Skip to main content
Log in

Microstructural evolution, mechanical properties and degradation mechanism of PS-PVD quasi-columnar thermal barrier coatings exposed to glassy CMAS deposits

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Thermal barrier coatings (TBCs) applied in aero-engines tend to be attacked by molten calcia-magnesia-alumino-silicate (CMAS) at high operating temperatures. Yttria-stabilized zirconia (YSZ) coatings with quasi-columnar microstructure were fabricated by plasma spray physical vapor deposition (PS-PVD) technique. The chemical changes, microstructural transformation, mechanical properties and degradation mechanisms of the CMAS-interacted TBCs in the thermal cycling tests were investigated. Feathered YSZ grains were dissolved in the CMAS melts, and then the ZrO2 grains were reprecipitated with spherical shape, accompanying with phase transformation from tetragonal (t) to monoclinic (m). The thermal cycling tests reveal that the YSZ coating fails at the early stage due to the attack of CMAS. The fractures in intra-columns lead to partial spallation of the coatings. The failure of the coating occurs at the interfaces between thermally grown oxides (TGO) layer and YSZ topcoat; especially, the hardness and Young’s modulus of the YSZ coatings increase intensively, as the coatings were infiltrated by the CMAS for a long time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Clarke DR, Oechsner M, Padture NP. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 2012;37(10):891.

    Article  CAS  Google Scholar 

  2. Zhou ZM, Peng H, Zheng L, Guo HB, Gong SK. Thermal cycling performance of La2Ce2O7/YSZ TBCs with Pt/Dy co-doped NiAl bond coat on single crystal superalloy. Rare Met. 2018. https://doi.org/10.1007/s12598-017-0980-z.

    Article  Google Scholar 

  3. Deng ZQ, Mao J, Liu M, Deng CM, Ma JT. Regional characteristic of 7YSZ coatings prepared by plasma spray-physical vapor deposition technique. Rare Met. 2018. https://doi.org/10.1007/s12598-018-1041-y.

    Article  Google Scholar 

  4. Refke A, Hawley D, Doesburg J, Schmid RK. LPPS thin film technology for the application of TBC systems. In: International thermal spray conference. Basel; 2005. 438.

  5. Gao LH, Guo HB, Wei LL, Li CY, Gong SK, Xu HB. Microstructure and mechanical properties of yttria stabilized zirconia coatings prepared by plasma spray physical vapor deposition. Ceram Int. 2015;41(7):8305.

    Article  CAS  Google Scholar 

  6. Gao LH, Guo HB, Wei LL, Li CY, Xu HB. Microstructure, thermal conductivity and thermal cycling behavior of thermal barrier coatings prepared by plasma spray physical vapor deposition. Surf Coat Technol. 2015;276:424.

    Article  CAS  Google Scholar 

  7. Padture NP. Advanced structural ceramics in aerospace propulsion. Nat Mater. 2016;15(8):804.

    Article  CAS  Google Scholar 

  8. Stott FH, De Wet DJ, Taylor R. Degradation of thermal barrier coatings at very high temperatures. MRS Bull. 1994;19(10):46.

    Article  CAS  Google Scholar 

  9. Kramer S, Yang J, Levi CG, Johnson CA. Thermochemical interaction of thermal barrier coatings with molten CaO–MgO–Al2O3–SiO2 (CMAS) deposits. J Am Ceram Soc. 2006;89(10):3167.

    Article  CAS  Google Scholar 

  10. Levi CG, Hutchinson JW, Vidal-Setif M-H, Johnson CA. Environmental degradation of thermal-barrier coatings by molten deposits. MRS Bull. 2012;37(10):932.

    Article  CAS  Google Scholar 

  11. Aygun A, Vasiliev AL, Padture NP, Ma X. Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits. Acta Mater. 2007;55(20):6734.

    Article  CAS  Google Scholar 

  12. Vidal-Setif MH, Rio C, Boivin D, Lavigne O. Microstructural characterization of the interaction between 8YPSZ (EB-PVD) thermal barrier coatings and a synthetic CAS. Surf Coat Technol. 2014;239(9):41.

    Article  CAS  Google Scholar 

  13. Peng H, Wang LL, Guo L, Miao WH, Guo HB, Gong SK. Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits. Prog Nat Sci Mater Int. 2012;22(5):461.

    Article  Google Scholar 

  14. Wu J, Guo HB, Gao YZ, Gong SK. Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits. J Eur Ceram Soc. 2011;31(10):1881.

    Article  CAS  Google Scholar 

  15. Lipkin DM, Krogstad JA, Gao Y, Johnson CA, Nelson WA, Levi CG. Phase evolution upon aging of air-plasma sprayed t’-zirconia coatings I-synchrotron X-ray diffraction. J Am Ceram Soc. 2013;96(1):290.

    Article  CAS  Google Scholar 

  16. Zhang BP, Wei LL, Gao LH, Guo HB, Xu HB. Microstructural characterization of PS-PVD ceramic thermal barrier coatings with quasi-columnar structures. Surf Coat Technol. 2017;311:199.

    Article  CAS  Google Scholar 

  17. Wet DJD, Taylor R, Stott FH. Corrosion mechanisms of ZrO2–Y2O3 thermal barrier coatings in the presence of molten middle-east sand. J Phys IV. 1993;03(C9):655.

