Skip to main content
Log in

Micrometeorological Modification Promoted by Photoselective Meshes and Supplementary Lighting in the Production of Pre-sprouted Sugarcane Seedlings

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

The objective of this study was to compare the micrometeorological conditions in a greenhouse, arrangements, use of photoselective meshes (Stage I), and supplementary lighting by an emitting diode (Stage II), in the production of pre-sprouted sugarcane seedlings. The first experimental arrangement had the use of red, white, freshnet, and control photoselective meshes. The second experiment consisted of the use of supplemental lighting based on the light-emitting diode (LED) in the red and blue (R/B) spectra, in the proportion of 90/10, 80/20, 70/30, and control. The micrometeorological monitoring in the cultivation modules, in the greenhouse, occurred from the recording of air temperature (Tair), relative humidity (RH), global solar radiation (GR), and photosynthetically active radiation (PAR), through a datalogger. The biometric variables of the seedlings were recorded at the beginning and the end of the experiments. Data were submitted to descriptive statistics, principal component analysis (PCA), and multiple regression models established. PAR and GR showed strong correlations for the control treatment (± 0.80 and ± 0.75, respectively) from the beginning to the end of the experiments. The multivariate regression models presented satisfactory adjustments for determining the PAR in the initial (76.03%) and final (71.75%) phases, for the leaf area index (LAI) at the beginning (76.41%), and final (89.36%) of the production cycle. Freshnet and white photoselective meshes provided the best biometric responses in the final stage of seedling development, while supplemental lighting R/B in the 80/20 ratio showed better seedling development in the initial stage of the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almeida Neto, L.A., C. Guiselini, D. Menezes, J.J. Cordeiro Júnior, and H. Pandorfi. 2020. Growth of pre-sprouted sugarcane seedlings submitted to supplementary lighting. Revista Brasileira De Engenharia Agrícola e Ambiental 24 (3): 194–199. https://doi.org/10.1590/1807-1929/agriambi.v24n3p194-199.

    Article  Google Scholar 

  • Bartucca, M.L., D. Del Buono, E. Ballerini, P. Benincasa, B. Falcinelli, and M. Guiducci. 2020. Effect of light spectrum on gas exchange, growth and biochemical characteristics of einkorn seedlings. Agronomy 10 (7): 1042. https://doi.org/10.3390/agronomy10071042.

    Article  CAS  Google Scholar 

  • Beck, H.E., N.E. Zimmermann, T.R. McVicar, N. Vergopolan, A. Berg, and E.F. Wood. 2018. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data 5: 180214. https://doi.org/10.1038/sdata.2018.214.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brar, H.S., A. Thakur, H. Singh, and N. Kaur. 2020. Photoselective coverings influence plant growth, root development, and buddability of citrus plants in protected nursery. Acta Physiologiae Plantarum 42 (2): 1–15. https://doi.org/10.1007/s11738-019-2998-3.

    Article  CAS  Google Scholar 

  • Cipriano, M.A.P., R.D.P. Freitas-Iório, M.R. Dimitrov, S.A.L. de Andrade, E.E. Kuramae, and A.P.D.D. Silveira. 2021. Plant-growth endophytic bacteria improve nutrient use efficiency and modulate foliar N-Metabolites in sugarcane seedling. Microorganisms 9 (3): 479. https://doi.org/10.3390/microorganisms9030479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordeiro Júnior, J.J., H. Pandorfi, J.A. Barbosa Filho, A.S. Moraes, L.A.D. Almeida Neto, and C. Guiselini. 2019. Photo-selective shade nets on the production and quality of sugarcane plantlets. Revista Brasileira De Engenharia Agrícola e Ambiental 23 (5): 366–371. https://doi.org/10.1590/1807-1929/agriambi.v23n5p366-371.

    Article  Google Scholar 

  • Cordeiro Júnior, J.J., S.D. Cavalcanti, R.T.D.A. Souza, P.H. Batista, and C. Guiselini. 2020. Effects of photoselective shade nets on early growth of sugarcane seedlings. Engenharia Agrícola 40 (1): 10–15. https://doi.org/10.1590/1809-4430-Eng.Agric.v40n1p10-15/2020.

    Article  Google Scholar 

  • Daros, E., Oliveira, R. D., Zambon, J. L. C., and Bespalhok Filho, J. C. (2010). Catálogo nacional de variedades “RB” de cana-de-açúcar. Curitiba: RIDESA BRASIL.

