Skip to main content
Log in

Developmental Changes in Serotonergic Modulation of GABAergic Synaptic Transmission and Postsynaptic GABAA Receptor Composition in the Cerebellar Nuclei

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Outputs from the cerebellar nuclei (CN) are important for generating and controlling movement. The activity of CN neurons is controlled not only by excitatory inputs from mossy and climbing fibers and by γ-aminobutyric acid (GABA)-based inhibitory transmission from Purkinje cells in the cerebellar cortex but is also modulated by inputs from other brain regions, including serotonergic fibers that originate in the dorsal raphe nuclei. We examined the modulatory effects of serotonin (5-HT) on GABAergic synapses during development, using rat cerebellar slices. As previously reported, 5-HT presynaptically decreased the amplitudes of stimulation-evoked inhibitory postsynaptic currents (IPSCs) in CN neurons, with this effect being stronger in slices from younger animals (postnatal days [P] 11–13) than in slices from older animals (P19–21). GABA release probabilities accordingly exhibited significant decreases from P11–13 to P19–21. Although there was a strong correlation between the GABA release probability and the magnitude of 5-HT-induced inhibition, manipulating the release probability by changing extracellular Ca2+ concentrations failed to control the extent of 5-HT-induced inhibition. We also found that the IPSCs exhibited slower kinetics at P11–13 than at P19–21. Pharmacological and molecular biological tests revealed that IPSC kinetics were largely determined by the prevalence of α1 subunits within GABAA receptors. In summary, pre- and postsynaptic developmental changes in serotonergic modulation and GABAergic synaptic transmission occur during the second to third postnatal weeks and may significantly contribute to the formation of normal adult cerebellar function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

5-HT:

Serotonin

ACSF:

Artificial cerebrospinal fluid

ATP:

Adenosine triphosphate

CNQX:

6-Cyano-7-nitroquinoxaline-2,3-dione

D-APV:

D-2-Amino-5-phosphonopentanoic acid

CN:

Cerebellar nuclei

eIPSC:

Evoked IPSC

IPSC:

Inhibitory postsynaptic current

GABA:

γ-Aminobutyric acid

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

GTP:

Guanosine triphosphate

K-EGTA:

Egtazic acid potassium salt

mIPSC:

Miniature IPSC

OCD:

Obsessive-convulsive disorder

mRNA:

Messenger RNA

P#:

Postnatal day #

PC:

Purkinje cell

PPR:

Paired pulse ratio

TBST:

Tris-buffered saline-Tween 20

TPMPA:

(1,2,5,6-Tetrahydropyridin-4-yl) methylphosphinic acid

VGCC:

Voltage-gated calcium channel

References

  1. Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9(4):304–13. https://doi.org/10.1038/nrn2332.

    Article  PubMed  CAS  Google Scholar 

  2. Strata P, Scelfo B, Sacchetti B. Involvement of cerebellum in emotional behavior. Physiol Res. 2011;60(Suppl 1):S39–48.

    PubMed  Google Scholar 

  3. Strata P. The emotional cerebellum. Cerebellum. 2015;14(5):570–7. https://doi.org/10.1007/s12311-015-0649-9.

    Article  PubMed  Google Scholar 

  4. Stoodley CJ. The cerebellum and cognition: evidence from functional imaging studies. Cerebellum. 2012;11(2):352–65. https://doi.org/10.1007/s12311-011-0260-7.

    Article  PubMed  Google Scholar 

  5. Mouginot D, Gahwiler BH. Characterization of synaptic connections between cortex and deep nuclei of the rat cerebellum in vitro. Neuroscience. 1995;64(3):699–712. https://doi.org/10.1016/0306-4522(94)00456-F.

    Article  PubMed  CAS  Google Scholar 

  6. Teune TM, Van der BJ, de Zeeuw CI, Voogd J, Ruigrok TJ. Single Purkinje cell can innervate multiple classes of projection neurons in the cerebellar nuclei of the rat: a light microscopic and ultrastructural triple-tracer study in the rat. J Comp Neurol. 1998;392(2):164–78. https://doi.org/10.1002/(SICI)1096-9861(19980309)392:2<164::AID-CNE2>3.0.CO;2-0.

