Skip to main content
Log in

Effect of Geometry Configuration on the Merged Droplet Formation in a Double T-Junction

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The merged droplets have great practical application value in protein synthesis and crystallization. In this paper, the effect of geometry configuration on the merged droplet formation in a double T-junction microchannel is studied by three-dimensional numerical simulation using the level-set method. There are three important parameters in the geometry configuration of the microchannel, namely angle between two phases (α), height-to-width ratio (Ʌ = H/wc), and intersection width ratio (Γ = wd/wc). In this study we found that a critical value of the two-phase angle is 60°. When the angle is 60°, the effective diameter of the merged droplet is the smallest and the generation frequency is the fastest under the same physical condition. We found that height-to-width ratio and intersection width ratio have a critical value of 1.0. When height-to-width ratio or intersection width ratio is 1.0, the shearing capacity of the continuous relative dispersed phase reaches a maximum, thus the droplet diameter is minimized and the frequency is the fastest. Therefore, reasonable adjustment of these three factors is an effective method to solve the problem of the high-throughput monodisperse merged droplet formation. This work lays a solid theoretical foundation for the merged droplets in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Anna, S.L.: Droplets and bubbles in microfluidic devices[J]. Annu. Rev. Fluid Mech. 48, 285–309 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Arias, S., Montlaur, A.: Influence of contact angle boundary condition on CFD simulation of T-junction[J]. Microgravity Sci Technol. 30(4), 435–443 (2018)

    Article  Google Scholar 

  • Brandenbourger, M., Caps, H., Vitry, Y., Dorbolo, S.: Electrically charged droplets in microgravity[J]. Microgravity Sci Technol. 29(3), 229–239 (2017)

    Article  Google Scholar 

  • Chen, X., Li, T.: A novel passive micromixer designed by applying an optimization algorithm to the zigzag microchannel[J]. Chem. Eng. J. 313, 1406–1414 (2017)

    Article  Google Scholar 

  • Chen, X., Zhao, Z.: Numerical investigation on layout optimization of obstacles in a three-dimensional passive micromixer[J]. Anal. Chim. Acta. 964, 142–149 (2017)

    Article  Google Scholar 

  • Chen, X., Li, T., Zeng, H., Hu, Z., Fu, B.: Numerical and experimental investigation on micromixers with serpentine microchannels[J]. Int. J. Heat Mass Transf. 98, 131–140 (2016)

    Article  Google Scholar 

  • Chen, X., Ding, Z., Liu, R.: Spreading of annular droplets on a horizontal fiber[J]. Microgravity Sci Technol. 1–11 (2018)

  • Dubois, P., Marchand, G., Fouillet, Y., Berthier, J., Douki, T., Hassine, F., Gmouh, S., Vaultier, M.: Ionic liquid droplet as e-microreactor[J]. Anal. Chem. 78(14), 4909–4917 (2006)

    Article  Google Scholar 

  • Fu, H., Zeng, W., Li, S.: Quantitative study of the production rate of droplets in a T-junction microdroplet generator[J]. J. Micromech. Microeng. 27(12), 125020 (2017)

    Article  Google Scholar 

  • Han, W., Chen, X.: Numerical simulation of the droplet formation in a T-junction microchannel by a level-set method[J]. Aust. J. Chem. 71, 957 (2018)

    Article  Google Scholar 

  • Han, W., Chen, X.: Nano-electrokinetic ion enrichment in a micro-nanofluidic preconcentrator with nanochannel’s cantor fractal wall structure[J]. Appl. Nanosci. (2019a). https://doi.org/10.1007/s13204-019-01049-7

    Article  MathSciNet  Google Scholar 

  • Han, W., Chen, X.: New insights into the pressure during the merged droplet formation in the squeezing time[J]. Chem. Eng. Res. Des. 145, 213–225 (2019b)