  • Ferreira, L.T., M.M. de Araújo Silva, C. Ulisses, T.R. Camara, and L. Willadino. 2017. Using LED lighting in somatic embryogenesis and micropropagation of an elite sugarcane variety and its effect on redox metabolism during acclimatization. Plant Cell, Tissue and Organ Culture PCTOC 128 (1): 211–221. https://doi.org/10.1007/s11240-016-1101-7.

    Article  CAS  Google Scholar 

  • Ferreira, L.S., A.L. Generoso, V.S. Carvalho, F.A.M.M. de Assis, R. Walter, T.M. Ferraz, J.R. Silva, G.A. Gravina, W.P. Rodrigues, W.A. Vendrame, and E. Campostrini. 2021. Better light spectral quality and thermal amplitude inside the greenhouse stimulate growth and improve acclimatization of in vitro–grown Cattleya warneri T. Moore. In Vitro Cellular & Developmental Biology-Plant 1: 1–14. https://doi.org/10.1007/s11627-021-10162-8.

    Article  CAS  Google Scholar 

  • Floss, E.L. 2004. Fisiologia das plantas cultivadas: O estudo que está por trás do que se vê, 2nd ed. Passo Fundo, Brazil: UPF.

    Google Scholar 

  • Gálvez, A., A. Albacete, F.M. del Amor, and J. López-Marín. 2020. The use of red shade nets improves growth in salinized pepper capsicum annuum l plants by regulating their ion homeostasis and hormone balance. Agronomy 10 (11): 1766. https://doi.org/10.3390/agronomy10111766.

    Article  CAS  Google Scholar 

  • Gao, S., X. Liu, Y. Liu, B. Cao, Z. Chen, and K. Xu. 2020. Photosynthetic characteristics and chloroplast ultrastructure of welsh onion Allium fistulosum L grown under different LED wavelengths. BMC Plant Biology 20 (1): 1–12. https://doi.org/10.1186/s12870-020-2282-0.

    Article  CAS  Google Scholar 

  • Gao, S., X. Liu, Y. Liu, B. Cao, Z. Chen, and K. Xu. 2021. The spectral irradiance, growth, photosynthetic characteristics, antioxidant system, and nutritional status of green Onion Allium fistulosum L Grown under different photo-selective nets. Frontiers in Plant Science 12: 476. https://doi.org/10.3389/fpls.2021.650471.

    Article  Google Scholar 

  • Garcia, D.P., J.C. Caraschi, G. Ventorim, F.H.A. Vieira, and T. Paula Protásio. 2019. Assessment of plant biomass for pellet production using multivariate statistics (PCA and HCA). Renewable Energy 139: 796–805. https://doi.org/10.1016/j.renene.2019.02.103.

    Article  CAS  Google Scholar 

  • Grassi, M.C.B., and G.A.G. Pereira. 2019. Energy-cane and RenovaBio: Brazilian vectors to boost the development of Biofuels. Industrial Crops and Products 129: 201–205. https://doi.org/10.1016/j.indcrop.2018.12.006.

    Article  CAS  Google Scholar 

  • Gullo, G., A. Dattola, V. Vonella, and R. Zappia. 2021. Effects of photoselective colour nets on the vegetative, productive, and qualitative behaviour of kiwifruit, jintao cultivar. Journal of Berry Research, Preprint 1: 1–19. https://doi.org/10.3233/JBR-200530.

    Article  CAS  Google Scholar 

  • Hermann, E.R., and G.M.S. Câmara. 1999. Um método simples para estimar a área foliar de cana-de-açúcar. Revista Da STAB 17 (1): 32–34.

    Google Scholar 

  • Hernandes, T.A.D., D.G. Duft, A.C. dos Santos Luciano, M.R.L.V. Leal, and O. Cavalett. 2021. Identifying suitable areas for expanding sugarcane ethanol production in Brazil under conservation of environmentally relevant Habitats. Journal of Cleaner Production 292: 125318. https://doi.org/10.1016/j.jclepro.2020.125318.

    Article  CAS  Google Scholar 

  • Ilić, S.Z., L. Milenković, A. Dimitrijević, L. Stanojević, D. Cvetković, Ž Kevrešan, E. Fallik, and J. Mastilović. 2017. Light modification by color nets improve quality of lettuce from summer production. Scientia Horticulturae 226: 389–397. https://doi.org/10.1016/j.scienta.2017.09.009.

