Skip to main content
Log in

Influence of Sintering Temperature on Microstructure and Mechanical Properties of Ti–Mo–B4C Composites

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Ti–10 wt% Mo–1 wt% B4C composite samples were SPSed under the circumstances of 5 min dwell time, 50 MPa external pressure and sintering temperatures of 1150 °C, 1300 °C and 1450 °C. The role of sintering temperature on the relative density, microstructure and mechanical characteristics of as-sintered specimens were studied. Near fully dense relative density was obtained for the samples sintered at 1450 °C. The best mechanical properties including UTS, elongation, bending strength and micro/macro hardness were achieved for the composites SPSed at the highest temperature. The XRD results and also microscopic photographs disclosed the formation of TiB + TiC in-situ phases. However, there was not any evidence for chemical reaction between Mo and other phases. The role of produced in-situ phases on the grain growth also studied using SEM fractographs.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.A. Obadele, O.O. Ige, P.A. Olubambi, Fabrication and characterization of titanium-nickel-zirconia matrix composites prepared by spark plasma sintering. J. Alloys Compd. 710, 825–830 (2017). https://doi.org/10.1016/j.jallcom.2017.03.340

    Article  CAS  Google Scholar 

  2. S.A. Delbari, A. Sabahi Namini, M. Shahedi Asl, Hybrid Ti matrix composites with TiB2 and TiC compounds. Mat. Today Comm. (2019). https://doi.org/10.1016/j.mtcomm.2019.100576

    Article  Google Scholar 

  3. A. Sabahi Namini, S.A.A. Dilawary, A. Motallebzadeh, M. Shahedi Asl, Effect of TiB2 addition on the elevated temperature tribological behavior of spark plasma sintered Ti matrix composite. Compos. Part B Eng. 172, 271–280 (2019). https://doi.org/10.1016/j.compositesb.2019.05.073

    Article  CAS  Google Scholar 

  4. M.D. Hayat, H. Singh, Z. He, P. Cao, Titanium metal matrix composites: an overview. Compos. Part A Appl. Sci. Manuf. 121, 418–438 (2019). https://doi.org/10.1016/j.compositesa.2019.04.005

    Article  CAS  Google Scholar 

  5. E.L. Calvert, A.J. Knowles, J.J. Pope, D. Dye, M. Jackson, Novel high strength titanium–titanium composites produced using field-assisted sintering technology (FAST). Scr. Mater. 159, 51–57 (2019). https://doi.org/10.1016/j.scriptamat.2018.08.036

    Article  CAS  Google Scholar 

  6. X. Wang, L. Wang, F. Yang, L. Luo, H. Yan, X. Liu, X. Li, R. Chen, Y. Su, J. Guo, H. Fu, Hydrogen induced microstructure evolution of titanium matrix composites. Int. J. Hydrogen Energy. 43, 9838–9847 (2018). https://doi.org/10.1016/j.ijhydene.2018.04.030

    Article  CAS  Google Scholar 

  7. T. Fujii, K. Tohgo, M. Iwao, Y. Shimamura, Fabrication of alumina-titanium composites by spark plasma sintering and their mechanical properties. J. Alloys Compd. 744, 759–768 (2018). https://doi.org/10.1016/j.jallcom.2018.02.142

    Article  CAS  Google Scholar 

  8. S. Decker, J. Lindemann, L. Krüger, Metal matrix composites based on Ti-6242 synthesized by Spark Plasma Sintering. Mater. Sci. Eng. A. 732, 35–40 (2018). https://doi.org/10.1016/j.msea.2018.06.103

    Article  CAS  Google Scholar 

  9. F.-C. Wang, Z.-H. Zhang, Y.-J. Sun, Y. Liu, Z.-Y. Hu, H. Wang, A.V. Korznikov, E. Korznikova, Z.-F. Liu, S. Osamu, Rapid and low temperature spark plasma sintering synthesis of novel carbon nanotube reinforced titanium matrix composites. Carbon N. Y. 95, 396–407 (2015). https://doi.org/10.1016/j.carbon.2015.08.061

    Article  CAS  Google Scholar 

  10. M. Shahedi Asl, A. Sabahi Namini, A. Motallebzadeh, M. Azadbeh, Effects of sintering temperature on microstructure and mechanical properties of spark plasma sintered titanium. Mater. Chem. Phys. 203, 266–273 (2018). https://doi.org/10.1016/j.matchemphys.2017.09.069

    Article  CAS  Google Scholar 

  11. S. Li, K. Kondoh, H. Imai, B. Chen, L. Jia, J. Umeda, Microstructure and mechanical properties of P/M titanium matrix composites reinforced by in-situ synthesized TiC–TiB. Mater. Sci. Eng. A. 628, 75–83 (2015). https://doi.org/10.1016/j.msea.2015.01.033

