Skip to main content
Log in

Cannabidiol Improves Cognitive Impairment and Reverses Cortical Transcriptional Changes Induced by Ketamine, in Schizophrenia-Like Model in Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cannabidiol (CBD), a non-psychotropic cannabinoid, demonstrates antipsychotic-like and procognitive activities in humans and in animal models of schizophrenia. The mechanisms of these beneficial effects of CBD are unknown. Here, we examined behavioral effects of CBD in a pharmacological model of schizophrenia-like cognitive deficits induced by repeated ketamine (KET) administration. In parallel, we assessed transcriptional changes behind CBD activities in the prefrontal cortex (PFC), the main brain area linked to schizophrenia-like pathologies. Male Sprague-Dawley rats were injected for 10 days with KET followed by 6 days of CBD. The cognitive performance was evaluated in the novel object recognition test followed by PFC dissections for next-generation sequencing (RNA-Seq) analysis and bioinformatics. We observed that KET-induced learning deficits were rescued by CBD (7.5 mg/kg). Similarly, CBD reversed transcriptional changes induced by KET. The majority of the genes affected by KET and KET-CBD were allocated to astroglial and microglial cells and associated with immune-like processes mediating synaptogenesis and neuronal plasticity. These genes include C1qc, C1qa, C1qb, C2, and C3 complement cascade elements, Irf8 factor and Gpr84, Gpr34, Cx3cr1, P2ry12, and P2ry6 receptors. The main pathway regulators predicted to be involved included TGFβ1 and IFNγ. In addition, CBD itself upregulated oxytocin mRNA in the PFC. The present data suggest that KET induces cognitive deficits and transcriptional changes in the PFC and that both effects are sensitive to a reversal by CBD treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A et al (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258(5090):1946–1949

    Article  CAS  PubMed  Google Scholar 

  2. Vogel Z, Barg J, Levy R, Saya D, Heldman E, Mechoulam R (1993) Anandamide, a brain endogenous compound, interacts specifically with cannabinoid receptors and inhibits adenylate cyclase. J Neurochem 61(1):352–355

    Article  CAS  PubMed  Google Scholar 

  3. Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S et al (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90

    Article  CAS  PubMed  Google Scholar 

  4. Lu HC, Mackie K (2016) An Introduction to the Endogenous Cannabinoid System. Biol Psychiatry 79(7):516–525. https://doi.org/10.1016/j.biopsych.2015.07.028

    Article  PubMed  CAS  Google Scholar 

  5. D'Souza DC, Perry E, MacDougall L, Ammerman Y, Cooper T, Wu YT, Braley G, Gueorguieva R et al (2004) The psychotomimetic effects of intravenous delta-9-tetrahydrocannabinol in healthy individuals: implications for psychosis. Neuropsychopharmacology 29(8):1558–1572

    Article  CAS  PubMed  Google Scholar 

  6. Morrison PD, Zois V, McKeown DA, Lee TD, Holt DW, Powell JF, Kapur S, Murray RM (2009) The acute effects of synthetic intravenous Delta9-tetrahydrocannabinol on psychosis, mood and cognitive functioning. Psychol Med 39(10):1607–1616. https://doi.org/10.1017/S0033291709005522

    Article  PubMed  CAS  Google Scholar 

  7. Bossong MG, Jager G, Bhattacharyya S, Allen P (2014) Acute and non-acute effects of cannabis on human memory function: a critical review of neuroimaging studies. Curr Pharm Des 20(13):2114–2125

    Article  CAS  PubMed  Google Scholar 

  8. Linszen DH, Dingemans PM, Lenior ME (1994) Cannabis abuse and the course of recent-onset schizophrenic disorders. Arch Gen Psychiatry 51(4):273–279

    Article  CAS  PubMed  Google Scholar 

  9. D'Souza DC, Abi-Saab WM, Madonick S, Forselius-Bielen K, Doersch A, Braley G, Gueorguieva R, Cooper TB et al (2005) Delta-9-tetrahydrocannabinol effects in schizophrenia: implications for cognition, psychosis, and addiction. Biol Psychiatry 57(6):594–608