    Article  Google Scholar 

  • Kaiser, H.F. 1958. The varimax criterion for analytic rotation in factor analysis. Psychometrika 23 (3): 187–200. https://doi.org/10.1007/BF02289233.

    Article  Google Scholar 

  • Kerbauy, G.B. 2004. Fisiologia vegetal, vol. 7. Rio de Janeiro: Guanabara Koogan.

    Google Scholar 

  • Kluge, R.A., J.V. Tezotto-Uliana, and P.P. Silva. 2015. Aspectos fisiológicos e ambientais da fotossíntese. Revista Virtual De Química 7 (1): 56–73. https://doi.org/10.5935/1984-6835.20150004.

    Article  Google Scholar 

  • Landell, M. G. A., Campana, M. P., and Figueiredo, P. 2013. Sistema de multiplicação de cana-de-açúcar com uso de mudas pré-brotadas (MPB), oriundas de gemas individualizadas. Documentos IAC, 109. Revista Campinas: Instituto Agronômico.

  • Macan, N.P., R.S. Ferrarezi, E.E. Matsura, A.H. Maia, M.A. Xavier, and T.P.C.T. Silva. 2020. Fertilizer Recommendations for Sugarcane Pre-sprouted Seedling Production in Ebb-and-Flow Subirrigation Benches. Sugar Tech 22 (6): 978–986. https://doi.org/10.1007/s12355-020-00847-6.

    Article  CAS  Google Scholar 

  • Marafon, A. C. 2012. Análise quantitativa de crescimento em cana-de-açúcar: uma introdução ao procedimento prático. Embrapa Tabuleiros Costeiros-Documentos (INFOTECA-E). [online]. Available at: <https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/944871>. [Accessed September 28, 2021].

  • Martinez, C. A., Oliveira, E. D., Mello, T. R. P., and Alzate-Marin, A. L. 2015. Respostas das plantas ao incremento atmosférico de dióxido de carbono e da temperatura. Revista Brasileira de Geografia Física 8(8): 635–650. https://doi.org/10.26848/rbgf.v8.0.p635-650

  • Miranda, N.A., A. Xavier, W.C. Otoni, R. Gallo, K.C. Gatti, L.C. Moura, D.M.S.C. Souza, J.H. Maggioni, and S.S.O. Santos. 2020. Quality and intensity of light in the in vitro development of microstumps of Eucalyptus urophylla in a photoautotrophic system. Forest Science 66 (6): 754–760. https://doi.org/10.1093/forsci/fxaa027.

    Article  Google Scholar 

  • Nakagawa, J. 1994. “Testes De Vigor Baseados Na Avaliação Das Plântulas.” In Testes De Vigor Em Sementes, edited by R.D. Vieira and N.M. Carvalho, 1st ed., 49–85. Jaboticabal: FUNEP.

  • Neto, A.R., E.A. Chagas, B.N.S. Costa, P.C. Chagas, and W.A. Vendrame. 2020. Photomixotrophic growth response of sugarcane in vitro plantlets using different light intensities and culture vessel types. In Vitro Cellular & Developmental Biology-Plant 56 (4): 504–514. https://doi.org/10.1007/s11627-020-10057-0.

    Article  CAS  Google Scholar 

  • Paulino, J., M.V. Folegatti, D.L. Flumignan, C.A. Zolin, C.R. Barboza Júnior, and S.M.D.S. Piedade. 2011. Crescimento e qualidade de mudas de pinhão-manso produzidas em ambiente protegido. Revista Brasileira De Engenharia Agrícola e Ambiental 15 (1): 37–46. https://doi.org/10.1590/S1415-43662011000100006.

    Article  Google Scholar 

  • R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/.

  • Santos, L.S., N.C.C. Braga, T.M. Rodrigues, A.R. Neto, M.F. Brito, and E. Costa Severiano. 2020. Pre-sprouted seedlings of sugarcane using sugarcane industry by-products as substrate. Sugar Tech 22 (4): 675–685. https://doi.org/10.1007/s12355-020-00798-y.

    Article  Google Scholar 

  • Schwerz, F., S.L. Medeiros, E.F. Elli, E. Eloy, J. Sgarbossa, and B.O. Caron. 2018. Plant growth, radiation use efficiency and yield of sugarcane cultivated in agroforestry systems: An alternative for threatened ecosystems. Anais Da Academia Brasileira De Ciências 90 (4): 3265–3283. https://doi.org/10.1590/0001-3765201820160806.