    Article  CAS  Google Scholar 

  12. H. Duan, Y. Han, W. Lu, L. Wang, J. Mao, D. Zhang, Configuration design and fabrication of laminated titanium matrix composites. Mater. Des. 99, 219–224 (2016). https://doi.org/10.1016/j.matdes.2016.03.061

    Article  CAS  Google Scholar 

  13. H. Yuanfei, K. Wei, Y. Xiaofang, L. Jiuxiao, H. Guangfa, L. Weijie, Z. Di, Effect of La and B Addition on the Microstructure and Mechanical Properties of Titanium Matrix Composite. Rare Met. Mater. Eng. 45, 3104–3107 (2016). https://doi.org/10.1016/S1875-5372(17)30062-0

    Article  Google Scholar 

  14. A. Muthuchamy, G.D.J. Ram, V.S. Sarma, Spark plasma consolidation of continuous fiber reinforced titanium matrix composites. Mater. Sci. Eng. A. 703, 461–469 (2017). https://doi.org/10.1016/j.msea.2017.07.085

    Article  CAS  Google Scholar 

  15. X.N. Mu, H.N. Cai, H.M. Zhang, Q.B. Fan, F.C. Wang, Z.H. Zhang, Y. Wu, Y.X. Ge, S. Chang, R. Shi, Y. Zhou, D.D. Wang, Uniform dispersion of multi-layer graphene reinforced pure titanium matrix composites via flake powder metallurgy. Mater. Sci. Eng. A. 725, 541–548 (2018). https://doi.org/10.1016/j.msea.2018.04.056

    Article  CAS  Google Scholar 

  16. E. Sheydaeian, E. Toyserkani, A new approach for fabrication of titanium–titanium boride periodic composite via additive manufacturing and pressure-less sintering. Compos. Part B Eng. 138, 140–148 (2018). https://doi.org/10.1016/j.compositesb.2017.11.035

    Article  CAS  Google Scholar 

  17. K. Shirvanimoghaddam, E. Ghasali, A. Pakseresht, S.M.R. Derakhshandeh, M. Alizadeh, T. Ebadzadeh, M. Naebe, Super hard carbon microtubes derived from natural cotton for development of high performance titanium composites. J. Alloys Compd. 775, 601–616 (2019). https://doi.org/10.1016/j.jallcom.2018.10.121

    Article  CAS  Google Scholar 

  18. Z. Hu, G. Tong, Q. Nian, R. Xu, M. Saei, F. Chen, C. Chen, M. Zhang, H. Guo, J. Xu, Laser sintered single layer graphene oxide reinforced titanium matrix nanocomposites. Compos. Part B Eng. 93, 352–359 (2016). https://doi.org/10.1016/j.compositesb.2016.03.043

    Article  CAS  Google Scholar 

  19. W. Zhang, Y. Liu, B. Liu, X. Li, H. Wu, J. Qiu, A new titanium matrix composite reinforced with Ti–36Nb–2Ta–3Zr–0.35O wire. Mater. Des. 117, 289–297 (2017). https://doi.org/10.1016/j.matdes.2016.12.029

    Article  CAS  Google Scholar 

  20. A. Sabahi Namini, A. Motallebzadeh, B. Nayebi, M. Shahedi Asl, M. Azadbeh, Microstructure–mechanical properties correlation in spark plasma sintered Ti–4.8 wt% TiB2 composites. Mater. Chem. Phys. 223: 789–796 (2019). https://doi.org/10.1016/j.matchemphys.2018.11.057

    Article  CAS  Google Scholar 

  21. K.S. Munir, Y. Li, J. Lin, C. Wen, Interdependencies between graphitization of carbon nanotubes and strengthening mechanisms in titanium matrix composites. Materialia. 3, 122–138 (2018). https://doi.org/10.1016/j.mtla.2018.08.015

    Article  Google Scholar 

  22. Z. Cao, X. Wang, J. Li, Y. Wu, H. Zhang, J. Guo, S. Wang, Reinforcement with graphene nanoflakes in titanium matrix composites. J. Alloys Compd. 696, 498–502 (2017). https://doi.org/10.1016/j.jallcom.2016.11.302

    Article  CAS  Google Scholar 

  23. Y. Han, J. Li, G. Huang, Y. Lv, X. Shao, W. Lu, D. Zhang, Effect of ECAP numbers on microstructure and properties of titanium matrix composite. Mater. Des. 75, 113–119 (2015). https://doi.org/10.1016/j.matdes.2015.03.018

