Skip to main content
Log in

Evolution of Volatile Flavor Compounds During Roasting of Nut Seeds by Thermogravimetry Coupled to Fast-Cycling Optical Heating Gas Chromatography-Mass Spectrometry with Electron and Photoionization

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

Online multidimensional evolved gas analysis was conducted during the roasting of nuts using fast-cycling optical heating gas chromatography (OHGC) coupled to mass spectrometry with electron ionization and soft single photon ionization (OHGC-EI/SPI-MS). SPI is a semi-selective soft ionization method for organic compounds that produces mainly molecular ions, whereas EI is a hard ionization method that results in fragmentation. Ionization was either done exclusively by one of these methods or both were used alternately. Roasting of the nuts (almonds, Brazil nuts, cashews, peanuts, hazelnuts, pecans, pine nuts, and walnuts) was simulated in a thermal analysis (TA) device at a roasting temperature of 170 °C. The TA device was directly coupled to the OHGC-EI/SPI-MS for quasi-real-time analysis. Multidimensional analysis was possible with a temporal resolution of 1 min. Good chromatographic separation, constant sampling repetition rates, and constant retention times (RTs) were obtained. Peak assignment was performed using the molecular mass information obtained from SPI-MS, the characteristic fragmentation patterns from EI-MS, and the OHGC RTs. The gases that evolved during roasting of each type of nut were monitored online using the TA-OHGC-MS setup. Aldehydes, furans, and pyrazines were detected as flavor compounds. Changes in the compositions of the evolved gases during the roasting process were evaluated. The TA-OHGC-MS method could separate isobaric and isomeric compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baker GL, Cornell JA, Gorbet DW, O’Keefe SF, Sims CA, Talcott ST (2003) Determination of pyrazine and flavor variations in peanut genotypes during roasting. Journal of Food Science 68:394–400 doi:10.1111/j.1365-2621.2003.tb14171.x

  • Cao L, Muhlberger F, Adam T, Streibel T, Wang HZ, Kettrup A, Zimmermann R (2003) Resonance-enhanced multiphoton ionization and VUV-single photon ionization as soft and selective laser ionization methods for on-line time-of-flight mass spectrometry: investigation of the pyrolysis of typical organic contaminants in the steel recycling process. Analytical Chemistry 75:5639–5645 doi:10.1021/ac0349025

  • Celiz L, Arii T (2014) Study on thermal decomposition of polymers by simultaneous measurement of TG–DTA and miniature ion trap mass spectrometry equipped with skimmer-type interface. J Therm Anal Calorim 116:1435–1444. doi:10.1007/s10973-014-3817-0

    Article  CAS  Google Scholar 

  • Chiu J (1968) Polymer characterization by coupled thermogravimetry-gas chromatography. Analytical Chemistry 40:1516–1520 doi:10.1021/ac60266a037

  • Chung TY, Eiserich JP, Shibamoto T (1993) Volatile compounds identified in headspace samples of peanut oil heated under temperatures ranging from 50 to 200 degree. C J Agric Food Chem 41:1467–1470. doi:10.1021/jf00033a022

    Article  CAS  Google Scholar 

  • Diab J, Hertz-Schünemann R, Streibel T, Zimmermann R (2014) Online measurement of volatile organic compounds released during roasting of cocoa beans. Food Research International 63, Part C:344–352 doi:10.1016/j.foodres.2014.04.047

  • Dorfner R, Ferge T, Yeretzian C, Kettrup A, Zimmermann R (2004) Laser mass spectrometry as on-line sensor for industrial process analysis: process control of coffee roasting. Analytical Chemistry 76:1386–1402 doi:10.1021/ac034758n

  • Eschner MS, Gröger TM, Horvath T, Gonin M, Zimmermann R (2011) Quasi-simultaneous acquisition of hard electron ionization and soft single-photon ionization mass spectra during GC/MS analysis by rapid switching between both ionization methods: analytical concept, setup, and application on diesel fuel. Anal Chem 83:3865–3872. doi:10.1021/ac200356t

    Article  CAS  Google Scholar 

  • Fischer M et al (2013) Thermal analysis/evolved gas analysis using single photon ionization. J Therm Anal Calorim 113:1667–1673. doi:10.1007/s10973-013-3143-y