    Article  CAS  PubMed  Google Scholar 

  • Silva, M.V., G.L.P. Almeida, P.H.D. Batista, H. Pandorfi, G.A.P. Almeida Macêdo, M. Mesquita, and R.A.B. Silva. 2019. Variabilidade Espacial dos Atributos Físicos do Solo em Área Cultivada com Palma Forrageira Resistente a Cochonilha do Carmim no Semiárido Nordestino. Anuário Do Instituto De Geociências 42 (4): 39–45.

    Article  Google Scholar 

  • Silva, M.T., R. Martinazzo, S.D.A. Silva, A.L. Bamberg, L. Stumpf, M.H. Fermino, T.W. Kohler, E.S. Matoso, and R.A. Valgas. 2020a. Innovative substrates for sugarcane seedling production: Sewage sludges and rice husk ash in a waste-to-product strategy. Industrial Crops and Products 157: 112812. https://doi.org/10.1016/j.indcrop.2020.112812.

    Article  CAS  Google Scholar 

  • Silva, M.V., G.L.P. Almeida, A.A. Assunção Montenegro, H. Pandorfi, P.H.D. Batista, R.A.B. da Silva, G.A.P.A. Macêdo, M.M. Rolim, T.C. Santana, and S.D.L. Cavalcanti. 2020b. Variabilidade espacial de atributos físicos do solo e produção de palma forrageira no semiárido pernambucano. Brazilian Journal of Development 6 (2): 7631–7643.

    Article  Google Scholar 

  • Silva, M.V., H. Pandorfi, G.L.P. Almeida, A.M.D.R.F. Jardim, P.H.D. Batista, R.A.B. Silva, I. Lopes, M.E.G. Oliveira, J.L.B. Silva, and A.S. Moraes. 2020c. Spatial variability and exploratory inference of abiotic factors in barn compost confinement for cattle in the semiarid. Journal of Thermal Biology 94: 102782. https://doi.org/10.1016/j.jtherbio.2020.102782.

    Article  PubMed  Google Scholar 

  • Silva, M.V., H. Pandorfi, G.L.P.D. Almeida, R.P.D. Lima, A.D. Santos, A.M.D.R.F. Jardim, M.M. Rolim, J.L.B. Silva, P.H.D. Batista, R.A.B. Silva, P.M.O. Lopes, and D.C.D. Silva. 2021a. Spatio-temporal monitoring of soil and plant indicators under forage cactus cultivation by geoprocessing in Brazilian semi-arid region. Journal of South American Earth Sciences 107: 103155. https://doi.org/10.1016/j.jsames.2021.103155.

    Article  Google Scholar 

  • Silva, M.V., H. Pandorfi, A.M.D.R.F. Jardim, J.F. de Oliveira-Júnior, J.S. da Divincula, P.R. Giongo, T.G.F. Silva, G.L.P. Almeida, G.B.A. Moura, and P.M.O. Lopes. 2021b. Spatial modeling of rainfall patterns and groundwater on the coast of northeastern Brazil. Urban Climate 38: 100911. https://doi.org/10.1016/j.uclim.2021.100911.

    Article  Google Scholar 

  • Singh, D., C. Basu, M. Meinhardt-Wollweber, and B. Roth. 2015. LEDs for energy efficient greenhouse lighting. Renewable and Sustainable Energy Reviews 49: 139–147. https://doi.org/10.1016/j.rser.2015.04.117.

    Article  CAS  Google Scholar 

  • Sivakumar, D., and Jifon, J. 2018. Influence of photoselective shade nettings on postharvest quality of vegetables. In: Preharvest Modulation of Postharvest Fruit and Vegetable Quality pp. 121–138, Academic Press. https://doi.org/10.1016/B978-0-12-809807-3.00005-6

  • Spalholz, H., P. Perkins-Veazie, and R. Hernández. 2020. Impact of sun-simulated white light and varied blue: Red spectrums on the growth, morphology, development, and phytochemical content of green-and red-leaf lettuce at different growth stages. Scientia Horticulturae 264: 109195. https://doi.org/10.1016/j.scienta.2020.109195.

    Article  CAS  Google Scholar 

  • Teixeira, G.C.M., R. de Mello Prado, A.M.S. Rocha, L.C.N. dos Santos, M.M. dos Santos Sarah, P.L. Gratão, and C. Fernandes. 2020. Silicon in pre-sprouted sugarcane seedlings mitigates the effects of water deficit after transplanting. Journal of Soil Science and Plant Nutrition 20 (3): 849–859. https://doi.org/10.1007/s42729-019-00170-4.