    Article  PubMed  CAS  Google Scholar 

  7. Han VZ, Magnus G, Zhang Y, Wei AD, Turner EE. Bidirectional modulation of deep cerebellar nuclear cells revealed by optogenetic manipulation of inhibitory inputs from Purkinje cells. Neuroscience. 2014;277:250–66. https://doi.org/10.1016/j.neuroscience.2014.07.006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Aizenman CD, Manis PB, Linden DJ. Polarity of long-term synaptic gain change is related to postsynaptic spike firing at a cerebellar inhibitory synapse. Neuron. 1998;21(4):827–35. https://doi.org/10.1016/S0896-6273(00)80598-X.

    Article  PubMed  CAS  Google Scholar 

  9. Anchisi D, Scelfo B, Tempia F. Postsynaptic currents in deep cerebellar nuclei. J Neurophysiol. 2001;85(1):323–31. https://doi.org/10.1152/jn.2001.85.1.323.

    Article  PubMed  CAS  Google Scholar 

  10. Sugihara I. Compartmentalization of the deep cerebellar nuclei based on afferent projections and aldolase C expression. Cerebellum. 2011;10(3):449–63. https://doi.org/10.1007/s12311-010-0226-1.

    Article  PubMed  CAS  Google Scholar 

  11. Murano M, Saitow F, Suzuki H. Modulatory effects of serotonin on glutamatergic synaptic transmission and long-term depression in the deep cerebellar nuclei. Neuroscience. 2011;172:118–28. https://doi.org/10.1016/j.neuroscience.2010.10.037.

    Article  PubMed  CAS  Google Scholar 

  12. De Zeeuw CI, Berrebi AS. Postsynaptic targets of Purkinje cell terminals in the cerebellar and vestibular nuclei of the rat. Eur J Neurosci. 1995;7(11):2322–33. https://doi.org/10.1111/j.1460-9568.1995.tb00653.x.

    Article  PubMed  Google Scholar 

  13. Palkovits M, Mezey E, Hamori J, Szentagothai J. Quantitative histological analysis of the cerebellar nuclei in the cat. I. Numerical data on cells and on synapses. Exp Brain Res. 1977;28(1–2):189–209.

    PubMed  CAS  Google Scholar 

  14. Person AL, Raman IM. Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei. Nature. 2012;481:502–5. https://doi.org/10.1038/nature10732

  15. Morishita W, Sastry BR. Postsynaptic mechanisms underlying long-term depression of GABAergic transmission in neurons of the deep cerebellar nuclei. J Neurophysiol. 1996;76(1):59–68. https://doi.org/10.1152/jn.1996.76.1.59.

    Article  PubMed  CAS  Google Scholar 

  16. Sastry BR, Morishita W, Yip S, Shew T. GABA-ergic transmission in deep cerebellar nuclei. Prog Neurobiol. 1997;53(2):259–71. https://doi.org/10.1016/S0301-0082(97)00033-6.

    Article  PubMed  CAS  Google Scholar 

  17. Gauck V, Jaeger D. The contribution of NMDA and AMPA conductances to the control of spiking in neurons of the deep cerebellar nuclei. J Neurosci. 2003;23(22):8109–18.

    Article  PubMed  CAS  Google Scholar 

  18. Di Mauro M, Fretto G, Caldera M, Li Volsi G, Licata F, Ciranna L, et al. Noradrenaline and 5-hydroxytryptamine in cerebellar nuclei of the rat: functional effects on neuronal firing. Neurosci Lett. 2003;347(2):101–5. https://doi.org/10.1016/S0304-3940(03)00509-3.

    Article  PubMed  Google Scholar 

  19. Di Mauro M, Bronzi D, Li Volsi G, Licata F, Lombardo P, Santangelo F. Noradrenaline modulates neuronal responses to GABA in vestibular nuclei. Neuroscience. 2008;153(4):1320–31. https://doi.org/10.1016/j.neuroscience.2008.02.014.

    Article  PubMed  CAS  Google Scholar 

  20. Saitow F, Suzuki H. Role of 5-HT-induced modulation and inhibitory transmission in development of rat deep cerebellar nuclei neurons. Soc Neurosci Abst. 2008;37(12)

  21. Oostland M, van Hooft JA. The role of serotonin in cerebellar development. Neuroscience. 2013;248:201–12. https://doi.org/10.1016/j.neuroscience.2013.05.029.

    Article  PubMed  CAS  Google Scholar 

  22. Garin N, Escher G. The development of inhibitory synaptic specializations in the mouse deep cerebellar nuclei. Neuroscience. 2001;105(2):431–41. https://doi.org/10.1016/S0306-4522(01)00127-0.