    Article  CAS  Google Scholar 

  24. C. Han, Y. Li, X. Liang, L. Chen, N. Zhao, X. Zhu, Effect of composition and sintering temperature on mechanical properties of ZrO2 particulate-reinforced titanium-matrix composite. Trans. Nonferrous Met. Soc. China. 22, 1855–1859 (2012). https://doi.org/10.1016/S1003-6326(11)61397-6

    Article  CAS  Google Scholar 

  25. J.B. Fruhauf, J. Roger, O. Dezellus, S. Gourdet, N. Karnatak, N. Peillon, S. Saunier, F. Montheillet, C. Desrayaud, Microstructural and mechanical comparison of Ti+15%TiCp composites prepared by free sintering, HIP and extrusion. Mater. Sci. Eng. A. 554, 22–32 (2012). https://doi.org/10.1016/j.msea.2012.05.096

    Article  CAS  Google Scholar 

  26. M. Eriksson, D. Salamon, M. Nygren, Z. Shen, Spark plasma sintering and deformation of Ti–TiB2 composites. Mater. Sci. Eng. A. 475, 101–104 (2008). https://doi.org/10.1016/j.msea.2007.01.161

    Article  CAS  Google Scholar 

  27. A. Sabahi Namini, M. Azadbeh, M. Shahedi Asl, Effects of in-situ formed TiB whiskers on microstructure and mechanical properties of spark plasma sintered Ti–B4C and Ti–TiB2 composites. Sci. Iran. 25, 762–771 (2018). https://doi.org/10.24200/sci.2017.4499

    Article  Google Scholar 

  28. A. Sabahi Namini, M. Azadbeh, Microstructural characterisation and mechanical properties of spark plasma-sintered TiB2-reinforced titanium matrix composite. Powder Metall. 60, 22–32 (2017). https://doi.org/10.1080/00325899.2016.1265805

    Article  CAS  Google Scholar 

  29. L.L. Dong, B. Xiao, Y. Liu, Y.L. Li, Y.Q. Fu, Y.Q. Zhao, Y.S. Zhang, Sintering effect on microstructural evolution and mechanical properties of spark plasma sintered Ti matrix composites reinforced by reduced graphene oxides. Ceram. Int. 44, 17835–17844 (2018). https://doi.org/10.1016/j.ceramint.2018.06.252

    Article  CAS  Google Scholar 

  30. H. Attar, S. Ehtemam-Haghighi, D. Kent, M.S. Dargusch, Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: A review. Int. J. Mach. Tools Manuf. 133, 85–102 (2018). https://doi.org/10.1016/j.ijmachtools.2018.06.003

    Article  Google Scholar 

  31. X. Zhang, F. Song, Z. Wei, W. Yang, Z. Dai, Microstructural and mechanical characterization of in-situ TiC/Ti titanium matrix composites fabricated by graphene/Ti sintering reaction. Mater. Sci. Eng. A. 705, 153–159 (2017). https://doi.org/10.1016/j.msea.2017.08.079

    Article  CAS  Google Scholar 

  32. A. Sabahi Namini, M. Azadbeh, M. Shahedi Asl, Effect of TiB2 content on the characteristics of spark plasma sintered Ti–TiBw composites. Adv. Powder Technol. 28, 1564–1572 (2017). https://doi.org/10.1016/j.apt.2017.03.028

    Article  CAS  Google Scholar 

  33. K.S. Munir, Y. Zheng, D. Zhang, J. Lin, Y. Li, C. Wen, Microstructure and mechanical properties of carbon nanotubes reinforced titanium matrix composites fabricated via spark plasma sintering. Mater. Sci. Eng. A. 688, 505–523 (2017). https://doi.org/10.1016/j.msea.2017.02.019

    Article  CAS  Google Scholar 

  34. K.S. Munir, Y. Zheng, D. Zhang, J. Lin, Y. Li, C. Wen, Improving the strengthening efficiency of carbon nanotubes in titanium metal matrix composites. Mater. Sci. Eng. A. 696, 10–25 (2017). https://doi.org/10.1016/j.msea.2017.04.026

    Article  CAS  Google Scholar 

  35. L. Huang, L. Wang, M. Qian, J. Zou, High tensile-strength and ductile titanium matrix composites strengthened by TiB nanowires. Scr. Mater. 141, 133–137 (2017). https://doi.org/10.1016/j.scriptamat.2017.08.007

    Article  CAS  Google Scholar 

  36. A. Miklaszewski, Ultrafast densification and microstructure evolution of in situ Ti/TiB metal matrix composite obtained by PPS approach. Int. J. Refract. Met. Hard Mater. 65, 34–38 (2017). https://doi.org/10.1016/j.ijrmhm.2016.10.007

