Skip to main content
Log in

Exploratory Assessment of the Relationship Between Hemoglobin Volume Phase Index, Magnetic Resonance Imaging, and Functional Outcome in Neonates with Hypoxic–Ischemic Encephalopathy

  • Original work
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background/Objective

Near-infrared spectroscopy (NIRS)-based measures of cerebral autoregulation (CAR) can potentially identify neonates with hypoxic–ischemic encephalopathy (HIE) who are at greatest risk of irreversible brain injury. However, modest predictive abilities have precluded previously described metrics from entering clinical care. We previously validated a novel autoregulation metric in a piglet model of induced hypotension called the hemoglobin volume phase index (HVP). The objective of this study was to evaluate the clinical ability of the HVP to predict adverse outcomes neonates with HIE.

Methods

This is a prospective study of neonates with HIE who underwent therapeutic hypothermia (TH) at a level 4 neonatal intensive care unit (NICU). Continuous cerebral NIRS and mean arterial blood pressure (MAP) from indwelling arterial catheters were measured during TH and through rewarming. Multivariate autoregressive process was used to calculate the coherence between MAP and the sum total of the oxy- and deoxygenated Hb densities (HbT), a surrogate measure of cerebral blood volume (CBV). The HVP was calculated as the cosine-transformed phase shift at the frequency of maximal MAP-HbT coherence. Brain injury was assessed by neonatal magnetic resonance imaging (MRI), and developmental outcomes were assessed by the Bayley Scales of Infant Development (BSID-III) at 15–30 months. The ability of the HVP to predict (a) death or severe brain injury by MRI and (b) death or significant developmental delay was assessed using logistic regression analyses.

Results

In total, 50 neonates with moderate or severe HIE were monitored. Median HVP was higher, representing more dysfunctional autoregulation, in infants who had adverse outcomes. After adjusting for sex and encephalopathy grade at presentation, HVP at 21–24 and 24–27 h of life predicted death or brain injury by MRI (21–24 h: OR 8.8, p = 0.037; 24–27 h: OR 31, p = 0.011) and death or developmental delay at 15–30 months (21–24 h: OR 11.8, p = 0.05; 24–27 h: OR 15, p = 0.035).

Conclusions

Based on this pilot study of neonates with HIE, HVP merits further study as an indicator of death or severe brain injury on neonatal MRI and neurodevelopmental delay in early childhood. Larger studies are warranted for further clinical validation of the HVP to evaluate cerebral autoregulation following HIE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Liu L, Johnson HL, Cousens S, Perin J, Scott S, Lawn JE, Rudan I, Campbell H, Cibulskis R, Li M, Mathers C, Black RE. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet. 2012;379:2151–61.

    Article  PubMed  Google Scholar 

  2. Lawn J, Shibuya K, Stein C. No cry at birth: global estimates of intrapartum stillbirths and intrapartum-related neonatal deaths. Bull World Health Organ. 2005;83:409–17.

    PubMed  PubMed Central  Google Scholar 

  3. Shankaran S, Woldt E, Koepke T, Bedard MP, Nandyal R. Acute neonatal morbidity and long-term central nervous system sequelae of perinatal asphyxia in term infants. Early Hum Dev. 1991;25:135–48.

    Article  CAS  PubMed  Google Scholar 

  4. Robertson CM, Finer NN, Grace MG. School performance of survivors of neonatal encephalopathy associated with birth asphyxia at term. J Pediatr. 1989;114:753–60.

    Article  CAS  PubMed  Google Scholar 

  5. de Vries LS, Jongmans MJ. Long-term outcome after neonatal hypoxic-ischaemic encephalopathy. Arch Dis Childhood Fetal Neonatal Ed. 2010;95:F220–4.

    Article  Google Scholar 

  6. Marlow N, Rose AS, Rands CE, Draper ES. Neuropsychological and educational problems at school age associated with neonatal encephalopathy. Arch Dis Childhood Fetal Neonatal Ed. 2005;90:F380–7.

    Article  CAS  Google Scholar 

  7. Shankaran S, Laptook AR, Ehrenkranz RA, Tyson JE, McDonald SA, Donovan EF, Fanaroff AA, Poole WK, Wright LL, Higgins RD, Finer NN, Carlo WA, Duara S, Oh W, Cotten CM, Stevenson DK, Stoll BJ, Lemons JA, Guillet R, Jobe AH. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med. 2005;353:1574–84.