    Article  PubMed  CAS  Google Scholar 

  23. Oostland M, Sellmeijer J, van Hooft JA. Transient expression of functional serotonin 5-HT3 receptors by glutamatergic granule cells in the early postnatal mouse cerebellum. J Physiol. 2011;589(20):4837–46. https://doi.org/10.1113/jphysiol.2011.217307.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Oostland M, Buijink MR, Teunisse GM, von Oerthel L, Smidt MP, van Hooft JA. Distinct temporal expression of 5-HT1A and 5-HT2A receptors on cerebellar granule cells in mice. Cerebellum. 2014;13(4):491–500. https://doi.org/10.1007/s12311-014-0565-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. McKay BE, Turner RW. Physiological and morphological development of the rat cerebellar Purkinje cell. J Physiol. 2005;567(3):829–50. https://doi.org/10.1113/jphysiol.2005.089383.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Saitow F, Murano M, Suzuki H. Modulatory effects of serotonin on GABAergic synaptic transmission and membrane properties in the deep cerebellar nuclei. J Neurophysiol. 2009;101(3):1361–74. https://doi.org/10.1152/jn.90750.2008.

    Article  PubMed  CAS  Google Scholar 

  27. Fujimura J, Nagano M, Suzuki H. Differential expression of GABAA receptor subunits in the distinct nuclei of the rat amygdala. Mol Brain Res. 2005;138(1):17–23. https://doi.org/10.1016/j.molbrainres.2005.03.013.

    Article  PubMed  CAS  Google Scholar 

  28. Kirischuk S, Juttner R, Grantyn R. Time-matched pre- and postsynaptic changes of GABAergic synaptic transmission in the developing mouse superior colliculus. J Physiol. 2005;563(3):795–807. https://doi.org/10.1113/jphysiol.2004.081216.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Pouzat C, Hestrin S. Development regulation of basket/stellate cell→Purkinje cell synapses in cerebellum. J Neurosci. 1997;17(23):9104–12.

    Article  PubMed  CAS  Google Scholar 

  30. Kirischuk S, Clements JD, Grantyn R. Presynaptic and postsynaptic mechanisms underlie paired pulse depression at single GABAergic boutons in rat collicular cultures. J Physiol. 2002;543(1):99–116. https://doi.org/10.1113/jphysiol.2002.021576.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Barberis A, Petrini EM, Cherubini E. Presynaptic source of quantal size variability at GABAergic synapses in rat hippocampal neurons in culture. Eur J Neurosci. 2004;20(7):1803–10. https://doi.org/10.1111/j.1460-9568.2004.03624.x.

    Article  PubMed  Google Scholar 

  32. Draguhn A, Heinemann U. Different mechanisms regulate IPSC kinetics in early postnatal and juvenile hippocampal granule cells. J Neurophysiol. 1996;76(6):3983–93. https://doi.org/10.1152/jn.1996.76.6.3983.

    Article  PubMed  CAS  Google Scholar 

  33. Yan XX, Ribak CE. Developmental expression of γ-aminobutyric acid transporters (GAT-1 and GAT-3) in the rat cerebellum: evidence for a transient presence of GAT-1 in Purkinje cells. Dev Brain Res. 1998;111(2):253–69. https://doi.org/10.1016/S0165-3806(98)00144-8.

    Article  CAS  Google Scholar 

  34. Minelli A, DeBiasi S, Brecha NC, Vitellaro Zuccarello L, Conti F. GAT-3, a high-affinity GABA plasma membrane transporter, is localized to astrocytic processes, and it is not confined to the vicinity of GABAergic synapses in the cerebral cortex. J Neurosci. 1996;16(19):6255–64.

    Article  PubMed  CAS  Google Scholar 

  35. Telgkamp P, Padgett DE, Ledoux VA, Woolley CS, Raman IM. Maintenance of high-frequency transmission at Purkinje to cerebellar nuclear synapses by spillover from boutons with multiple release sites. Neuron. 2004;41(1):113–26. https://doi.org/10.1016/S0896-6273(03)00802-X.

    Article  PubMed  CAS  Google Scholar 

  36. Arbilla S, Allen J, Wick A, Langer SZ. High affinity [3H]zolpidem binding in the rat brain: an imidazopyridine with agonist properties at central benzodiazepine receptors. Eur J Pharmacol. 1986;130(3):257–63. https://doi.org/10.1016/0014-2999(86)90276-1.