    Article  CAS  Google Scholar 

  • Fischer M et al (2015) Optically heated ultra-fast-cycling gas chromatography module for separation of direct sampling and online monitoring applications. Anal Chem 87:8634–8639. doi:10.1021/acs.analchem.5b01879

    Article  CAS  Google Scholar 

  • Fischer M, Wohlfahrt S, Varga J, Saraji-Bozorgzad M, Matuschek G, Denner T, Zimmermann R (2014) Evolved gas analysis by single photon ionization-mass spectrometry. J Therm Anal Calorim:1–9 doi:10.1007/s10973-014-3830-3

  • Gloess AN et al. (2014) Evidence of different flavour formation dynamics by roasting coffee from different origins: on-line analysis with PTR-ToF-MS. International Journal of Mass Spectrometry 365–366:324–337 doi:10.1016/j.ijms.2014.02.010

  • Hanley L, Zimmermann R (2009) Light and molecular ions: the emergence of vacuum UV single-photon ionization in MS. Anal Chem 81:4174–4182. doi:10.1021/ac8013675

    Article  CAS  Google Scholar 

  • He Q, Wan K, Hoadley A, Yeasmin H, Miao Z (2015) TG–GC–MS study of volatile products from Shengli lignite pyrolysis. Fuel 156:121–128 doi:10.1016/j.fuel.2015.04.043

  • Hertz-Schunemann R, Dorfner R, Yeretzian C, Streibel T, Zimmermann R (2013a) On-line process monitoring of coffee roasting by resonant laser ionisation time-of-flight mass spectrometry: bridging the gap from industrial batch roasting to flavour formation inside an individual coffee bean. J Mass Spectrom 48:1253–1265. doi:10.1002/jms.3299

    Article  CAS  Google Scholar 

  • Hertz-Schunemann R, Streibel T, Ehlert S, Zimmermann R (2013b) Looking into individual coffee beans during the roasting process: direct micro-probe sampling on-line photo-ionisation mass spectrometric analysis of coffee roasting gases. Anal Bioanal Chem 405:7083–7096. doi:10.1007/s00216-013-7006-y

    Article  Google Scholar 

  • Hof F, Schäfer RA, Weiss C, Hauke F, Hirsch A (2014) Novel λ3-iodane-based functionalization of synthetic carbon allotropes (SCAs)—common concepts and quantification of the degree of addition. Chemistry—A European Journal 20:16644–16651 doi:10.1002/chem.201404662

  • Hölzer J et al (2014) Hyphenation of thermogravimetry and soft single photon ionization–ion trap mass spectrometry (TG–SPI–ITMS) for evolved gas analysis. J Therm Anal Calorim 116:1471–1479. doi:10.1007/s10973-014-3826-z

    Article  Google Scholar 

  • Isaacman G et al (2012) Improved resolution of hydrocarbon structures and constitutional isomers in complex mixtures using gas chromatography-vacuum ultraviolet-mass spectrometry. Anal Chem 84:2335–2342. doi:10.1021/ac2030464

    Article  CAS  Google Scholar 

  • Jia L et al. (2015) Fast pyrolysis in a microfluidized bed reactor: effect of biomass properties and operating conditions on volatiles composition as analyzed by online single photoionization mass spectrometry. Energy Fuels 29:7364–7374 doi:10.1021/acs.energyfuels.5b01803

  • Kaisersberger E, Post E (1997) Practical aspects for the coupling of gas analytical methods with thermal-analysis instruments. Thermochimica Acta 295:73–93. doi:10.1016/s0040-6031(97)00099-3

    Article  CAS  Google Scholar 

  • Kaisersberger E, Post E (1998) Applications for skimmer coupling systems, combining simultaneous thermal analysers with mass spectrometers. Thermochimica Acta 324:197–201. doi:10.1016/s0040-6031(98)00536-x

    Article  Google Scholar 

  • Krist S, Unterweger H, Bandion F, Buchbauer G (2004) Volatile compound analysis of SPME headspace and extract samples from roasted Italian chestnuts (Castanea sativa Mill.) using GC-MS. Eur Food Res Technol 219:470–473 doi:10.1007/s00217-004-0983-5