    Article  CAS  PubMed  Google Scholar 

  10. Grech A, Van Os J, Jones PB, Lewis SW, Murray RM (2005) Cannabis use and outcome of recent onset psychosis. Eur Psychiatry 20(4):349–353

    Article  PubMed  Google Scholar 

  11. Perez-Reyes M, Timmons MC, Davis KH, Wall EM (1973) A comparison of the pharmacological activity in man of intravenously administered delta9-tetrahydrocannabinol, cannabinol, and cannabidiol. Experientia 29(11):1368–1369

    Article  CAS  PubMed  Google Scholar 

  12. Karniol IG, Shirakawa I, Kasinski N, Pfeferman A, Carlini EA (1974) Cannabidiol interferes with the effects of delta 9 - tetrahydrocannabinol in man. Eur J Pharmacol 28(1):172–177

    Article  CAS  PubMed  Google Scholar 

  13. Zuardi AW, Shirakawa I, Finkelfarb E, Karniol IG (1982) Action of cannabidiol on the anxiety and other effects produced by delta 9-THC in normal subjects. Psychopharmacology 76(3):245–250

    Article  CAS  PubMed  Google Scholar 

  14. Bhattacharyya S, Morrison PD, Fusar-Poli P, Martin-Santos R, Borgwardt S, Winton-Brown T, Nosarti C, O’Carroll CM et al (2010) Opposite effects of delta-9-tetrahydrocannabinol and cannabidiol on human brain function and psychopathology. Neuropsychopharmacology 35(3):764–774. https://doi.org/10.1038/npp.2009.184

    Article  PubMed  CAS  Google Scholar 

  15. Morgan CJ, Curran HV (2008) Effects of cannabidiol on schizophrenia-like symptoms in people who use cannabis. Br J Psychiatry 192(4):306–307. https://doi.org/10.1192/bjp.bp.107.046649

    Article  PubMed  Google Scholar 

  16. Schubart CD, van Gastel WA, Breetvelt EJ, Beetz SL, Ophoff RA, Sommer IE, Kahn RS, Boks MP (2011) Cannabis use at a young age is associated with psychotic experiences. Psychol Med 41(6):1301–1310. https://doi.org/10.1017/S003329171000187X

    Article  PubMed  CAS  Google Scholar 

  17. McPartland JM, Duncan M, Di Marzo V, Pertwee RG (2015) Are cannabidiol and Δ(9) -tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. Br J Pharmacol 172(3):737–753. https://doi.org/10.1111/bph.12944

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Zuardi AW, Morais SL, Guimarães FS, Mechoulam R (1995) Anti-psychotic effect of cannabidiol. J Clin Psychiatry 56:485–486

    PubMed  CAS  Google Scholar 

  19. Zuardi AW, Crippa JA, Hallak JE, Pinto JP, Chagas MH, Rodrigues GG, Dursun SM, Tumas V (2009) Cannabidiol for the treatment of psychosis in Parkinson's disease. J Psychopharmacol 23(8):979–983. https://doi.org/10.1177/0269881108096519

    Article  PubMed  CAS  Google Scholar 

  20. Leweke FM, Piomelli D, Pahlisch F, Muhl D, Gerth CW, Hoyer C, Klosterkötter J, Hellmich M et al (2012) Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl Psychiatry 2:e94. https://doi.org/10.1038/tp.2012.15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Boggs DL, Surti T, Gupta A, Gupta S, Niciu M, Pittman B, Schnakenberg Martin AM, Thurnauer H et al (2018) The effects of cannabidiol (CBD) on cognition and symptoms in outpatients with chronic schizophrenia a randomized placebo controlled trial. Psychopharmacology 235(7):1923–1932. https://doi.org/10.1007/s00213-018-4885-9

    Article  PubMed  CAS  Google Scholar 

  22. Levin R, Peres FF, Almeida V, Calzavara MB, Zuardi AW, Hallak JE, Crippa JA, Abílio VC (2014) Effects of cannabinoid drugs on the deficit of prepulse inhibition of startle in an animal model of schizophrenia: the SHR strain. Front Pharmacol 5:10. https://doi.org/10.3389/fphar.2014.00010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Long LE, Malone DT, Taylor DA (2006) Cannabidiol reverses MK-801-induced disruption of prepulse inhibition in mice. Neuropsychopharmacology 31(4):795–803