    Article  PubMed  CAS  Google Scholar 

  37. Pritchett DB, Seeburg PH. γ-Aminobutyric acid A receptor α5-subunit creates novel type II benzodiazepine receptor pharmacology. J Neurochem. 1990;54(5):1802–4. https://doi.org/10.1111/j.1471-4159.1990.tb01237.x.

    Article  PubMed  CAS  Google Scholar 

  38. Dunning DD, Hoover CL, Soltesz I, Smith MA, Dowd DK. GABAA receptor mediated miniature postsynaptic currents and α-subunit expression in developing cortical neurons. J Neurophysiol. 1999;82(6):3286–97. https://doi.org/10.1152/jn.1999.82.6.3286.

    Article  PubMed  CAS  Google Scholar 

  39. Heinen K, Bosman LWJ, Spijker S, van Pelt J, Smit AB, Voorn P, et al. GABAA receptor maturation in relation to eye opening in the rat visual cortex. Neuroscience. 2004;124(1):161–71. https://doi.org/10.1016/j.neuroscience.2003.11.004.

    Article  PubMed  CAS  Google Scholar 

  40. Uusisaari M, Obata K, Knöpfel T. Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei. J Neurophysiol. 2007;97(1):901–11. https://doi.org/10.1152/jn.00974.2006.

    Article  PubMed  CAS  Google Scholar 

  41. Uusisaari M, Knöpfel T. GlyT2+ neurons in the lateral cerebellar nucleus. Cerebellum. 2010;9(1):42–55. https://doi.org/10.1007/s12311-009-0137-1.

    Article  PubMed  Google Scholar 

  42. Uusisaari M, Knöpfel T. Functional classification of neurons in the mouse lateral cerebellar nuclei. Cerebellum. 2011;10(4):637–46. https://doi.org/10.1007/s12311-010-0240-3.

    Article  PubMed  CAS  Google Scholar 

  43. Mizutani H, Hori T, Takahashi T. 5-HT1B receptor-mediated presynaptic inhibition at the calyx of Held of immature rats. Eur J Neurosci. 2006;24(7):1946–54. https://doi.org/10.1111/j.1460-9568.2006.05063.x.

    Article  PubMed  Google Scholar 

  44. Voigt MM, Laurie DJ, Seeburg PH, Bach A. Molecular cloning and characterization of a rat brain cDNA encoding a 5-hydroxytryptamine1B receptor. EMBO J. 1991;10(13):4017–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Maroteaux L, Saudou F, Amlaiky N, Boschert U, Plassat JL, Hen R. Mouse 5HT1B serotonin receptor: cloning, functional expression, and localization in motor control centers. Proc Natl Acad Sci U S A. 1992;89(7):3020–4. https://doi.org/10.1073/pnas.89.7.3020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Boschert U, Amara DA, Segu L, Hen R. The mouse 5-hydroxytryptamine1B receptor is localized predominantly on axon terminals. Neuroscience. 1994;58(1):167–82. https://doi.org/10.1016/0306-4522(94)90164-3.

    Article  PubMed  CAS  Google Scholar 

  47. Cheetham CEJ, Fox K. Presynaptic development at L4 to L2/3 excitatory synapses follows different time courses in visual and somatosensory cortex. J Neurosci. 2010;30(38):12566–71. https://doi.org/10.1523/JNEUROSCI.2544-10.2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Frick A, Feldmeyer D, Sakmann B. Postnatal development of synaptic transmission in local networks of L5A pyramidal neurons in rat somatosensory cortex. J Physiol. 2007;585(1):103–16. https://doi.org/10.1113/jphysiol.2007.141788.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Vicini S, Ferguson C, Prybylowski K, Kralic J, Morrow AL, Homanics GE. GABAA receptor α1 subunit deletion prevents developmental changes of inhibitory synaptic currents in cerebellar neurons. J Neurosci. 2001;21(9):3009–16.

    Article  PubMed  CAS  Google Scholar 

  50. Baumann SW, Baur R, Sigel E. Subunit arrangement of γ-aminobutyric acid type A receptors. J Biol Chem. 2001;276(39):36275–80. https://doi.org/10.1074/jbc.M105240200.

    Article  PubMed  CAS  Google Scholar 

  51. Farrar SJ, Whiting PJ, Bonnert TP, McKernan RM. Stoichiometry of a ligand-gated ion channel determined by fluorescence energy transfer. J Biol Chem. 1999;274(15):10100–4. https://doi.org/10.1074/jbc.274.15.10100.

