Skip to main content
Log in

Effects of the cell and triangular microwell size on the cell-trapping efficacy and specificity

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

The single-, double- or multiple-cell entrapment efficacy is crucial in various aspects of biological studies. In this study, both computational and experimental approaches were conducted to explore the effect of the cell and microwell sizes on the ability of cell-trapping in a triangular microwell. From computational studies, it was found that the interaction between a spanwise vortex on the upper part and counter-rotating streamwise vortices at the leading edge helped to form a pair of secondary streamwise vortices deeper inside the microwell. The strength and size of these secondary streamwise vortices, which depended on the size of the microwell, played an important role in the arrangement of entrapped cells. The experimental results, with both microbeads and white blood cells (WBCs), were in good agreement with the simulated ones, and suggested that the ratio between the cell and microwell sizes was an important factor in the efficacy of single-, double- and multiple-cell cell-trapping. Entrapment of canine WBCs (size distribution between 7–15 µm) attained a highest single-cell trapping efficiency of 20.4 % in the array of 40-µm triangular microwells of 30 µm depth at a flow rate of 0.1 mL/h, but this was reduced to 16.5 and 10.6 % in the 60- and 80-µm microwells, respectively, under the same conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Yin and D. Marshall, Microfluidics for single cell analysis, Curr. Opin. Biotechnol., 23 (1) (2012) 110–119.

    Google Scholar 

  2. A. Marusyk, V. Almendro and K. Polyak, Intra-tumour heterogeneity: a looking glass for cancer?, Nat. Rev. Cancer, 12 (5) (2012) 323–334.

    Google Scholar 

  3. D. Pappas, Microfluidics and cancer analysis: cell separation, cell/tissue culture, cell mechanics, and integrated analysis systems, Analyst, 141, (2016) 525–535.

    Google Scholar 

  4. Q. Huang, S. Mao, M. Khan and J. M. Lin, Single-cell assay on microfluidic devices, Analyst, 144, (2019) 808–823.

    Google Scholar 

  5. J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. Schueller and G. M. Whitesides, Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis, 21, (2000) 27–40.

    Google Scholar 

  6. A. R. Wheeler, W. R. Throndset, R. J. Whelan, A. M. Leach, R. N. Zare, Y. H. Liao, K. Farrell, I. D. Manger and A. Daridon, Microfluidic device for single-cell analysis, Anal. Chem., 75, (2003) 3581–3586.

    Google Scholar 

  7. T. C. Chao and A. Ros, Microfluidic single-cell analysis of intracellular compounds, J. R. Soc. Interface, 5, (2008) 139–150.

    Google Scholar 

  8. F. Fritzsch, C. Dusny, O. Frick and A. Schmid, Single-cell analysis in biotechnology, systems biology, and biocatalysis, Annu. Rev. Chem. Biomol. Eng., 3, (2012) 129–155.

    Google Scholar 

  9. M. Xavier, R. Oreffo and H. Morgan, Skeletal stem cell isolation: A review on the state-of-the-art microfluidic labelfree sorting techniques, Biotechnol., 34, (2016) 908–923.

    Google Scholar 

  10. B. Viswanath and S. Kim, Recent insights into the development of nanotechnology to detect circulating tumor cells, Trends Analy. Chem., 82, (2016) 191–198.

    Google Scholar 

  11. M. Antfolk, S. H. Kim, S. Koizumi, T. Fujii and T. Laurell, Label-free single-cell separation and imaging of cancer cells using an integrated microfluidic system, Sci. Rep., 7 (2017) 46507.

    Google Scholar 

  12. V. Narayanamurthy, S. Nagarajan, A. Khan, F. Samsuri and T. M. Sridhar, Microfluidic hydrodynamic trapping for single cell analysis: Mechanisms, methods and applications, Anal. Methods, 9, (2017) 3751–3772.

    Google Scholar 

  13. T. W. Murphy, Q. Zhang, L. B. Naler, S. Ma and C. Lu, Recent advances in the use of microfluidic technologies for single cell analysis, Analyst, 143, (2018) 60–80.

    Google Scholar 

  14. A. A. Khalili, M. R. Ahmad, M. Takeuchi, M. Nakajima, Y. Hasegawa and R. M. Zulkifli, A microfluidic device for hydrodynamic trapping and manipulation platform of a single biological cell, Appl. Sci., 6 (2016) Doi: 10.3390/app6020040.

    Google Scholar 

  15. D. Di Carlo, N. Aghdam and L. P. Lee, Single-cell enzyme concentrations, kinetics, and inhibition analysis using highdensity hydrodynamic cell isolation arrays, Anal. Chem., 78 (14) (2006) 4925–4930.