    Article  CAS  PubMed  Google Scholar 

  24. Gomes FV, Llorente R, Del Bel EA, Viveros MP, López-Gallardo M, Guimarães FS (2015) Decreased glial reactivity could be involved in the antipsychotic-like effect of cannabidiol. Schizophr Res 164(1-3):155–163. https://doi.org/10.1016/j.schres.2015.01.015

    Article  PubMed  Google Scholar 

  25. Pedrazzi JF, Issy AC, Gomes FV, Guimarães FS, Del-Bel EA (2015) Cannabidiol effects in the prepulse inhibition disruption induced by amphetamine. Psychopharmacology 232(16):3057–3065. https://doi.org/10.1007/s00213-015-3945-7

    Article  PubMed  CAS  Google Scholar 

  26. Zuardi AW, Rodrigues JA, Cunha JM (1991) Effects of cannabidiol in animal models predictive of antipsychotic activity. Psychopharmacology 104(2):260–264

    Article  CAS  PubMed  Google Scholar 

  27. Moreira FA, Aguiar DC, Guimarães FS (2006) Anxiolytic-like effect of cannabidiol in the rat Vogel conflict test. Prog Neuro-Psychopharmacol Biol Psychiatry 30(8):1466–1471

    Article  CAS  Google Scholar 

  28. Osborne AL, Solowij N, Weston-Green K. A (2017) systematic review of the effect of cannabidiol on cognitive function: relevance to schizophrenia. Neurosci Biobehav Rev 72:310-324. doi: https://doi.org/10.1016/j.neubiorev.2016.11.012.

    Article  CAS  Google Scholar 

  29. Morris BJ, Cochran SM, Pratt JA (2005) Curr Opin Pharmacol 5(1):101-6. PCP: from pharmacology to modelling schizophrenia

  30. Shi Q, Guo L, Patterson TA, Dial S, Li Q, Sadovova N, Zhang X, Hanig JP et al (2010) Gene expression profiling in the developing rat brain exposed to ketamine. Neuroscience 166(3):852–863. https://doi.org/10.1016/j.neuroscience.2010.01.007

    Article  PubMed  CAS  Google Scholar 

  31. Nikiforuk A, Popik P (2012) Effects of quetiapine and sertindole on subchronic ketamine-induced deficits in attentional set-shifting in rats. Psychopharmacology 220(1):65–74. https://doi.org/10.1007/s00213-011-2487-x

    Article  PubMed  CAS  Google Scholar 

  32. Fromer M, Roussos P, Sieberts SK, Johnson JS, Kavanagh DH, Perumal TM, Ruderfer DM, Oh EC et al (2016) Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat Neurosci 19(11):1442–1453. https://doi.org/10.1038/nn.4399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Popik P, Holuj M, Nikiforuk A, Kos T, Trullas R, Skolnick P (2015) 1-Aminocyclopropanecarboxylic acid (ACPC) produces procognitive but not antipsychotic-like effects in rats. Psychopharmacology 232:1025–1038

    Article  CAS  PubMed  Google Scholar 

  34. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal 17(1):10. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  35. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  PubMed  CAS  Google Scholar 

  36. Anders S, Pyl PT, Huber W (2014) HTSeq — a python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166–169. https://doi.org/10.1093/bioinformatics/btu638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for rna-seq data with deseq2. Genome Biol 15(12):1–21. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  Google Scholar 

  38. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological) 57(1):289–300

    Article  Google Scholar 

  39. Juknat A, Pietr M, Kozela E, Rimmerman N, Levy R, Gao F, Coppola G, Geschwind D et al (2013) Microarray and pathway analysis reveal distinct mechanisms underlying cannabinoid-mediated modulation of LPS-induced activation of BV-2 microglial cells. PLoS One 8(4):e61462. https://doi.org/10.1371/journal.pone.0061462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kozela E, Juknat A, Kaushansky N, Ben-Nun A, Coppola G, Vogel Z (2015) Cannabidiol, a non-psychoactive cannabinoid, leads to EGR2-dependent anergy in activated encephalitogenic T cells. J Neuroinflammation 12:52–16. https://doi.org/10.1186/s12974-015-0273-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Rydbirk R, Folke J, Winge K, Aznar S, Pakkenberg B, Brudek T (2016) Assessment of brain reference genes for RT-qPCR studies in neurodegenerative diseases. Sci Rep 6:37116. https://doi.org/10.1038/srep37116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Field A (2009) Discovering Statistics using IBM SPSS Statistics (Third ed.) Sage Publications Ltd.