    Article  CAS  PubMed  Google Scholar 

  8. Shankaran S, Pappas A, McDonald SA, Vohr BR, Hintz SR, Yolton K, Gustafson KE, Leach TM, Green C, Bara R, Petrie Huitema CM, Ehrenkranz RA, Tyson JE, Das A, Hammond J, Peralta-Carcelen M, Evans PW, Heyne RJ, Wilson-Costello DE, Vaucher YE, Bauer CR, Dusick AM, Adams-Chapman I, Goldstein RF, Guillet R, Papile LA, Higgins RD. Childhood outcomes after hypothermia for neonatal encephalopathy. N Engl J Med. 2012;366:2085–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gluckman PD, Wyatt JS, Azzopardi D, Ballard R, Edwards AD, Ferriero DM, Polin RA, Robertson CM, Thoresen M, Whitelaw A, Gunn AJ. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet. 2005;365:663–70.

    Article  PubMed  Google Scholar 

  10. Azzopardi DV, Strohm B, Edwards AD, Dyet L, Halliday HL, Juszczak E, Kapellou O, Levene M, Marlow N, Porter E, Thoresen M, Whitelaw A, Brocklehurst P. Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med. 2009;361:1349–58.

    Article  CAS  PubMed  Google Scholar 

  11. Jacobs SE, Morley CJ, Inder TE, Stewart MJ, Smith KR, McNamara PJ, Wright IM, Kirpalani HM, Darlow BA, Doyle LW. Whole-body hypothermia for term and near-term newborns with hypoxic-ischemic encephalopathy: a randomized controlled trial. Arch Pediatr Adolesc Med. 2011;165:692–700.

    Article  PubMed  Google Scholar 

  12. Simbruner G, Mittal RA, Rohlmann F, Muche R. Systemic hypothermia after neonatal encephalopathy: outcomes of neo.nEURO.network RCT. Pediatrics. 2010;126:e771–8.

    Article  PubMed  Google Scholar 

  13. Azzopardi D, Strohm B, Marlow N, Brocklehurst P, Deierl A, Eddama O, Goodwin J, Halliday HL, Juszczak E, Kapellou O, Levene M, Linsell L, Omar O, Thoresen M, Tusor N, Whitelaw A, Edwards AD. Effects of hypothermia for perinatal asphyxia on childhood outcomes. N Engl J Med. 2014;371:140–9.

    Article  CAS  PubMed  Google Scholar 

  14. van Bel F, Dorrepaal CA, Benders MJ, Zeeuwe PE, van de Bor M, Berger HM. Changes in cerebral hemodynamics and oxygenation in the first 24 hours after birth asphyxia. Pediatrics. 1993;92:365–72.

    PubMed  Google Scholar 

  15. Meek JH, Elwell CE, McCormick DC, Edwards AD, Townsend JP, Stewart AL, Wyatt JS. Abnormal cerebral haemodynamics in perinatally asphyxiated neonates related to outcome. Arch Dis Childhood Fetal Neonatal Ed. 1999;81:F110–5.

    Article  CAS  Google Scholar 

  16. Pryds O, Greisen G, Lou H, Friis-Hansen B. Vasoparalysis associated with brain damage in asphyxiated term infants. J Pediatr. 1990;117:119–25.

    Article  CAS  PubMed  Google Scholar 

  17. Greisen G. Effect of cerebral blood flow and cerebrovascular autoregulation on the distribution, type and extent of cerebral injury. Brain Pathol. 1992;2:223–8.