  • Lindinger W, Hirber J, Paretzke H (1993) An ion/molecule-reaction mass spectrometer used for on-line trace gas analysis. Int J Mass Spectrom Ion Processes 129:79–88. doi:10.1016/0168-1176(93)87031-m

    Article  CAS  Google Scholar 

  • Mason ME, Johnson B, Hamming MC (1967) Volatile components of roasted peanuts. Major monocarbonyls and some noncarbonyl components. J Agric Food Chem 15:66–73. doi:10.1021/jf60149a029

    Article  CAS  Google Scholar 

  • Materazzi S, Risoluti R (2014) Evolved gas analysis by mass spectrometry. Appl Spectrosc Rev 49:635–665 doi:10.1080/05704928.2014.887021.

  • Materazzi S, Vecchio S (2013) Recent applications of evolved gas analysis by infrared spectroscopy (IR-EGA). Appl Spectrosc Rev 48:654–689. doi:10.1080/05704928.2013.786722

    Article  Google Scholar 

  • Matsui T, Guth H, Grosch W (1998) A comparative study of potent odorants in peanut, hazelnut, and pumpkin seed oils on the basis of aroma extract dilution analysis (AEDA) and gas chromatography olfactometry of headspace samples (GCOH). Fett-Lipid 100:51–56

  • Mottram D (2007) The Maillard reaction: source of flavour in thermally processed foods. In: Berger R (ed) Flavours and fragrances. Springer, Berlin Heidelberg, pp 269–283. doi:10.1007/978-3-540-49339-6_12

    Chapter  Google Scholar 

  • Neta ER, Sanders T, Drake MA (2010) Understanding peanut flavor: a current review. In: Handbook of fruit and vegetable flavors. John Wiley & Sons, Inc., pp 985–1022. doi:10.1002/9780470622834.ch51.

  • Raemakers KGH, Bart JCJ (1997) Applications of simultaneous thermogravimetry-mass spectrometry in polymer analysis. Thermochimica Acta 295:1–58. doi:10.1016/s0040-6031(97)00097-x

    Article  Google Scholar 

  • Rüger CP, Miersch T, Schwemer T, Sklorz M, Zimmermann R (2015) Hyphenation of thermal analysis to ultrahigh-resolution mass spectrometry (Fourier transform ion cyclotron resonance mass spectrometry) using atmospheric pressure chemical ionization for studying composition and thermal degradation of complex materials. Analytical Chemistry doi:10.1021/acs.analchem.5b00785

  • Saraji-Bozorgzad MR et al. (2010) Highly resolved online organic-chemical speciation of evolved gases from thermal analysis devices by cryogenically modulated fast gas chromatography coupled to single photon ionization mass spectrometry. Analytical Chemistry 82:9644–9653 doi:10.1021/ac100745h

  • Saraji-Bozorgzad MR, Streibel T, Kaisersberger E, Denner T, Zimmermann R (2011) Detection of organic products of polymer pyrolysis by thermogravimetry-supersonic jet-skimmer time-of-flight mass spectrometry (TG-Skimmer-SPI-TOFMS) using an electron beam pumped rare gas excimer VUV-light source (EBEL) for soft photo ionisation. J Therm Anal Calorim 105:691–697. doi:10.1007/s10973-011-1383-2

    Article  CAS  Google Scholar 

  • Schirack AV, Drake MA, Sanders TH, Sandeep KP (2006) Characterization of aroma-active compounds in microwave blanched peanuts. J Food Sci 71:C513–C520. doi:10.1111/j.1750-3841.2006.00173.x

    Article  CAS  Google Scholar 

  • Schmid P, Stöhr F, Arndt M, Tüxen J, Mayor M (2013) Single-photon ionization of organic molecules beyond 10 kDa. J Am Soc Mass Spectrom 24:602–608. doi:10.1007/s13361-012-0551-3

    Article  CAS  Google Scholar 

  • Smith AL, Barringer SA (2014) Color and volatile analysis of peanuts roasted using oven and microwave technologies. Journal of Food Science 79:C1895-C1906 doi:10.1111/1750-3841.12588

