Skip to main content
Log in

Quantification of Swelling Stress Induced Mechanical Property Reduction of Glass Fiber/Epoxy Composites Immersed in Aqueous 10% Sulphuric Acid by Instrumenting with Distributed Optical Fiber Sensors

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Glass fiber/epoxy (GF/E) composites are being extensively scaled-up as anti-corrosion materials in chemical industries because of the relatively low-cost, and are easy to manufacture. Nonetheless, Glass fiber/epoxy composites are not entirely immune to corrosion when exposed to dilute acidic solutions due to the reduction in mechanical strength caused by swelling, which adversely affects the structural integrity. Mathematical correlations quantifying the stress and mechanical property reduction with the time of exposure are a tool to design the service life. The composite structure has been monitored throughout its service life in the present study, by instrumenting the GF/E composite with distributed optical fiber sensors (DOFS). The instrumented composites along with test specimens are aged in aqueous 10 % sulphuric acid environment at room temperature to measure the mechanical properties and weight gain due to the transport of the acidic medium. The strain evolution with the time of exposure is recorded by processing the signals received from the DOFS. The experimental gravimetric data are fitted into the Langmuir model, and the model parameters such as diffusivity (D), β and γ are evaluated. Finally, mathematical correlations developed by quantifying the stress and reduction in mechanical properties with exposure time can be used to determine the mechanical health of GF/E composite structure exposed to sulphuric acid solutions. The changes in the microstructure of GF/E composites is also investigated using field emission-scanning electron microscope (FE-SEM). The technique of instrumenting the GF/E composites by embedding it in the composite structure during the fabrication process is also developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Q. Liu, X. Liu, and P. Feng, Compos. Part B Eng., 191, 107958 (2020).

    Article  CAS  Google Scholar 

  2. S. Mohanta, Y. Padarthi, S. Chokkapu, J. Gupta, and S. Neogi, J. Compos. Mater., 54, 3143 (2020).

    Article  Google Scholar 

  3. H. Li, K. Zhang, X. Fan, H. Cheng, G. Xu, and H. Suo, Compos. Part B Eng., 173, 106910 (2019).

    Article  CAS  Google Scholar 

  4. J. M. Sousa, J. R. Correia, J. Gonilha, S. Cabral-Fonseca, J. P. Firmo, and T. Keller, Compos. Part B Eng., 158, 475 (2019).

    Article  CAS  Google Scholar 

  5. M. Kusano, T. Kanai, Y. Arao, and M. Kubouchi, Eng. Fail. Anal., 79, 971 (2017).

    Article  CAS  Google Scholar 

  6. L. Grassia, M. Iannone, A. Califano, and A. D’Amore, Compos. Part B Eng., 176, 107253 (2019).

    Article  Google Scholar 

  7. D. K. Jesthi and R. K. Nayak, Compos. Part B Eng., 174, 106980 (2019).

    Article  Google Scholar 

  8. T. Jeannin, M. Berges, X. Gabrion, R. Léger, V. Person, S. Corn, B. Piezel, P. Ienny, S. Fontaine, and V. Placet, Compos. Part B Eng., 174, 107056 (2019).