    Article  CAS  Google Scholar 

  37. Y. Jiao, L. Huang, L. Geng, Progress on discontinuously reinforced titanium matrix composites. J. Alloys Compd. 767, 1196–1215 (2018). https://doi.org/10.1016/j.jallcom.2018.07.100

    Article  CAS  Google Scholar 

  38. S. Tkachenko, J. Cizek, R. Mušálek, K. Dvořák, Z. Spotz, E.B. Montufar, T. Chráska, I. Křupka, L. Čelko, Metal matrix to ceramic matrix transition via feedstock processing of SPS titanium composites alloyed with high silicone content. J. Alloys Compd. 764, 776–788 (2018). https://doi.org/10.1016/j.jallcom.2018.06.086

    Article  CAS  Google Scholar 

  39. W.H. Lee, J.G. Seong, Y.H. Yoon, C.H. Jeong, C.J. Van Tyne, H.G. Lee, S.Y. Chang, Synthesis of TiC reinforced Ti matrix composites by spark plasma sintering and electric discharge sintering: A comparative assessment of microstructural and mechanical properties. Ceram. Int. 45, 8108–8114 (2019). https://doi.org/10.1016/j.ceramint.2019.01.062

    Article  CAS  Google Scholar 

  40. S.A. Delbari, B. Nayebi, E. Ghasali, M. Shokouhimehr, M. Shahedi Asl, Spark plasma sintering of TiN ceramics codoped with SiC and CNT. Ceram. Int. 45, 3207–3216 (2019). https://doi.org/10.1016/j.ceramint.2018.10.223

    Article  CAS  Google Scholar 

  41. M. Shahedi Asl, S.A. Delbari, F. Shayesteh, Z. Ahmadi, A. Motallebzadeh, Reactive spark plasma sintering of TiB2–SiC–TiN novel composite. Int. J. Refract. Met. Hard Mater. 81, 119–126 (2019). https://doi.org/10.1016/j.ijrmhm.2019.02.022

    Article  CAS  Google Scholar 

  42. S.W. Maseko, A.P.I. Popoola, O.S.I. Fayomi, Characterization of ceramic reinforced titanium matrix composites fabricated by spark plasma sintering for anti-ballistic applications. Def. Technol. 14, 408–411 (2018). https://doi.org/10.1016/j.dt.2018.04.013

    Article  Google Scholar 

  43. F. Shayesteh, S.A. Delbari, Z. Ahmadi, M. Shokouhimehr, M. Shahedi Asl, Influence of TiN dopant on microstructure of TiB2 ceramic sintered by spark plasma, Ceram. Int. (2018). doi:10.1016/j.ceramint.2018.11.228.

  44. V.S. Balaji, S. Kumaran, Densification and microstructural studies of titanium–boron carbide (B4C) powder mixture during spark plasma sintering. Powder Technol. 264, 536–540 (2014). https://doi.org/10.1016/j.powtec.2014.05.050

    Article  CAS  Google Scholar 

  45. L. Jia, S. Li, H. Imai, B. Chen, K. Kondoh, Size effect of B4C powders on metallurgical reaction and resulting tensile properties of Ti matrix composites by in-situ reaction from Ti–B4C system under a relatively low temperature. Mater. Sci. Eng. A. 614, 129–135 (2014). https://doi.org/10.1016/j.msea.2014.07.020

    Article  CAS  Google Scholar 

  46. L. Jia, X. Wang, B. Chen, H. Imai, S. Li, Z. Lu, K. Kondoh, Microstructural evolution and competitive reaction behavior of Ti–B4C system under solid-state sintering. J. Alloys Compd. 687, 1004–1011 (2016). https://doi.org/10.1016/j.jallcom.2016.06.280

    Article  CAS  Google Scholar 

  47. S. Xu, C. Zhou, Y. Liu, B. Liu, K. Li, Microstructure and mechanical properties of Ti–15Mo–xTiC composites fabricated by in-situ reactive sintering and hot swaging. J. Alloys Compd. 738, 188–196 (2018). https://doi.org/10.1016/j.jallcom.2017.12.124

    Article  CAS  Google Scholar 

  48. C.L. Yeh, W.Z. Lin, Combustion synthesis of UHTC composites from Ti–B4C solid state reaction with addition of VIb transition metals. Coatings. 7, 73 (2017). https://doi.org/10.3390/coatings7060073

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abbas Sabahi Namini or Mehdi Shahedi Asl.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabahi Namini, A., Shahedi Asl, M. & Delbari, S.A. Influence of Sintering Temperature on Microstructure and Mechanical Properties of Ti–Mo–B4C Composites. Met. Mater. Int. 27, 1092–1102 (2021). https://doi.org/10.1007/s12540-019-00469-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00469-y

Keywords

Navigation