  • Streibel T, Mitschke S, Adam T, Weh J, Zimmermann R (2007) Thermal desorption/pyrolysis coupled with photo ionisation time-of-flight mass spectrometry for the analysis and discrimination of pure tobacco samples. J Anal Appl Pyrolysis 79:24–32. doi:10.1016/j.jaap.2006.12.017

    Article  CAS  Google Scholar 

  • Su G, Zheng L, Cui C, Yang B, Ren J, Zhao M (2011) Characterization of antioxidant activity and volatile compounds of Maillard reaction products derived from different peptide fractions of peanut hydrolysate. Food Research International 44:3250–3258 doi:10.1016/j.foodres.2011.09.009

  • Várhegyi G, Czégény Z, Jakab E, McAdam K, Liu C (2009) Tobacco pyrolysis. Kinetic evaluation of thermogravimetric–mass spectrometric experiments. Journal of Analytical and Applied Pyrolysis 86:310–322 doi:10.1016/j.jaap.2009.08.008

  • Walradt JP, Pittet AO, Kinlin TE, Muralidhara R, Sanderson A (1971) Volatile components of roasted peanuts. J Agric Food Chem 19:972–979. doi:10.1021/jf60177a017

    Article  CAS  Google Scholar 

  • Wilbrandt S, Stenzel O, Heiße H, Kaiser N (2012) Dielektrisch verstärkte Aluminiumspiegel für VUV-Anwendungen Vakuum in Forschung und Praxis 24:41–46 doi:10.1002/vipr.201290069

  • Wohlfahrt S et al. (2013) Rapid comprehensive characterization of crude oils by thermogravimetry coupled to fast modulated gas chromatography-single photon ionization time-of-flight mass spectrometry. Anal Bioanal Chem 405:7107–7116 doi:10.1007/s00216-013-7029-4

  • Wu Q et al. (2010) A combined single photon ionization and photoelectron ionization source for orthogonal acceleration time-of-flight mass spectrometer. International Journal of Mass Spectrometry 295:60–64 doi:10.1016/j.ijms.2010.06.034

  • Yang Z, Zhang T, Pan Y, Hong X, Tang Z, Qi F (2009) Electrospray/VUV single-photon ionization mass spectrometry for the analysis of organic compounds. J Am Soc Mass Spectrom 20:430–434. doi:10.1016/j.jasms.2008.10.026

    Article  CAS  Google Scholar 

  • Yeretzian C, Jordan A, Lindinger W (2003) Analysing the headspace of coffee by proton-transfer-reaction mass-spectrometry. Int J Mass Spectrom 223–224:115–139. doi:10.1016/S1387-3806(02)00785-6

    Article  Google Scholar 

  • Zimmermann R, Hertz-Schünemann R, Ehlert S, Liu C, McAdam K, Baker R, Streibel T (2015) Highly time-resolved imaging of combustion and pyrolysis product concentrations in solid fuel combustion: NO formation in a burning cigarette. Anal Chem 87:1711–1717. doi:10.1021/ac503512a

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding from the Bavarian Research Foundation (Bayerische Forschungsstiftung, Az. 913/10) and support from Netzsch-Geraetebau and Photonion are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Zimmermann.

Ethics declarations

Funding

This study was funded by the Bavarian Research Foundation (Grant No. 913/10).

Conflict of Interest

Michael Fischer declares that he has no conflict of interest. Sebastian Wohlfahrt declares that he has no conflict of interest. Janos Varga declares that he has no conflict of interest. Georg Matuschek declares that he has no conflict of interest. Mohammad R. Saraji-Bozorgzad declares that he has no conflict of interest. Andreas Walte declares that he has no conflict of interest. Thomas Denner declares that he has no conflict of interest. Ralf Zimmermann declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

Online analysis of volatile compounds formation during gentle roasting of various nut seeds using thermogravimetry coupled to fast-cycling gas chromatography-mass spectrometry. (DOCX 3217 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, M., Wohlfahrt, S., Varga, J. et al. Evolution of Volatile Flavor Compounds During Roasting of Nut Seeds by Thermogravimetry Coupled to Fast-Cycling Optical Heating Gas Chromatography-Mass Spectrometry with Electron and Photoionization. Food Anal. Methods 10, 49–62 (2017). https://doi.org/10.1007/s12161-016-0549-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-016-0549-8

Keywords

Navigation