    Article  CAS  Google Scholar 

  9. S. I. Takeda, T. Tsukada, S. Sugimoto, and Y. Iwahori, Compos. Part A Appl. Sci. Manuf., 61, 163 (2014).

    Article  CAS  Google Scholar 

  10. M. R. VanLandingham, R. F. Eduljee, and J. W. Gillespie, J. Appl. Polym. Sci., 71, 787 (1999).

    Article  CAS  Google Scholar 

  11. M. Amini and A. Khavandi, Mech. Time-Dependent Mater., 23, 153 (2019).

    Article  CAS  Google Scholar 

  12. A. M. Amaro, P. N. B. Reis, M. A. Neto, and C. Louro, Polym. Degrad. Stab., 98, 853 (2013).

    Article  CAS  Google Scholar 

  13. J. S. K. Lim, C. L. Gan, and X. M. Hu, ACS Omega, 4, 10799 (2019).

    Article  CAS  Google Scholar 

  14. M. K. Mahmoud and S. H. Tantawi, Polym.-Plast. Technol. Eng., 42, 677 (2003).

    Article  CAS  Google Scholar 

  15. L. Vertuccio, L. Guadagno, G. Spinelli, P. Lamberti, V. Tucci, and S. Russo, Compos. Part B Eng., 107, 192 (2016).

    Article  CAS  Google Scholar 

  16. M. Saeedifar and D. Zarouchas, Compos. Part B Eng., 195, 108039 (2020).

    Article  CAS  Google Scholar 

  17. S. Mohanta, Y. Padarthi, J. Gupta, and S. Neogi, Fiber. Polym., 21, 2614 (2020).

    Article  CAS  Google Scholar 

  18. H. Zhou, Z. Wang, W. Zhao, X. Tong, X. Jin, X. Zhang, Y. Yu, H. Liu, Y. Ma, S. Li, and W. Chen, Chem. Eng. J., 403, 126307 (2021).

    Article  CAS  Google Scholar 

  19. Z. Liu, K. Chen, A. Fernando, Y. Gao, G. Li, L. Jin, H. Zhai, Y. Yi, L. Xu, Y. Zheng, H. Li, Y. Fan, Y. Li, and Z. Zheng, Chem. Eng. J., 403, 126191 (2021).

    Article  CAS  Google Scholar 

  20. K. Li, J. Sensors, 2016, 1903792 (2016).

    Google Scholar 

  21. A. H. Hartog, “An Introduction to Distributed Optical Fibre Sensors”, CRC Press, 2017.

  22. S. H. Eum, K. Kageyama, H. Murayama, K. Uzawa, I. Ohsawa, M. Kanai, S. Kobayashi, H. Igawa, and T. Shirai, Smart Mater. Struct., 16, 2627 (2007).

    Article  Google Scholar 

  23. Z. Ding, C. Wang, K. Liu, J. Jiang, D. Yang, G. Pan, Z. Pu, and T. Liu, Sensors (Switzerland), 18, 1 (2018).

    CAS  Google Scholar 

  24. C. M. Bellot, M. Sangermano, M. Olivero, and M. Salvo, Materials (Basel), 12, 379 (2019).

    Article  CAS  Google Scholar 

  25. K. Yuksel, M. Wuilpart, V. Moeyaert, and P. Mégret, “11th International Conference on Transparent Optical Networks”, IEEE, pp.1–5, 2009.

  26. P. K. Mungamurugu, P. Marru, H. H. Sardar, and S. Neogi, Fiber. Polym., 18, 122 (2017).

    Article  CAS  Google Scholar 

  27. V. A. Chatterjee, S. K. Verma, D. Bhattacharjee, I. Biswas, and S. Neogi, Chem. Eng. J., 406, 127102 (2020).

    Article  Google Scholar 

  28. J. M. Zhou and J. P. Lucas, Polymer (Guildf), 40, 5505 (1999).

    Article  CAS  Google Scholar 

  29. M. Garg, S. Sharma, and R. Mehta, J. Mater. Sci., 51, 8562 (2016).

    Article  CAS  Google Scholar 

  30. D. Kotnarowska, Prog. Org. Coatings, 37, 149 (1999).

    Article  CAS  Google Scholar 

  31. Y. Padarthi, S. Mohanta, J. Gupta, and S. Neogi, Polym. Degrad. Stab., 183, 109436 (2020).

    Article  Google Scholar 

  32. H. G. Carter and K. G. Kibler, J. Compos. Mater., 12, 118 (1978).

    Article  Google Scholar 

  33. K. Singh, J. S. Saini, H. Bhunia, and S. R. Chowdhury, J. Compos. Mater., 53, 3875 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to the Institute of Engineering and Ocean Technology (IEOT), ONGC through research project number OCA-NT 694187 for financial support. The work benefits from many helpful discussions with Mr Anil K. Bhardwaj and Mr P K Borghate, IEOT, ONGC. Also, the authors acknowledge the technical staffs of Composite Application Laboratory, Department of Chemical Engineering, Indian Institute of Technology, Kharagpur for their technical support delivered during the execution of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Neogi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padarthi, Y., Mohanta, S., Gupta, J. et al. Quantification of Swelling Stress Induced Mechanical Property Reduction of Glass Fiber/Epoxy Composites Immersed in Aqueous 10% Sulphuric Acid by Instrumenting with Distributed Optical Fiber Sensors. Fibers Polym 23, 212–221 (2022). https://doi.org/10.1007/s12221-021-0317-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0317-2

Keywords

Navigation