    Article  Google Scholar 

  • Han, W., Chen, X., Hu, Z., et al.: Three-dimensional numerical simulation of a droplet generation in a double T-junction microchannel[J]. J. micro-nanolith. MEM.17(2), 025502 (2018)

    Article  Google Scholar 

  • Hung, L.H., Choi, K.M., Tseng, W.Y., Tan, Y.C., Shea, K.J., Lee, A.P.: Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis[J]. Lab Chip. 6(2), 174–178 (2006)

    Article  Google Scholar 

  • Jung, W., Han, J., Choi, J.W., Ahn, C.H.: Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies[J]. Microelectron. Eng. 132, 46–57 (2015)

    Article  Google Scholar 

  • Kim, J., Taylor, D., Agrawal, N., Wang, H., Kim, H., Han, A., Rege, K., Jayaraman, A.: A programmable microfluidic cell array for combinatorial drug screening[J]. Lab Chip. 12(10), 1813–1822 (2012)

    Article  Google Scholar 

  • Mao, S., Zhang, W., Huang, Q., Khan, M., Li, H., Uchiyama, K., Lin, J.M.: In situ Scatheless cell detachment reveals correlation between adhesion strength and viability at single-cell resolution[J]. Angew. Chem. Int. Ed. 57(1), 236–240 (2018)

    Article  Google Scholar 

  • Martino, C.: Droplet-based microfluidics for artificial cell generation: a brief review[J]. Interface Focus. 6(4), 20160011 (2016)

    Article  Google Scholar 

  • Mukhopadhyay, S.: Experimental investigations on the interactions between liquids and structures to passively control the surface-driven capillary flow in microfluidic lab-on-a-chip systems to separate the microparticles for bioengineering applications[J]. Surf. Rev. Lett. 24(06), 1750075 (2017)

    Article  Google Scholar 

  • Ngo, I.L., Dang, T.D., Byon, C., Joo, S.W.: A numerical study on the dynamics of droplet formation in a microfluidic double T-junction[J]. Biomicrofluidics. 9(2), 024107 (2015)

    Article  Google Scholar 

  • Nie, Z., Li, W., Seo, M., Xu, S., Kumacheva, E.: Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly[J]. J. Am. Chem. Soc. 128(29), 9408–9412 (2006)

    Article  Google Scholar 

  • Olsson, E., Kreiss, G.: A conservative level set method for two phase flow[J]. J. Comput. Phys. 210(1), 225–246 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Olsson, E., Kreiss, G., Zahedi, S.: A conservative level set method for two phase flow II[J]. J. Comput. Phys. 225(1), 785–807 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Rao, L., Cai, B., Yu, X.L., Guo, S.S., Liu, W., Zhao, X.Z.: One-step fabrication of 3D silver paste electrodes into microfluidic devices for enhanced droplet-based cell sorting[J]. AIP Adv. 5(5), 057134 (2015)

    Article  Google Scholar 

  • Saqib, M., Şahinoğlu, O.B., Erdem, E.Y.: Alternating droplet formation by using Tapered Channel geometry[J]. Sci. Rep. 8(1), 1606 (2018)

    Article  Google Scholar 

  • Sesen, M., Alan, T., Neild, A.: Droplet control technologies for microfluidic high throughput screening (μHTS) [J]. Lab Chip. 17(14), 2372–2394 (2017)

    Article  Google Scholar 

  • Shang, L., Cheng, Y., Zhao, Y.: Emerging droplet microfluidics[J]. Chem. Rev. 117(12), 7964–8040 (2017)

    Article  Google Scholar 

  • Sun, L., Fan, M., Li, P., Yu, H., Zhang, Y., Xu, J., Jiang, W., Qian, S., Sun, G.: Microbubble characteristic in a T-junction microchannel in microfluidic chip[J]. Mol. Phys. 1–11 (2019)