    Article  PubMed  CAS  Google Scholar 

  52. Fritschy JM, Paysan J, Enna A, Mohler H. Switch in the expression of rat GABAA-receptor subtypes during postnatal development: an immunohistochemical study. J Neurosci. 1994;14(9):5302–24.

    Article  PubMed  CAS  Google Scholar 

  53. Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G. GABAA receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience. 2000;101(4):815–50. https://doi.org/10.1016/S0306-4522(00)00442-5.

    Article  PubMed  CAS  Google Scholar 

  54. Fritschy JM, Benke D, Mertens S, Oertel WH, Bachi T, Mohler H. Five subtypes of type a gamma-aminobutyric acid receptors identified in neurons by double and triple immunofluorescence staining with subunit-specific antibodies. Proc Natl Acad Sci U S A. 1992;89(15):6726–30. https://doi.org/10.1073/pnas.89.15.6726.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Pedroarena CM, Kamphausen S. Glycinergic synaptic currents in the deep cerebellar nuclei. Neuropharmacology. 2008;54(5):784–95. https://doi.org/10.1016/j.neuropharm.2007.12.005.

    Article  PubMed  CAS  Google Scholar 

  56. Husson Z, Rousseau CV, Broll I, Zeilhofer HU, Dieudonné S. Differential GABAergic and glycinergic inputs of inhibitory interneurons and Purkinje cells to principal cells of the cerebellar nuclei. J Neurosci. 2014;34(28):9418–31. https://doi.org/10.1523/JNEUROSCI.0401-14.2014.

    Article  PubMed  CAS  Google Scholar 

  57. Shin SL, De Schutter E. Dynamic synchronization of Purkinje cell simple spikes. J Neurophysiol. 2006;96(6):3485–91. https://doi.org/10.1152/jn.00570.2006.

    Article  PubMed  Google Scholar 

  58. Pedroarena CM, Schwarz C. Efficacy and short-term plasticity at GABAergic synapses between Purkinje and cerebellar nuclei neurons. J Neurophysiol. 2003;89(2):704–15. https://doi.org/10.1152/jn.00558.2002.

    Article  PubMed  CAS  Google Scholar 

  59. Arancillo M, White JJ, Lin T, Stay TL, Sillitoe RV. In vivo analysis of Purkinje cell firing properties during postnatal mouse development. J Neurophysiol. 2015;113(2):578–91. https://doi.org/10.1152/jn.00586.2014.

    Article  PubMed  Google Scholar 

  60. Pugh JR, Raman IM. Potentiation of mossy fiber EPSCs in the cerebellar nuclei by NMDA receptor activation followed by postinhibitory rebound current. Neuron. 2006;51(1):113–23. https://doi.org/10.1016/j.neuron.2006.05.021.

    Article  PubMed  CAS  Google Scholar 

  61. Engbers JDT, Anderson D, Tadayonnejad R, Mehaffey WH, Molineux ML, Turner RW. Distinct roles for I T and I H in controlling the frequency and timing of rebound spike responses. J Physiol. 2011;589(22):5391–413. https://doi.org/10.1113/jphysiol.2011.215632.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Sari Y. Serotonin1B receptors: from protein to physiological function and behavior. Neurosci Biobehav Rev. 2004;28(6):565–82. https://doi.org/10.1016/j.neubiorev.2004.08.008.

    Article  PubMed  CAS  Google Scholar 

  63. Ho EV, Thompson SL, Katzka WR, Sharifi MF, Knowles JA, Dulawa SC. Clinically effective OCD treatment prevents 5-HT1B receptor-induced repetitive behavior and striatal activation. Psychopharmacol. 2016;233(1):57–70. https://doi.org/10.1007/s00213-015-4086-8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. K Kobayashi of Nippon Medical School for valuable discussions.

Funding

This work was supported by a Grant-in-Aid for Scientific Research (grant number 19500279) from the Japanese Ministry of Education, Science, Sports and Culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumihito Saitow.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Electronic Supplementary Material

ESM 1

(PDF 168 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saitow, F., Nagano, M. & Suzuki, H. Developmental Changes in Serotonergic Modulation of GABAergic Synaptic Transmission and Postsynaptic GABAA Receptor Composition in the Cerebellar Nuclei. Cerebellum 17, 346–358 (2018). https://doi.org/10.1007/s12311-018-0922-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-018-0922-9

Keywords

Navigation