    Article  CAS  Google Scholar 

  • Trani, P., Tivelli, S., and Carrijo, O. 2011. Fertirrigação em hortaliças. Campinas: IAC. 51. Boletim Técnico, 196.

  • Usman, H., M.A. Ullah, H. Jan, A. Siddiquah, S. Drouet, S. Anjum, and Giglioli-Guviarc’h, N., Hano, C., and Abbasi, B. H. 2020. Interactive Effects of wide-spectrum monochromatic lights on phytochemical production, antioxidant and biological activities of Solanum xanthocarpum callus cultures. Molecules 25 (9): 2201. https://doi.org/10.3390/molecules25092201.

    Article  CAS  PubMed Central  Google Scholar 

  • Vuyyuru, M., H.S. Sandhu, J.M. McCray, and R.N. Raid. 2018. Effects of soil-applied fungicides on sugarcane root and shoot growth, rhizosphere microbial communities, and nutrient uptake. Agronomy 8 (10): 223. https://doi.org/10.3390/agronomy8100223.

    Article  CAS  Google Scholar 

  • Wang, Q., G. Yu, Z. Chen, J. Han, Y. Hu, and K. Wang. 2021. Optimization of protoplast isolation, transformation and its application in sugarcane (Saccharum spontaneum L). The Crop Journal 9 (1): 133–142. https://doi.org/10.1016/j.cj.2020.05.006.

    Article  Google Scholar 

  • Warrick, A. W., and Nielsen, D. R. 1980. Spatial variability of soil physical properties in the field. In: HILLEL, D. (Ed.). Applications of Soil Physics. New York: Academic. 2, 319–344.

  • Xavier, M. A., Landell, M. G. A., Campana, M. P., Figueiredo, P., Mendonça, J. R., Dinardo-Miranda, L. L., Scarpari, M. S., Garcia, J. C., Anjos, I. A., Azania, C. A. M., Brancalião, S. R., Kanthack, R. A. D., Aferri, G., Silva, D. N., Bidóia, M. A. P., Campos, M. F., Perruco, D., Matsuo, R. S., Neves, J. C. T., Cassaneli, J. R., Perruco Junior, L., Petri, R. H., Silva, T. N., Silva, V. H. P., Thomazinho Junior, J. R., Miguel, P. E. M., and Lorenzato, C. M. 2014. Unevenness factors and IAC pre-sprouting kit for sugarcane multiplication system - pre-sprouted seedlings (MPB), 1–22. IAC (Instituto Agronômico de Campinas): Campinas.

  • Yang, Y., S. Gao, Y. Jiang, Z. Lin, J. Luo, M. Li, J. Guo, Y. Su, L. Xu, and Y. Que. 2019. The physiological and agronomic responses to nitrogen dosage in different sugarcane varieties. Frontiers in Plant Science 10: 406. https://doi.org/10.3389/fpls.2019.00406.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zárate-Salazar, J.R., L.M. de Souza, M.B. de Morais, L.P. Neto, L. Willadino, A. Gouveia-Neto, and C. Ulisses. 2020. Light-emitting diodes and gas exchange facilitation minimize hyperhydricity in Lippia grata: Physiological, biochemical and morpho anatomical aspects. South African Journal of Botany 135: 164–171. https://doi.org/10.1016/j.sajb.2020.08.019.

    Article  CAS  Google Scholar 

  • Zhen, S., and B. Bugbee. 2020. Far-red photons have equivalent efficiency to traditional photosynthetic photons: Implications for redefining photosynthetically active radiation. Plant, Cell & Environment 43 (5): 1259–1272. https://doi.org/10.1111/pce.13730.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank the Programa de Pós-Graduação em Engenharia Agrícola (PGEA) and the Grupo de Pesquisa em Ambiência (GPESA) of the Universidade Federal Rural de Pernambuco (UFRPE) for supporting the development of this research and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-Finance Code 001) and the Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE), for the financing of scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Vinícius da Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, M.V., Cordeiro Junior, J.J.F., Antônio de Almeida Neto, L. et al. Micrometeorological Modification Promoted by Photoselective Meshes and Supplementary Lighting in the Production of Pre-sprouted Sugarcane Seedlings. Sugar Tech 24, 1894–1912 (2022). https://doi.org/10.1007/s12355-021-01078-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-021-01078-z

Keywords

Navigation