    Article  CAS  PubMed  Google Scholar 

  18. Burton VJ, Gerner G, Cristofalo E, Chung SE, Jennings JM, Parkinson C, Koehler RC, Chavez-Valdez R, Johnston MV, Northington FJ, Lee JK. A pilot cohort study of cerebral autoregulation and 2-year neurodevelopmental outcomes in neonates with hypoxic-ischemic encephalopathy who received therapeutic hypothermia. BMC Neurol. 2015;15:209.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tekes A, Poretti A, Scheurkogel MM, Huisman TA, Howlett JA, Alqahtani E, Lee JH, Parkinson C, Shapiro K, Chung SE, Jennings JM, Gilmore MM, Hogue CW, Martin LJ, Koehler RC, Northington FJ, Lee JK. Apparent diffusion coefficient scalars correlate with near-infrared spectroscopy markers of cerebrovascular autoregulation in neonates cooled for perinatal hypoxic-ischemic injury. AJNR Am J Neuroradiol. 2015;36:188–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Govindan RB, Massaro AN, Andescavage NN, Chang T, du Plessis A. Cerebral pressure passivity in newborns with encephalopathy undergoing therapeutic hypothermia. Front Hum Neurosci. 2014;8:266.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Massaro AN, Govindan RB, Vezina G, Chang T, Andescavage NN, Wang Y, Al-Shargabi T, Metzler M, Harris K, du Plessis AJ. Impaired cerebral autoregulation and brain injury in newborns with hypoxic-ischemic encephalopathy treated with hypothermia. J Neurophysiol. 2015;114:818–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Howlett JA, Northington FJ, Gilmore MM, Tekes A, Huisman TA, Parkinson C, Chung SE, Jennings JM, Jamrogowicz JJ, Larson AC, Lehmann CU, Jackson E, Brady KM, Koehler RC, Lee JK. Cerebrovascular autoregulation and neurologic injury in neonatal hypoxic-ischemic encephalopathy. Pediatr Res. 2013;74:525–35.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lee JK, Brady KM, Chung SE, Jennings JM, Whitaker EE, Aganga D, Easley RB, Heitmiller K, Jamrogowicz JL, Larson AC, Lee JH, Jordan LC, Hogue CW, Lehmann CU, Bembea MM, Hunt EA, Koehler RC, Shaffner DH. A pilot study of cerebrovascular reactivity autoregulation after pediatric cardiac arrest. Resuscitation. 2014;85:1387–93.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lee JK, Poretti A, Perin J, Huisman TA, Parkinson C, Chavez-Valdez R, O'Connor M, Reyes M, Armstrong J, Jennings JM, Gilmore MM, Koehler RC, Northington FJ, Tekes A, Optimizing Cerebral Autoregulation May Decrease Neonatal Regional Hypoxic-Ischemic Brain Injury. Developmental neuroscience ; 2016.

  25. Fellman V, Raivio KO. Reperfusion injury as the mechanism of brain damage after perinatal asphyxia. Pediatr Res. 1997;41:599–606.

    Article  CAS  PubMed  Google Scholar 

  26. Govindan RB, Brady KM, Massaro AN, Perin J, Jennings JM, DuPlessis AJ, Koehler RC, Lee JK, Comparison of frequency- and time-domain autoregulation and vasoreactivity indices in a piglet model of hypoxia-ischemia and hypothermia. Dev Neurosci 1–13 (2019)

  27. Soul JS, Hammer PE, Tsuji M, Saul JP, Bassan H, Limperopoulos C, Disalvo DN, Moore M, Akins P, Ringer S, Volpe JJ, Trachtenberg F, du Plessis AJ. Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants. Pediatr Res. 2007;61:467–73.

    Article  PubMed  Google Scholar 

  28. Bassan H, Gauvreau K, Newburger JW, Tsuji M, Limperopoulos C, Soul JS, Walter G, Laussen PC, Jonas RA, du Plessis AJ. Identification of pressure passive cerebral perfusion and its mediators after infant cardiac surgery. Pediatr Res. 2005;57:35–41.

    Article  PubMed  Google Scholar 

  29. Tsuji M, Saul JP, du Plessis A, Eichenwald E, Sobh J, Crocker R, Volpe JJ. Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. Pediatrics. 2000;106:625–32.

    Article  CAS  PubMed  Google Scholar 

  30. Brady KM, Lee JK, Kibler KK, Smielewski P, Czosnyka M, Easley RB, Koehler RC, Shaffner DH. Continuous time-domain analysis of cerebrovascular autoregulation using near-infrared spectroscopy. Stroke. 2007;38:2818–25.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Brady KM, Lee JK, Kibler KK, Easley RB, Koehler RC, Shaffner DH. Continuous measurement of autoregulation by spontaneous fluctuations in cerebral perfusion pressure: comparison of 3 methods. Stroke. 2008;39:2531–7.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Larson AC, Jamrogowicz JL, Kulikowicz E, Wang B, Yang ZJ, Shaffner DH, Koehler RC, Lee JK. Cerebrovascular autoregulation after rewarming from hypothermia in a neonatal swine model of asphyxic brain injury. J Appl Physiol. 1985;115(2013):1433–42.

    Google Scholar 

  33. Lee JK, Brady KM, Mytar JO, Kibler KK, Carter EL, Hirsch KG, Hogue CW, Easley RB, Jordan LC, Smielewski P, Czosnyka M, Shaffner DH, Koehler RC. Cerebral blood flow and cerebrovascular autoregulation in a swine model of pediatric cardiac arrest and hypothermia. Crit Care Med. 2011;39:2337–45.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Johnston MV, Fatemi A, Wilson MA, Northington F. Treatment advances in neonatal neuroprotection and neurointensive care. Lancet Neurol. 2011;10:372–82.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sarnat HB, Sarnat MS. Neonatal encephalopathy following fetal distress A clinical and electroencephalographic study. Arch Neurol. 1976;33:696–705.