    Google Scholar 

  16. D. Di Carlo, L. Y. Wu and L. P. Lee, Dynamic single cell culture array, Lab Chip, 6 (11) (2006) 1445–1449.

    Google Scholar 

  17. W. H. Tan and S. Takeuchi, Dynamic microarray system with gentle retrieval mechanism for cell-encapsulating hydrogel beads, Lab Chip, 8, (2008) 259–266.

    Google Scholar 

  18. K. Chung, C. A. Rivet, M. L. Kemp and H. Lu, Imaging single-cell signaling dynamics with a deterministic highdensity single-cell trap array, Anal. Chem., 83 (18) (2011) 7044–7052.

    Google Scholar 

  19. A. Benavente-Babace, D. Gallego-Pérez, D. J. Hansford, S. Arana, E. Pérez-Lorenzo and M. Mujika, Single-cell trapping and selective treatment via co-flow within a microfluidic platform, Biosens. Bioelectron., 61, (2014) 298–305.

    Google Scholar 

  20. D. Jin, B. Deng, J. X. Li, W. Cai, L. Tu, J. Chen, Q. Wu and W. H. Wang, A microfluidic device enabling highefficiency single cell trapping, Biomicrofluidics, 9 (2015) 014101.

    Google Scholar 

  21. Y. Kazayama, T. Teshima, T. Osaki, S. Takeuchi and T. Toyota, Integrated microfluidic system for size-based selection and trapping of giant vesicles, Anal. Chem., 88 (2016) 1111–1116.

    Google Scholar 

  22. L. Zhao, C. Ma, S. Shen, C. Tian, J. Xu, Q. Tu, T. Li, Y. Wang and J. Wang, Pneumatic microfluidics-based multiplex single-cell array, Biosens. Bioelectron., 78, (2016) 423–430.

    Google Scholar 

  23. M. Yu, Z. Chen, C. Xiang, B. Liu, H. Xie and K. Qin, Microfluidic- based single cell trapping using a combination of stagnation point flow and physical barrier, Acta. Mech. Sin., 32, (2016) 422–429.

    Google Scholar 

  24. Y. Zhou, S. Basu, K. Wohlfahrt, S. Lee, D. Klenerman, E. Laue and A. Seshia, A microfluidic platform for trapping, releasing and super-resolution imaging of single cells, Sensors Actuators B, 232, (2016) 680–691.

    Google Scholar 

  25. M. Sauzade and E. Brouzes, Deterministic trapping, encapsulation and retrieval of single-cells, Lab Chip, 17, (2017) 2186–2192.

    Google Scholar 

  26. J. Avesar, T. B. Arye and S. Levenberg, Frontier microfluidic techniques for short and long-term single cell analysis, Lab Chip, 14, (2014) 2161–2167.

    Google Scholar 

  27. H. Chen, J. Sun, E. Wolvetang and J. Cooper-White, Highthroughput deterministic single cell trapping and long-term clonal cell culture in microfluidic devices, Lab Chip, 15, (2015) 1072–1083.

    Google Scholar 

  28. C. Luo, X. Zhu, T. Yu, X. Luo, Q. Quyang, H. Ji and Y. Chen, A fast cell loading and high-throughput microfluidic system for long-term cell culture in zero-flow environments, Biotech. Bioeng., 101 (1) (2008) 190–195.

    Google Scholar 

  29. J. R. Rettig and A. Folch, Large-scale single-cell trapping and imaging using microwell arrays, Anal. Chem., 77 (2005) 5628–5634.

    Google Scholar 

  30. Y. Tokimitsu, H. Kishi, S. Kondo, R. Honda, K. Tajiri, K. Motoki, T. Ozawa, S. Kadowaki, T. Obata, S. Fujiki, C. Tateno, H. Takaishi, K. Chayama, K. Yoshizato, E. Tamiya, T. Sugiyama and A. Muraguchi, Single lymphocyte analysis with a microwell array chip, Cytometry Part A, 71, (2007) 1003–1010.

    Google Scholar 

  31. C. Tu, B. Huang, J. Zhou, Y. Liang, J. Tian, L. Ji, X. Liang and Z. Ye, A microfluidic chip for cell patterning utilizing paired microwells and protein patterns, Micromachines, 8 (2017) Doi: 10.3390/mi8010001.

    Google Scholar 

  32. A. Khademhosseini, L. Ferreira, J. Blumling III, J. Yeh, J. M. Karp, J. Fukuda and R. Langer, Co-culture of human embryonic stem cells with murine embryonic fibroblasts on microwell-patterned substrates, Biomaterials, 27, (2006) 5968–5977.