  • Surya, H.P.N., Parayil, S., Banerjee, U., Chander, S., Sen, A.K.: Alternating and merged droplets in a double T-junction microchannel[J]. BioChip J. 9(1), 16–26 (2015)

    Article  Google Scholar 

  • Szymborski, T., Korczyk, P.M., Hołyst, R., Garstecki, P.: Ionic polarization of liquid-liquid interfaces; dynamic control of the rate of electro-coalescence[J]. Appl. Phys. Lett. 99(9), 094101 (2011)

    Article  Google Scholar 

  • Thorsen, T., Roberts, R.W., Arnold, F.H., Quake, S.R.: Dynamic pattern formation in a vesicle-generating microfluidic device[J]. Phys. Rev. Lett. 86(18), 4163–4166 (2001)

    Article  Google Scholar 

  • Wang, K., Qin, K., Lu, Y., Luo, G., Wang, T.: Gas/liquid/liquid three-phase flow patterns and bubble/droplet size laws in a double T-junction microchannel[J]. AICHE J. 61(5), 1722–1734 (2015)

    Article  Google Scholar 

  • Wong, V.L., Loizou, K., Lau, P.L., Graham, R.S., Hewakandamby, B.N.: Numerical studies of shear-thinning droplet formation in a microfluidic T-junction using two-phase level-SET method[J]. Chem. Eng. Sci. 174, 157–173 (2017)

    Article  Google Scholar 

  • Yan, Y., Guo, D., Wen, S.Z.: Numerical simulation of junction point pressure during droplet formation in a microfluidic T-junction[J]. Chem. Eng. Sci. 84, 591–601 (2012)

    Article  Google Scholar 

  • Yang, L., Li, S., Liu, J., Cheng, J.: Fluid mixing in droplet-based microfluidics with T junction and convergent–divergent sinusoidal microchannels[J]. Electrophoresis. 39(3), 512–520 (2018)

    Article  Google Scholar 

  • Yeo, L.Y., Friend, J.R.: Surface acoustic wave microfluidics[J]. Annu. Rev. Fluid Mech. 46, 379–406 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, Y., Nguyen, N.T.: Magnetic digital microfluidics–a review[J]. Lab Chip. 17(6), 994–1008 (2017)

    Article  Google Scholar 

  • Zhang, Y., Zuo, P., Ye, B.C.: A low-cost and simple paper-based microfluidic device for simultaneous multiplex determination of different types of chemical contaminants in food[J]. Biosens. Bioelectron. 68, 14–19 (2015a)

    Article  Google Scholar 

  • Zhang, M.Y., Zhao, H., Xu, J.H., Luo, G.S.: Controlled coalescence of two immiscible droplets for Janus emulsions in a microfluidic device[J]. RSC Adv. 5(41), 32768–32774 (2015b)

    Article  Google Scholar 

  • Zhao, S.P., Ma, Y., Lou, Q., Zhu, H., Yang, B., Fang, Q.: Three-dimensional cell culture and drug testing in a microfluidic sidewall-attached droplet Array[J]. Anal. Chem. 89(19), 10153–10157 (2017)

    Article  Google Scholar 

  • Zheng, B., Tice, J.D., Ismagilov, R.F.: Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays[J]. Anal. Chem. 76(17), 4977–4982 (2004)

    Article  Google Scholar 

  • Zhu, P., Wang, L.: Passive and active droplet generation with microfluidics: a review[J]. Lab Chip. 17(1), 34–75 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Liaoning Natural Science Foundation (2019), The Key Project of Department of Education of Liaoning Province (JZL201715401), Liaoning BaiQianWan Talents Program. We sincerely thank Prof. Chong Liu for his kind guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueye Chen.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, W., Chen, X. Effect of Geometry Configuration on the Merged Droplet Formation in a Double T-Junction. Microgravity Sci. Technol. 31, 855–864 (2019). https://doi.org/10.1007/s12217-019-09720-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-019-09720-y

Keywords

Navigation