    Google Scholar 

  18. Mohan P, Yuan B, Patterson T, Desai V, Sohn YH. Degradation of yttria stabilized zirconia thermal barrier coatings by molten CMAS (CaO–MgO–Al2O3–SiO2) deposits. Mater Sci Forum. 2008;595–598:207.

    Article  Google Scholar 

  19. Drexler JM, Gledhill AD, Shinoda K, Vasiliev AL, Reddy KM, Sampath S, Padture NP. Jet engine coatings for resisting volcanic ash damage. Adv Mater. 2011;23(21):2419.

    Article  CAS  Google Scholar 

  20. Shinozaki M, Clyne TW. The effect of vermiculite on the degradation and spallation of plasma sprayed thermal barrier coatings. Surf Coat Technol. 2013;216(216):172.

    Article  CAS  Google Scholar 

  21. Jang BK, Matsubara H. Influence of porosity on hardness and Young’s modulus of nano porous EB-PVD TBCs by nano-indentation. Mater Lett. 2005;59(27):3462.

    Article  CAS  Google Scholar 

  22. Guo SQ, Kagawa Y. Effect of thermal exposure on hardness and Young’s modulus of EB-PVD yttria-partially-stabilized zirconia thermal barrier coatings. Ceram Int. 2006;32(3):263.

    Article  CAS  Google Scholar 

  23. Nath S, Manna I, Majumdar J. Nano-mechanical behavior of yttria stabilized zirconia (YSZ) based thermal barrier coating. Ceram Int. 2015;41(4):5247.

    Article  CAS  Google Scholar 

  24. Zhu HX, Fleck NA, Cocks ACF, Evans AG. Numerical simulation of crack formation from pegs in thermal barrier systems with NiCoCrAlY bond coats. Mater Sci Eng A. 2005;404(1–2):26.

    Article  Google Scholar 

  25. Golosnoy IO, Cipitria A, Clyne TW. Heat transfer through plasma-sprayed thermal barrier coatings in gas turbines: a review of recent work. J Therm Spray Technol. 2009;18(5–6):809.

    Article  Google Scholar 

  26. Chen WR, Wu X, Marple BR, Nagy DR, Patnaik PC. TGO growth behavior in TBCs with APS and HVOF bond coats. Surf Coat Technol. 2008;202(12):2677.

    Article  CAS  Google Scholar 

  27. Vidal-Setif MH, Chellah N, Rio C, Sanchez C, Lavigne O. Calcium–magnesium–alumino–silicate (CMAS) degradation of EB-PVD thermal barrier coatings: characterization of CMAS damage on ex-service high pressure blade TBCs. Surf Coat Technol. 2012;208(3):39.

    Article  CAS  Google Scholar 

  28. Mercer C, Faulhaber S, Evans AG. Darolia.R. A delamination mechanism for thermal barrier coatings subject to calcium–magnesium–alumino–silicate (CMAS) infiltration. Acta Mater. 2005;53(4):1029–39.

    Article  CAS  Google Scholar 

  29. Evans AG, Hutchinson JW. The mechanics of coating delamination in thermal gradients. Surf Coat Technol. 2007;201(18):7905.

    Article  CAS  Google Scholar 

  30. Naraparaju R, Hüttermann M, Schulz U, Mechnich P. Tailoring the EB-PVD columnar microstructure to mitigate the infiltration of CMAS in 7YSZ thermal barrier coatings. J Eur Ceram Soc. 2016;37(1):261.

    Article  Google Scholar 

  31. Krause AR, Garces HF, Dwivedi G, Ortiz AL, Sampath S, Padture N. Calcia–magnesia–alumino–silicate (CMAS)-induced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings. Acta Mater. 2016;105(15):355.

    Article  CAS  Google Scholar 

  32. He B, Li Y, Zhang HY, Wu DL, Liang LH, Wei H. Phase transformation of ZrO2 doped with CeO2. Rare Met. 2018;37(1):66.

    Article  CAS  Google Scholar 

  33. Garvie RC, Nicholson PS. Structure and thermomechanical properties of partially stabilized zirconia in the CaO-ZrO2 system. J Am Ceram Soc. 1972;55(3):152.

    Article  CAS  Google Scholar 

  34. Suresh A, Mayo MJ, Porter WD. Thermodynamics of the tetragonal-to-monoclinic phase transformation in fine and nanocrystalline yttria-stabilized zirconia powders. J Mater Res. 2003;18(12):2912.

    Article  CAS  Google Scholar 

  35. Teixeira V, Andritschky M, Fischer W, Buchkremer HP, Stover D. Effects of deposition temperature and thermal cycling on residual stress state in zirconia-based thermal barrier coatings. Surf Coat Technol. 1999;120–121:103.

    Article  Google Scholar 

  36. Huang H, Liu C, Ni LY, Zhou CG. Evaluation of TGO growth in thermal barrier coatings using impedance spectroscopy. Rare Met. 2011;30(1):643.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Nos. 51590894, 51425102 and 51231001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Bo Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, ZY., Wei, LL., Guo, XY. et al. Microstructural evolution, mechanical properties and degradation mechanism of PS-PVD quasi-columnar thermal barrier coatings exposed to glassy CMAS deposits. Rare Met. (2018). https://doi.org/10.1007/s12598-018-1128-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-018-1128-5

Keywords

Navigation