    Google Scholar 

  33. H. C. Moeller, M. K. Mian, S. Shrivastava, B. G. Chung and A. Khademhosseini, A microwell array system for stem cell culture, Biomaterials, 29, (2008) 752–763.

    Google Scholar 

  34. A. Manbachi, S. Shrivastava, M. Cioffi, B. G. Chung, M. Moretti, U. Demirci, M. Yliperttula and A. Khademhosseini, Microcirculation within grooved substrates regulates cell positioning and cell docking inside microfluidic channels, Lab Chip, 8 (5) (2008) 747–754.

    Google Scholar 

  35. Y. Y. Choi, B. G. Chung, D. H. Lee, A. Khademhosseini, J. H. Kim and S. H. Lee, Controlled-size embryoid body formation in concave microwell arrays, Biomaterials, 31, (2010) 4296–4303.

    Google Scholar 

  36. J. Y. Park, M. Morgan, A. N. Sachs, J. Samorezov, R. Teller, Y. Shen, K. J. Pienta and S. Takayama, Single cell trapping in larger microwells capable of supporting cell spreading and proliferation, Microfluid. Nanofluid., 8, (2010) 263–268.

    Google Scholar 

  37. C. P. Jen, J. H. Hsiao and N. A. Maslov, Single-cell chemical lysis on microfluidic chips with arrays of microwells, Sensors, 12, (2012) 347–358.

    Google Scholar 

  38. K. Nakazawa, Y. Yoshiura, H. Koga and Y. Sakai, Characterization of mouse embryoid bodies cultured on microwell chips with different well sizes, J. Biosci. Bioeng., 116 (5) (2013) 628–633.

    Google Scholar 

  39. A. Karimi, S. Yazdi and A. M. Ardekani, Hydrodynamic mechanisms of cell and particle trapping in microfluidics, Biomicrofluidics, 7 (2013) 021501.

    Google Scholar 

  40. L. Huang, Y. Chen, Y. Chen and H. Wu, Centrifugation-Assisted single-cell trapping in a truncated cone-shaped microwell array chip for the real-time observation of cellular apoptosis, Anal. Chem., 87 (2015) 12169–12176.

    Google Scholar 

  41. J. Park, M. Müller, J. Kim and H. Seidel, Fabrication of a cell-adhesive microwell array for 3-dimensional in vitro cell model, Biomed. Eng. Lett., 5 (2015) 140–146.

    Google Scholar 

  42. T. Tongmanee, A. Pimpin, W. Srituravanich, D. Ketpun, A. Sailasuta, P. Piyaviriyakul, W. Jeamsaksiri and W. Sripumkhai, Development of a triangular microwell for single cell trapping- computational study, IEEE BMEiCON 2015, Thailand (2015) 978-1-4673-9158-0/15.

  43. A. Hattori, T. Yagi and C. W. Tsao, Encapsulation of single cells into fixed droplets using triangular microwells, Electron. Commun Jpn., 99 (2) (2016) 55–63.

    Google Scholar 

  44. T. Takahashi, T. Kadosawa, M. Nagase, M. Mochizuki, S. Matsunaga, R. Nishimura and N. Sasaki, Inhibitory effects of glucocorticoids on proliferation of canine mast cell tumor, J. Vet. Med. Sci., 59 (11) (1997) 995–1001.

    Google Scholar 

Download references

Acknowledgments

Financial support was received through Chulalongkorn Academic Advancement into its 2nd Century Project (Smart Medical Device & 3D Printing for Product Development). T.T. was a Graduate Research Fellow (The 90th Anniversary of Chulalongkorn University Fund). The authors would like to thank Dr. Mayuree Chanasakulniyom and Dr. Dettachai Ketpun for their helpful assistance. Dr. Takayuki Nakagawa (The University of Tokyo) provided cell line in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alongkorn Pimpin.

Additional information

Recommended by Associate Editor Sung-Jin Kim

Alongkorn Pimpin is an Associate Professor in Mechanical Engineering at Faculty of Engineering, Chulalongkorn University. He received his M.Eng. degree in Mechanical Engineering from Chulalongkorn University and D.Eng. degree in Mechanical Engineering from The University of Tokyo in 2000 and 2005, respectively. His research interests include design of microfluidic chips, micro sensors and actuators, experimentation in a micro-scale and nanotechnology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tongmanee, T., Srituravanich, W., Sailasuta, A. et al. Effects of the cell and triangular microwell size on the cell-trapping efficacy and specificity. J Mech Sci Technol 33, 5571–5580 (2019). https://doi.org/10.1007/s12206-019-1050-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-019-1050-2

Keywords

Navigation