  43. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B et al (2014) Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat Neurosci 17(1):131–143. https://doi.org/10.1038/nn.3599 Erratum in: Nat Neurosci. 2014; 17(9):1286

    Article  PubMed  CAS  Google Scholar 

  44. Madeddu S, Woods TA, Mukherjee P, Sturdevant D, Butchi NB, Peterson KE (2015) Identification of glial activation markers by comparison of transcriptome changes between astrocytes and microglia following innate immune stimulation. PLoS One 10(7):e0127336. https://doi.org/10.1371/journal.pone.0127336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511(7510):421–427. https://doi.org/10.1038/nature13595

    Article  PubMed Central  CAS  Google Scholar 

  46. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hasan A, Falkai P, Wobrock T, Lieberman J, Glenthoj B, Gattaz WF, Thibaut F, Möller HJ; World Federation of Societies of Biological Psychiatry (WFSBP) (2012) Task Force on Treatment Guidelines for Schizophrenia. World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for Biological Treatment of Schizophrenia, part 1: update 2012 on the acute treatment of schizophrenia and the management of treatment resistance. World J Biol Psychiatry 13(5):318-378.

  48. Rohleder C, Müller JK, Lange B, Leweke FM (2016) Cannabidiol as a potential new type of an antipsychotic. A critical review of the evidence. Front Pharmacol 7:422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ruggiero RN, Rossignoli MT, De Ross JB, Hallak JEC, Leite JP, Bueno-Junior LS (2017) Cannabinoids and vanilloids in schizophrenia: neurophysiological evidence and directions for basic research. Front Pharmacol 8:399. https://doi.org/10.3389/fphar.2017.00399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. McGuire P, Robson P, Cubala WJ, Vasile D, Morrison PD, Barron R, Taylor A, Wright S (2018) Cannabidiol (CBD) as an adjunctive therapy in schizophrenia: a multicenter randomized controlled trial. Am J Psychiatry 175(3):225–231. https://doi.org/10.1176/appi.ajp.2017.17030325

    Article  PubMed  Google Scholar 

  51. Morgan CJ, Freeman TP, Schafer GL, Curran HV (2010) Cannabidiol attenuates the appetitive effects of Delta 9-tetrahydrocannabinol in humans smoking their chosen cannabis. Neuropsychopharmacology 35(9):1879–1885. https://doi.org/10.1038/npp.2010.58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Morgan CJ, Gardener C, Schafer G, Swan S, Demarchi C, Freeman TP, Warrington P, Rupasinghe I et al (2012) Sub-chronic impact of cannabinoids in street cannabis on cognition, psychotic-like symptoms and psychological well-being. Psychol Med 42(2):391–400. https://doi.org/10.1017/S0033291711001322

    Article  PubMed  CAS  Google Scholar 

  53. Roser P1, Juckel G, Rentzsch J, Nadulski T, Gallinat J, Stadelmann AM (2008) Effects of acute oral Delta9-tetrahydrocannabinol and standardized cannabis extract on the auditory P300 event-related potential in healthy volunteers. Eur Neuropsychopharmacol 18(8):569–577. https://doi.org/10.1016/j.euroneuro.2008.04.008