    Article  CAS  PubMed  Google Scholar 

  36. Brady KM, Easley RB, Kibler K, Kaczka DW, Andropoulos D, Fraser CD 3rd, Smielewski P, Czosnyka M, Adams GJ, Rhee CJ, Rusin CG. Positive end-expiratory pressure oscillation facilitates brain vascular reactivity monitoring. J Appl Physiol. 1985;113(2012):1362–8.

    Google Scholar 

  37. Fraser CD 3rd, Brady KM, Rhee CJ, Easley RB, Kibler K, Smielewski P, Czosnyka M, Kaczka DW, Andropoulos DB, Rusin C. The frequency response of cerebral autoregulation. J Appl Physiol. 1985;115(2013):52–6.

    Google Scholar 

  38. Govindan RB, Massaro AN, du Plessis A. Ensuring signal quality of cerebral near infrared spectroscopy during continuous longterm monitoring. J Neurosci Methods. 2018;309:147–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Akaike H. A new look at the statistical model identification. IEEE Trans Auto Contr AC. 1974;19:716–23.

    Article  Google Scholar 

  40. Barbieri R, Triedman JK, Saul JP. Heart rate control and mechanical cardiopulmonary coupling to assess central volume: a systems analysis. Am J Physiol Regul Integr Comp Physiol. 2002;283:R1210–20.

    Article  PubMed  Google Scholar 

  41. Kay SM. Modern spectral estimation theory and application. New Jersey: Prentice Hall; 1998.

    Google Scholar 

  42. Lee JK, Kibler KK, Benni PB, Easley RB, Czosnyka M, Smielewski P, Koehler RC, Shaffner DH, Brady KM. Cerebrovascular reactivity measured by near-infrared spectroscopy. Stroke. 2009;40:1820–6.

    Article  PubMed  Google Scholar 

  43. Shankaran S, Barnes PD, Hintz SR, Laptook AR, Zaterka-Baxter KM, McDonald SA, Ehrenkranz RA, Walsh MC, Tyson JE, Donovan EF, Goldberg RN, Bara R, Das A, Finer NN, Sanchez PJ, Poindexter BB, Van Meurs KP, Carlo WA, Stoll BJ, Duara S, Guillet R, Higgins RD. Brain injury following trial of hypothermia for neonatal hypoxic-ischaemic encephalopathy. Arch Dis Childhood Fetal Neonatal Ed. 2012;97:F398-404.

    Google Scholar 

  44. Massaro AN, Govindan RB, Al-Shargabi T, Andescavage NN, Metzler M, Chang T, Glass P, du Plessis AJ. Heart rate variability in encephalopathic newborns during and after therapeutic hypothermia. J Perinatol (2014).

  45. Tian F, Tarumi T, Liu H, Zhang R, Chalak L. Wavelet coherence analysis of dynamic cerebral autoregulation in neonatal hypoxic-ischemic encephalopathy. NeuroImage Clin. 2016;11:124–32.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Shellhaas RA, Thelen BJ, Bapuraj JR, Burns JW, Swenson AW, Christensen MK, Wiggins SA, Barks JD. Limited short-term prognostic utility of cerebral NIRS during neonatal therapeutic hypothermia. Neurology. 2013;81:249–55.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kunihara T, Sasaki S, Shiiya N, Murashita T, Matsui Y, Yasuda K. Near infrared spectrophotometry reflects cerebral metabolism during hypothermic circulatory arrest in adults. ASAIO J. 2001;47:417–21.

    Article  CAS  PubMed  Google Scholar 

  48. Samraj RS, Nicolas L. Near infrared spectroscopy (NIRS) derived tissue oxygenation in critical illness. Clinical and investigative medicine. Medecine clinique et experimentale. 2015; 38:E285–95.

  49. Zweifel C, Lavinio A, Steiner LA, Radolovich D, Smielewski P, Timofeev I, Hiler M, Balestreri M, Kirkpatrick PJ, Pickard JD, Hutchinson P, Czosnyka M. Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury. Neurosurg Focus. 2008;25:E2.

    Article  PubMed  Google Scholar 

  50. Czosnyka M, Smielewski P, Piechnik S, Schmidt EA, Seeley H, al-Rawi P, Matta BF, Kirkpatrick PJ, Pickard JD. Continuous assessment of cerebral autoregulation--clinical verification of the method in head injured patients. Acta Neurochirurgica. 2000; Supplement 76:483–4.

  51. Brady KM, Shaffner DH, Lee JK, Easley RB, Smielewski P, Czosnyka M, Jallo GI, Guerguerian AM. Continuous monitoring of cerebrovascular pressure reactivity after traumatic brain injury in children. Pediatrics. 2009;124:e1205–12.

