Carbon 106, 171–178 (2016). https://doi.org/10.1016/j.carbon.2016.05.030

    Article  Google Scholar 

  34. Hou, L., Chen, Z., Zhao, Z., Sun, X., Zhang, J., Yuan, C.: Universal FeCl3-activating strategy for green and scalable fabrication of sustainable biomass-derived hierarchical porous nitrogen-doped carbons for electrochemical supercapacitors. ACS Appl. Energy Mater. 2(1), 548–557 (2019). https://doi.org/10.1021/acsaem.8b01589

    Article  Google Scholar 

  35. Zhou, Y., Ma, R., Candelaria, S.L., Wang, J., Liu, Q., Uchaker, E., Li, P., Chen, Y., Cao, G.: Phosphorus/sulfur Co-doped porous carbon with enhanced specific capacitance for supercapacitor and improved catalytic activity for oxygen reduction reaction. J. Power Sources 314, 39–48 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.009

    Article  Google Scholar 

  36. Tyagi, A., Tripathi, K., Singh, N., Choudhary, S., Gupta, R.: Green synthesis of carbon quantum dots from lemon peel waste: applications in sensing and photocatalysis. RSC Adv. 6, 72423–72432 (2016). https://doi.org/10.1039/C6RA10488F

    Article  Google Scholar 

  37. Bu, L., Luo, T., Peng, H., Li, L., Long, D., Peng, J., Huang, J.: One-step synthesis of N-doped carbon dots, and their applications in curcumin sensing, fluorescent inks, and super-resolution nanoscopy. Microchim. Acta 186(10), 675 (2019). https://doi.org/10.1007/s00604-019-3762-5

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the characterization from Wuhan University of Technology Materials Research and Testing Center.

Funding

Study on Comprehensive Control of Rocky Desertification and Ecological Service Function Improvement in Karst Peaks (No. 2016YFC0502402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shibin Xia.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Zhou, B., Zhang, Y. et al. Valorization of Expired Passion Fruit Shell by Hydrothermal Conversion into Carbon Quantum Dot: Physical and Optical Properties. Waste Biomass Valor 12, 2109–2117 (2021). https://doi.org/10.1007/s12649-020-01132-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01132-z

Keywords

Navigation