    Article  PubMed  CAS  Google Scholar 

  54. Martín-Moreno AM1, Reigada D, Ramírez BG, Mechoulam R, Innamorato N, Cuadrado A, de Ceballos ML (2011) Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: relevance to Alzheimer’s disease. Mol Pharmacol 79(6):964–973. https://doi.org/10.1124/mol.111.071290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Fagherazzi EV, Garcia VA, Maurmann N, Bervanger T, Halmenschlager LH, Busato SB, Hallak JE, Zuardi AW et al (2012) Memory-rescuing effects of cannabidiol in an animal model of cognitive impairment relevant to neurodegenerative disorders. Psychopharmacology 219(4):1133–1140. https://doi.org/10.1007/s00213-011-2449-3

    Article  PubMed  CAS  Google Scholar 

  56. Cheng D, Spiro AS, Jenner AM, Garner B, Karl T (2014) Long-term cannabidiol treatment prevents the development of social recognition memory deficits in Alzheimer’s disease transgenic mice. J Alzheimers Dis 42(4):1383–1396. https://doi.org/10.3233/JAD-140921

    Article  PubMed  CAS  Google Scholar 

  57. Cassol OJ Jr, Comim CM, Silva BR, Hermani FV, Constantino LS, Felisberto F, Petronilho F, Hallak JE et al (2010) Treatment with cannabidiol reverses oxidative stress parameters, cognitive impairment and mortality in rats submitted to sepsis by cecal ligation and puncture. Brain Res 1348:128–138. https://doi.org/10.1016/j.brainres.2010.06.023

    Article  PubMed  CAS  Google Scholar 

  58. Barichello T, Ceretta RA, Generoso JS, Moreira AP, Simões LR, Comim CM, Quevedo J, Vilela MC et al (2012) Cannabidiol reduces host immune response and prevents cognitive impairments in Wistar rats submitted to pneumococcal meningitis. Eur J Pharmacol 697(1-3):158–164. https://doi.org/10.1016/j.ejphar.2012.09.053

    Article  PubMed  CAS  Google Scholar 

  59. Campos AC, Brant F, Miranda AS, Machado FS, Teixeira AL (2015) Cannabidiol increases survival and promotes rescue of cognitive function in a murine model of cerebral malaria. Neuroscience 289:166–180. https://doi.org/10.1016/j.neuroscience.2014.12.051

    Article  PubMed  CAS  Google Scholar 

  60. Hallak JE, Machado-de-Sousa JP, Crippa JA, Sanches RF, Trzesniak C, Chaves C, Bernardo SA, Regalo SC et al (2010) Performance of schizophrenic patients in the Stroop Color Word Test and electrodermal responsiveness after acute administration of cannabidiol (CBD). Rev Bras Psiquiatr 32(1):56–61

    Article  PubMed  Google Scholar 

  61. Deiana S, Watanabe A, Yamasaki Y, Amada N, Kikuchi T, Stott C, Riedel G (2015) MK-801-induced deficits in social recognition in rats: reversal by aripiprazole, but not olanzapine, risperidone, or cannabidiol. Behav Pharmacol 26:748–765. https://doi.org/10.1097/FBP.0000000000000178

    Article  PubMed  CAS  Google Scholar 

  62. Horváth S, Mirnics K (2015) Schizophrenia as a disorder of molecular pathways. Biol Psychiatry 77(1):22–28. https://doi.org/10.1016/j.biopsych.2014.01.001

    Article  PubMed  CAS  Google Scholar 

  63. Bialas AR, Stevens B (2013) TGF-β signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat Neurosci 16(12):1773–1782. https://doi.org/10.1038/nn.3560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Khademi E, Alehabib E, Shandiz EE, Ahmadifard A, Andarva M, Jamshidi J, Rahimi-Aliabadi S, Pouriran R et al (2017) Support for “disease-only” genotypes and excess of homozygosity at the CYTH4 primate-specific GTTT-repeat in schizophrenia. Genet Test Mol Biomarkers 21(8):485–490. https://doi.org/10.1089/gtmb.2016.0422

    Article  PubMed  CAS  Google Scholar 

  65. Baker DJ, Blackburn DJ, Keatinge M, Sokhi D, Viskaitis P, Heath PR, Ferraiuolo L, Kirby J et al (2015) Lysosomal and phagocytic activity is increased in astrocytes during disease progression in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. Front Cell Neurosci 9:410. https://doi.org/10.3389/fncel.2015.00410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK et al (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131(6):1164–1178