    Article  PubMed  Google Scholar 

  52. Torrence C, Webster PJ. Interdecadal changes in the ENSO-monsoon system. J Clim. 1999;12:2679–90.

    Article  Google Scholar 

  53. Chalak LF, Tian F, Adams-Huet B, Vasil D, Laptook A, Tarumi T, Zhang R. Novel wavelet real time analysis of neurovascular coupling in neonatal encephalopathy. Sci Rep. 2017;7:45958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chalak LF, Zhang R. New wavelet neurovascular bundle for bedside evaluation of cerebral autoregulation and neurovascular coupling in newborns with hypoxic-ischemic encephalopathy. Dev Neurosci. 2017;39:89–96.

    Article  CAS  PubMed  Google Scholar 

  55. Kaiser JR, Gauss CH, Williams DK. The effects of hypercapnia on cerebral autoregulation in ventilated very low birth weight infants. Pediatr Res. 2005;58:931–5.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nusbaum DM, Brady KM, Kibler KK, Blaine Easley R. Acute hypercarbia increases the lower limit of cerebral blood flow autoregulation in a porcine model. Neurol Res. 2016; 38: 196–204.

  57. Lingappan K, Kaiser JR, Srinivasan C, Gunn AJ. Relationship between PCO2 and unfavorable outcome in infants with moderate-to-severe hypoxic ischemic encephalopathy. Pediatr Res. 2016;80:204–8.

    Article  CAS  PubMed  Google Scholar 

  58. Sokoloff MD, Plegue MA, Chervin RD, Barks JD, Shellhaas RA. Phenobarbital and neonatal seizures affect cerebral oxygen metabolism: a near-infrared spectroscopy study. Pediatr Res. 2015;78:91–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hoiland RL, Bain AR, Rieger MG, Bailey DM, Ainslie PN. Hypoxemia, oxygen content, and the regulation of cerebral blood flow. Am J Physiol Regul Integr Comp Physiol. 2016;310:R398-413.

    Article  PubMed  Google Scholar 

  60. Srinivasakumar P, Zempel J, Wallendorf M, Lawrence R, Inder T, Mathur A. Therapeutic hypothermia in neonatal hypoxic ischemic encephalopathy: electrographic seizures and magnetic resonance imaging evidence of injury. J Pediatr. 2013;163:465–70.

    Article  PubMed  Google Scholar 

  61. Armstead WM, Kiessling JW, Kofke WA, Vavilala MS. Impaired cerebral blood flow autoregulation during posttraumatic arterial hypotension after fluid percussion brain injury is prevented by phenylephrine in female but exacerbated in male piglets by extracellular signal-related kinase mitogen-activated protein kinase upregulation. Crit Care Med. 2010;38:1868–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Armstead WM, Riley J, Vavilala MS. Dopamine prevents impairment of autoregulation after traumatic brain injury in the newborn pig through inhibition of Up-regulation of endothelin-1 and extracellular signal-regulated kinase mitogen-activated protein kinase. Pediatr Crit Care Med. 2013;14:e103–11.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chavez-Valdez R, O’Connor M, Perin J, Reyes M, Armstrong J, Parkinson C, Gilmore M, Jennings J, Northington FJ, Lee JK. Sex-specific associations between cerebrovascular blood pressure autoregulation and cardiopulmonary injury in neonatal encephalopathy and therapeutic hypothermia. Pediatr Res. 2017;81:759–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Clinical and Translational Science Institute at Children’s National (UL1TR000075, 1KL2RR031987-01) and the National Institutes of Health Intellectual and Developmental Disabilities Research Consortium (U54 HD090257).

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to 1) conception and design, acquisition of data, or analysis and interpretation of data; 2) drafting the article or revising it critically for important intellectual content; and 3) final approval of the version to be published.

Corresponding author

Correspondence to An N. Massaro.

Ethics declarations

Conflict of interest

JKL is a paid consultant for Edwards Life Sciences. The other authors have no conflicts of interest to declare.

Ethical approval/informed consent

The study was approved by the Children’s National Institutional Review Board, informed consent was obtained from a parent of each participant and the study was performed in accordance with the ethical standards consistent with the 1964 Declaration of Helsinki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massaro, A.N., Lee, J.K., Vezina, G. et al. Exploratory Assessment of the Relationship Between Hemoglobin Volume Phase Index, Magnetic Resonance Imaging, and Functional Outcome in Neonates with Hypoxic–Ischemic Encephalopathy. Neurocrit Care 35, 121–129 (2021). https://doi.org/10.1007/s12028-020-01150-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-020-01150-8

Keywords

Navigation