Skip to main content
Log in

Engineering chimeric two-component system into Escherichia coli from Paracoccus denitrificans to sense methanol

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Escherichia coli does not have the methanol sensing apparatus, was engineered to sense methanol by employing chimeric two-component system (TCS) strategy. A chimeric FlhS/EnvZ (FlhSZ) chimeric histidine kinase (HK) was constructed by fusing the sensing domain of Paracoccus denitrificans FlhS with the catalytic domain of E. coli EnvZ. The constructed chimeric TCS FlhSZ/OmpR could sense methanol by the expression of ompC and gfp gene regulated by ompC promoter. Real-time quantitative PCR analysis and GFP-based fluorescence analysis showed the dynamic response of the chimeric TCS to methanol. The expression of ompC and the gfp fluorescence was maximum at 0.01 and 0.5% of methanol, respectively. These results suggested that E. coli was successfully engineered to sense methanol by the introduction of chimeric HK FlhSZ. This strategy can be employed for the construction of several chimeric TCS based bacterial biosensors for the development of biochemical producing recombinant microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. California Environmental Protection Agency (CalEPA) (1999) Air Toxics Hot Spots Program Risk Assessment Guidelines: Part III. Technical Support Document for the Determination of Noncancer Chronic Reference Exposure Levels. SRP Draft. Office of Environmental Health Hazard Assessment, Berkeley, CA.

    Google Scholar 

  2. Ed. Budavari, S. and N. Rahway (1989) The Merck Index. An Encyclopedia of Chemicals, Drugs, and Biologicals.

    Google Scholar 

  3. Stock, A. M., V. L. Robinson, and P. N. Goudreau (2000) Two-Component Signal Transduction. Annu. Rev. Biochem. 69: 183–215.

    Article  CAS  Google Scholar 

  4. West, A. H. and A. M. Stock (2001) Histidine kinases and response regulator proteins in two-component signaling systems. Trends in Biochem. Sci. 26: 369–376.

    Article  CAS  Google Scholar 

  5. Utsumi, R., R. Brissette, A. Rampersaud, S. Forst, K. Oosawa, and M. Inouye (1989) Activation of bacterial porin gene expression by a chimeric signal transducer in response to aspartate. Sci. 245: 1246–1249.

    Article  CAS  Google Scholar 

  6. Harms, N., W. N. M. Reijnders, S. Koning, and R. J. M. van Spanning (2001) Two-component system that regulates methanol and formaldehyde oxidation in Paracoccus denitrificans. J. Bacteriol. 183: 664–670.

    Article  CAS  Google Scholar 

  7. Harms, N., J. Ras, W. N. Reijnders, R. J. van Spanning, and A. H. Stouthamer (1996) S-formylglutathione hydrolase of Paracoccus denitrificans is homologous to human esterase D: A universal pathway for formaldehyde detoxification? J. Bacteriol. 178: 6296–6299.

    Article  CAS  Google Scholar 

  8. Ras, J., P. W. Van Ophem, W. N. Reijnders, R. J. Van Spanning, J. A. Duine, A. H. Stouthamer, and N. Harms (1995) Isolation, sequencing, and mutagenesis of the gene encoding NAD-and glutathione-dependent formaldehyde dehydrogenase (GDFALDH) from Paracoccus denitrificans, in which GD-FALDH is essential for methylotrophic growth. J. Bacteriol. 177: 247–251.

    Article  CAS  Google Scholar 

  9. Baslé, A., G. Rummel, P. Storici, J. P. Rosenbusch, and T. Schirmer (2006) Crystal structure of Osmoporin OmpC from E. coli at 2.0 Å. J. Mol. Biol. 362: 933–942.

    Article  Google Scholar 

  10. Eswar, N., B. Webb, M. A. Marti-Renom, M. S. Madhusudhan, D. Eramian, M. -Y. Shen, U. Pieper, and A. Sali (2007) Comparative protein structure modeling using MODELLER. Curr. Protoc. Protein Sci., John Wiley & Sons, Inc., City.

    Google Scholar 

  11. Bhattacharya, D. and J. Cheng (2013) 3Drefine: Consistent protein structure refinement by optimizing hydrogen bonding network and atomic-level energy minimization. Proteins 81: 119–131.

    Article  CAS  Google Scholar 

  12. Eleaume, H. and S. Jabbouri (2004) Comparison of two standardisation methods in real-time quantitative RT-PCR to follow Staphylococcus aureus genes expression during in vitro growth. J. Microbiol. Meth. 59: 363–370.

    Article  CAS  Google Scholar 

  13. Maruthamuthu, M., I. Ganesh, S. Ravikumar, and S. Hong (2015) Evaluation of zraP gene expression characteristics and construction of a lead (Pb) sensing and removal system in a recombinant Escherichia coli. Biotechnol. Lett. 37: 659–664.

    Article  CAS  Google Scholar 

  14. Mayson, B. E., D. J. Kilburn, B. L. Zamost, C. K. Raymond, and G. J. Lesnicki (2003) Effects of methanol concentration on expression levels of recombinant protein in fed-batch cultures of Pichia methanolica. Biotechnol. Bioeng. 81: 291–298.

    Article  CAS  Google Scholar 

  15. Ganesh, I., S. Ravikumar, I.-K. Yoo, and S. Hong (2015) Construction of malate-sensing Escherichia coli by introduction of a novel chimeric two-component system. Bioproc. Biosyst. Eng. 38: 797–804.

    Article  CAS  Google Scholar 

  16. Wen, G., X. Wen, S. Shuang, and M. M. F. Choi (2014) Wholecell biosensor for determination of methanol. Sensors and Actuators B: Chem. 201: 586–591.

    Article  CAS  Google Scholar 

  17. Zhao, C., H. Li, J. Sheng, L. Chen, F. Li, S. Yang, C. Dong, and M. M. F. Choi (2009) Isolation of a Methylobacterium organophilium strain, and its application to a methanol biosensor. Microchim. Acta 167: 67–73.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon Ho Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvamani, V., Ganesh, I., Maruthamuthu, M.k. et al. Engineering chimeric two-component system into Escherichia coli from Paracoccus denitrificans to sense methanol. Biotechnol Bioproc E 22, 225–230 (2017). https://doi.org/10.1007/s12257-016-0484-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-016-0484-y

Keywords

Navigation