    Article  CAS  PubMed  Google Scholar 

  67. Simard AR, Soulet D, Gowing G, Julien JP, Rivest S (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49(4):489–502

    Article  CAS  PubMed  Google Scholar 

  68. Naert G, Rivest S (2011) CC chemokine receptor 2 deficiency aggravates cognitive impairments and amyloid pathology in a transgenic mouse model of Alzheimer’s disease. J Neurosci 31(16):6208–6220. https://doi.org/10.1523/JNEUROSCI.0299-11.2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Song M, Jin J, Lim JE, Kou J, Pattanayak A, Rehman JA, Kim HD, Tahara K et al (2011) TLR4 mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimer’s disease. J Neuroinflammation 8:92. https://doi.org/10.1186/1742-2094-8-92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA et al (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333(6048):1456–1458. https://doi.org/10.1126/science.1202529

    Article  CAS  PubMed  Google Scholar 

  71. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME et al (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74(4):691–705. https://doi.org/10.1016/j.neuron.2012.03.026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Sipe GO, Lowery RL, Tremblay MÈ, Kelly EA, Lamantia CE, Majewska AK (2016) Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex. Nat Commun 7:10905. https://doi.org/10.1038/ncomms10905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F, Vyssotski AL, Bifone A et al (2014) Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci 17(3):400–406. https://doi.org/10.1038/nn.3641

    Article  PubMed  CAS  Google Scholar 

  74. Bergon A, Belzeaux R, Comte M, Pelletier F, Hervé M, Gardiner EJ, Beveridge NJ, Liu B et al (2015) CX3CR1 is dysregulated in blood and brain from schizophrenia patients. Schizophr Res 168(1-2):434–443. https://doi.org/10.1016/j.schres.2015.08.010

    Article  PubMed  Google Scholar 

  75. Ishizuka K, Fujita Y, Kawabata T, Kimura H, Iwayama Y, Inada T, Okahisa Y, Egawa J et al (2017) Rare genetic variants in CX3CR1 and their contribution to the increased risk of schizophrenia and autism spectrum disorders. Transl Psychiatry 7(8):e1184. https://doi.org/10.1038/tp.2017.173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Whitelaw BS (2018) Microglia-mediated synaptic elimination in neuronal development and disease. J Neurophysiol 119(1):1-4. doi: https://doi.org/10.1152/jn.00021.2017.

    Article  CAS  PubMed  Google Scholar 

  77. Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, Tooley K, Presumey J et al (2016) Schizophrenia risk from complex variation of complement component 4. Nature 530(7589):177–183. https://doi.org/10.1038/nature16549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Chu Y, Jin X, Parada I, Pesic A, Stevens B, Barres B, Prince DA (2010) Enhanced synaptic connectivity and epilepsy in C1q knockout mice. Proc Natl Acad Sci U S A 107(17):7975–7980. https://doi.org/10.1073/pnas.0913449107

    Article  PubMed  PubMed Central  Google Scholar 

  79. Audoy-Rémus J, Bozoyan L, Dumas A1, Filali M, Lecours C, Lacroix S, Rivest S, Tremblay ME et al (2015) GPR84 deficiency reduces microgliosis, but accelerates dendritic degeneration and cognitive decline in a mouse model of Alzheimer’s disease. Brain Behav Immun 46:112–120. https://doi.org/10.1016/j.bbi.2015.01.010

    Article  PubMed  CAS  Google Scholar 

  80. Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D (2006) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9(12):1512–1519

    Article  CAS  PubMed  Google Scholar 

  81. Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, Wieghofer P, Heinrich A et al (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16(3):273–280. https://doi.org/10.1038/nn.3318

    Article  CAS  PubMed  Google Scholar 

  82. Hoogland IC, Houbolt C, van Westerloo DJ, van Gool WA, van de Beek D (2015) Systemic inflammation and microglial activation: systematic review of animal experiments. J Neuroinflammation 12:114. https://doi.org/10.1186/s12974-015-0332-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Clarke LE, Barres BA (2013) Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14(5):311–321. https://doi.org/10.1038/nrn3484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Windrem MS, Osipovitch M, Liu Z, Bates J, Chandler-Militello D, Zou L, Munir J, Schanz S et al (2017) Human iPSC glial mouse chimeras reveal glial contributions to schizophrenia. Cell Stem Cell 21(2):195–208.e6. https://doi.org/10.1016/j.stem.2017.06.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Rezazadeh M, Gharesouran J, Movafagh A, Taheri M, Darvish H, Emamalizadeh B, Shahmohammadibeni N, Khorram Khorshid HR et al (2015) Dominant and protective role of the CYTH4 primate-specific GTTT-repeat longer alleles against neurodegeneration. J Mol Neurosci 56(3):593–596. https://doi.org/10.1007/s12031-015-0542-5

    Article  PubMed  CAS  Google Scholar 

  86. Ejlerskov P, Hultberg JG, Wang J, Carlsson R, Ambjørn M, Kuss M, Liu Y, Porcu G et al (2015) Lack of neuronal IFN-β-IFNAR causes Lewy body- and Parkinson’s disease-like dementia. Cell 163(2):324–339. https://doi.org/10.1016/j.cell.2015.08.069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Gupta S, Ellis SE, Ashar FN, Moes A, Bader JS, Zhan J, West AB, Arking DE (2014) Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism. Nat Commun 5:5748. https://doi.org/10.1038/ncomms6748

    Article  PubMed  CAS  Google Scholar 

  88. Steullet P, Cabungcal JH, Monin A, Dwir D, O’Donnell P, Cuenod M, Do KQ (2016) Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: a “central hub” in schizophrenia pathophysiology? Schizophr Res 176(1):41–51. https://doi.org/10.1016/j.schres.2014.06.021

    Article  PubMed  CAS  Google Scholar 

  89. Irish Schizophrenia Genomics Consortium and the Wellcome Trust Case Control Consortium 2 (2012) Genome-wide association study implicates HLA-C*01:02 as a risk factor at the major histocompatibility complex locus in schizophrenia. Biol Psychiatry 72(8):620–628. https://doi.org/10.1016/j.biopsych.2012.05.035

  90. Bumb JM, Enning F, Leweke FM (2015) Drug repurposing and emerging adjunctive treatments for schizophrenia. Expert Opin Pharmacother 16(7):1049–1067. https://doi.org/10.1517/14656566.2015.1032248

    Article  PubMed  CAS  Google Scholar 

  91. Fourrier C, Singhal G, Baune BT (2019) Neuroinflammation and cognition across psychiatric conditions. CNS Spectr 24(1):4–15. https://doi.org/10.1017/S1092852918001499

    Article  PubMed  Google Scholar 

  92. de Almeida V, Martins-de-Souza D (2018) Cannabinoids and glial cells: possible mechanism to understand schizophrenia. Eur Arch Psychiatry Clin Neurosci 268(7):727–737. https://doi.org/10.1007/s00406-018-0874-6

    Article  PubMed  Google Scholar 

  93. Kozela E, Pietr M, Juknat A, Rimmerman N, Levy R, Vogel Z (2010) Cannabinoids Delta(9)-tetrahydrocannabinol and cannabidiol differentially inhibit the lipopolysaccharide-activated NF-kappaB and interferon-beta/STAT proinflammatory pathways in BV-2 microglial cells. J Biol Chem 285(3):1616–1626. https://doi.org/10.1074/jbc.M109.069294

    Article  PubMed  CAS  Google Scholar 

  94. Kozela E, Lev N, Kaushansky N, Eilam R, Rimmerman N, Levy R, Ben-Nun A, Juknat A et al (2011) Cannabidiol inhibits pathogenic T cells, decreases spinal microglial activation and ameliorates multiple sclerosis-like disease in C57BL/6 mice. Br J Pharmacol 163(7):1507–1519. https://doi.org/10.1111/j.1476-5381.2011.01379.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Juknat A, Pietr M, Kozela E, Rimmerman N, Levy R, Coppola G, Geschwind D, Vogel Z (2012) Differential transcriptional profiles mediated by exposure to the cannabinoids cannabidiol and Δ9-tetrahydrocannabinol in BV-2 microglial cells. Br J Pharmacol 165(8):2512–2528. https://doi.org/10.1111/j.1476-5381.2011.01461.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Kozela E, Juknat A, Vogel Z (2017) Modulation of astrocyte activity by cannabidiol, a nonpsychoactive cannabinoid. Int J Mol Sci 18(8). pii: E1669. doi: https://doi.org/10.3390/ijms18081669.

    Article  CAS  PubMed Central  Google Scholar 

  97. Popik P, Vetulani J, Van Ree JM (1992) Low doses of oxytocin facilitate social recognition in rats. Psychopharmacology 106:71–74

    Article  CAS  PubMed  Google Scholar 

  98. Feifel D, Shilling PD, MacDonald K (2016) A review of oxytocin’s effects on the positive, negative, and cognitive domains of schizophrenia. Biol Psychiatry 79(3):222–233. https://doi.org/10.1016/j.biopsych.2015.07.025

    Article  PubMed  CAS  Google Scholar 

  99. Wei D, Lee D, Cox CD, Karsten CA, Peñagarikano O, Geschwind DH, Gall CM, Piomelli D (2015) Endocannabinoid signaling mediates oxytocin-driven social reward. Proc Natl Acad Sci U S A 112(45):14084–14089. https://doi.org/10.1073/pnas.1509795112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Rimmerman N, Juknat A, Kozela E, Levy R, Bradshaw HB, Vogel Z (2011) The non-psychoactive plant cannabinoid, cannabidiol affects cholesterol metabolism-related genes in microglial cells. Cell Mol Neurobiol 31(6):921–930. https://doi.org/10.1007/s10571-011-9692-3

    Article  PubMed  CAS  Google Scholar 

  101. Butovsky E, Juknat A, Elbaz J, Shabat-Simon M, Eilam R, Zangen A, Altstein M, Vogel Z (2006) Chronic exposure to Delta9-tetrahydrocannabinol downregulates oxytocin and oxytocin-associated neurophysin in specific brain areas. Mol Cell Neurosci 31(4):795–804

    Article  CAS  PubMed  Google Scholar 

  102. Murphy M, Mills S, Winstone J, Leishman E, Wager-Miller J, Bradshaw H, Mackie K (2017) Chronic adolescent δ9-tetrahydrocannabinol treatment of male mice leads to long-term cognitive and behavioral dysfunction, which are prevented by concurrent cannabidiol treatment. Cannabis Cannabinoid Res 2(1):235–246. https://doi.org/10.1089/can.2017.0034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The RNA-Seq and bioinformatics analyzes were performed in The Crown Genomics Institute and in The Mantoux Bioinformatics Institute, respectively, of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel. Particularly, we thank Dr Sima Benjamini for technical assistance with RNA sample handling and performing RNA-Seq, and to Michael Gershovis for the core bioinformatics analysis.

Funding

This work was supported by the Dr Miriam and Sheldon G. Adelson Medical Research Foundation and by the statutory funds of the Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.

Author information

Authors and Affiliations

Authors

Contributions

T.K., M.K., and P.P. designed, performed, and analyzed the behavioral experiments. E.K. performed the mRNA extractions, the qPCR analysis of gene expression, the IPA analysis and wrote the article. E.K., T.K., M.K., A.J., Z.V., and P.P. contributed to discussions of article content, and to reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Ewa Kozela.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Main findings:

1. Cannabidiol rescues learning deficits in schizophrenia-like conditions induced by ketamine administration.

2. Cannabidiol reverses transcriptional changes induced by ketamine in the rat prefrontal cortex.

3. Cannabidiol and ketamine treatments affect the transcription of genes allocated to astroglial and microglial cells and mediating neuronal plasticity.

Electronic supplementary material

ESM 1

(DOCX 575 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozela, E., Krawczyk, M., Kos, T. et al. Cannabidiol Improves Cognitive Impairment and Reverses Cortical Transcriptional Changes Induced by Ketamine, in Schizophrenia-Like Model in Rats. Mol Neurobiol 57, 1733–1747 (2020). https://doi.org/10.1007/s12035-019-01831-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-01831-2

Keywords

Navigation